1
|
Cherni O, Carballares D, Siar EH, Abellanas-Perez P, de Andrades D, de Moraes Polizeli MDLT, Rocha-Martin J, Bahri S, Fernandez-Lafuente R. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized. J Biotechnol 2024; 391:72-80. [PMID: 38876311 DOI: 10.1016/j.jbiotec.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.
Collapse
Affiliation(s)
- Oumaima Cherni
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
| | - El Hocine Siar
- Agri-food Engineering Laboratory (GENIAAL), Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Sellema Bahri
- LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia.
| | | |
Collapse
|
2
|
Sarocladium strictum lipase (LipSs) produced using crude glycerol as sole carbon source: A promising enzyme for biodiesel production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Sonnabend R, Seiler L, Gressler M. Regulation of the Leucine Metabolism in Mortierella alpina. J Fungi (Basel) 2022; 8:196. [PMID: 35205950 PMCID: PMC8880518 DOI: 10.3390/jof8020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l-leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina. In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli, one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l-leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer.
Collapse
Affiliation(s)
| | | | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich-Schiller-University Jena, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany; (R.S.); (L.S.)
| |
Collapse
|
4
|
Argiz L, Correa-Galeote D, Val Del Río Á, Mosquera-Corral A, González-Cabaleiro R. Valorization of lipid-rich wastewaters: A theoretical analysis to tackle the competition between polyhydroxyalkanoate and triacylglyceride-storing populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150761. [PMID: 34624285 DOI: 10.1016/j.scitotenv.2021.150761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The lipid fraction of the effluents generated in several food-processing activities can be transformed into polyhydroxyalkanoates (PHAs) and triacylglycerides (TAGs), through open culture biotechnologies. Although competition between storing and non-storing populations in mixed microbial cultures (MMCs) has been widely studied, the right selective environment allowing for the robust enrichment of a community when different types of accumulators coexist is still not clear. In this research, comprehensive metabolic analyses of PHA and TAG synthesis and degradation, and concomitant respiration of external carbon, were used to understand and explain the changes observed in a laboratory-scale bioreactor fed with the lipid-rich fraction (mainly oleic acid) of a wastewater stream produced in the fish-canning industry. It was concluded that the mode of oxygen, carbon, and nitrogen supply determines the enrichment of the culture in specific populations, and hence the type of intracellular compounds preferentially accumulated. Coupled carbon and nitrogen feeding regime mainly selects for TAG producers whereas uncoupled feeding leads to PHA or TAG production function of the rate of carbon supply under specific aeration rates and feast and famine phases lengths.
Collapse
Affiliation(s)
- Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - David Correa-Galeote
- Department of Microbiology and Institute of Water Research, Universidad de Granada, Granada, Spain
| | - Ángeles Val Del Río
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Rebeca González-Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
5
|
Patchimpet J, Sangkharak K, Eiad-ua A, Klomklao S. Thermoseparating aqueous two-phase system for lipase recovery and partitioning from Nile tilapia viscera: Biochemical properties and effect of ultrasound. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis. J Fungi (Basel) 2021; 7:jof7030229. [PMID: 33808917 PMCID: PMC8003776 DOI: 10.3390/jof7030229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
β-Galactosidases of Mucoromycota are rarely studied, although this group of filamentous fungi is an excellent source of many industrial enzymes. In this study, 99 isolates from the genera Lichtheimia, Mortierella, Mucor, Rhizomucor, Rhizopus and Umbelopsis, were screened for their β-galactosidase activity using a chromogenic agar approach. Ten isolates from the best producers were selected, and the activity was further investigated in submerged (SmF) and solid-state (SSF) fermentation systems containing lactose and/or wheat bran substrates as enzyme production inducers. Wheat bran proved to be efficient for the enzyme production under both SmF and SSF conditions, giving maximum specific activity yields from 32 to 12,064 U/mg protein and from 783 to 22,720 U/mg protein, respectively. Oligosaccharide synthesis tests revealed the suitability of crude β-galactosidases from Lichtheimia ramosa Szeged Microbiological Collection (SZMC) 11360 and Rhizomucor pusillus SZMC 11025 to catalyze transgalactosylation reactions. In addition, the crude enzyme extracts had transfructosylation activity, resulting in the formation of fructo-oligosaccharide molecules in a sucrose-containing environment. The maximal oligosaccharide concentration varied between 0.0158 and 2.236 g/L depending on the crude enzyme and the initial material. Some oligosaccharide-enriched mixtures supported the growth of probiotics, indicating the potential of the studied enzyme extracts in future prebiotic synthesis processes.
Collapse
|
7
|
Weinberger S, Beyer R, Schüller C, Strauss J, Pellis A, Ribitsch D, Guebitz GM. High Throughput Screening for New Fungal Polyester Hydrolyzing Enzymes. Front Microbiol 2020; 11:554. [PMID: 32390956 PMCID: PMC7193820 DOI: 10.3389/fmicb.2020.00554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
There is a strong need for novel and more efficient polyester hydrolyzing enzymes in order to enable the development of more environmentally friendly plastics recycling processes allowing the closure of the carbon cycle. In this work, a high throughput system on microplate scale was used to screen a high number of fungi for their ability to produce polyester-hydrolyzing enzymes. For induction of responsible enzymes, the fungi were cultivated in presence of aliphatic and aromatic polyesters [poly(1,4-butylene adipate co terephthalate) (PBAT), poly(lactic acid) (PLA) and poly(1,4-butylene succinate) (PBS)], and the esterase activity in the culture supernatants was compared to the culture supernatants of fungi grown without polymers. The results indicate that the esterase activity of the culture supernatants was induced in about 10% of the tested fungi when grown with polyesters in the medium, as indicated by increased activity (to >50 mU/mL) toward the small model substrate para-nitrophenylbutyrate (pNPB). Incubation of these 50 active culture supernatants with different polyesters (PBAT, PLA, PBS) led to hydrolysis of at least one of the polymers according to liquid chromatography-based quantification of the hydrolysis products terephthalic acid, lactic acid and succinic acid, respectively. Interestingly, the specificities for the investigated polyesters varied among the supernatants of the different fungi.
Collapse
Affiliation(s)
- Simone Weinberger
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Center of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria
| | - Reinhard Beyer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alessandro Pellis
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Ribitsch
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Center of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria
| | - Georg M Guebitz
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Center of Industrial Biotechnology (ACIB), Tulln an der Donau, Austria
| |
Collapse
|
8
|
Devi R, Madhavan Nampoothiri K, Sukumaran RK, Sindhu R, Arumugam M. Lipase of Pseudomonas guariconesis
as an additive in laundry detergents and transesterification biocatalysts. J Basic Microbiol 2019; 60:112-125. [DOI: 10.1002/jobm.201900326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Rajan Devi
- Microbial Processes and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram Kerala India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram Kerala India
| | - Rajeev Kumar Sukumaran
- Microbial Processes and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram Kerala India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram Kerala India
| | - Muthu Arumugam
- Microbial Processes and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram Kerala India
| |
Collapse
|