1
|
Hussain N, Apotikar A, Pidathala S, Mukherjee S, Burada AP, Sikdar SK, Vinothkumar KR, Penmatsa A. Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms. Nat Commun 2024; 15:2942. [PMID: 38580658 PMCID: PMC10997603 DOI: 10.1038/s41467-024-47142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Pannexins are single-membrane large-pore channels that release ions and ATP upon activation. Three isoforms of pannexins 1, 2, and 3, perform diverse cellular roles and differ in their pore lining residues. In this study, we report the cryo-EM structure of pannexin 3 at 3.9 Å and analyze its structural differences with pannexin isoforms 1 and 2. The pannexin 3 vestibule has two distinct chambers and a wider pore radius in comparison to pannexins 1 and 2. We further report two cryo-EM structures of pannexin 1, with pore substitutions W74R/R75D that mimic the pore lining residues of pannexin 2 and a germline mutant of pannexin 1, R217H at resolutions of 3.2 Å and 3.9 Å, respectively. Substitution of cationic residues in the vestibule of pannexin 1 results in reduced ATP interaction propensities to the channel. The germline mutant R217H in transmembrane helix 3 (TM3), leads to a partially constricted pore, reduced ATP interaction and weakened voltage sensitivity. The study compares the three pannexin isoform structures, the effects of substitutions of pore and vestibule-lining residues and allosteric effects of a pathological substitution on channel structure and function thereby enhancing our understanding of this vital group of ATP-release channels.
Collapse
Affiliation(s)
- Nazia Hussain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Ashish Apotikar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shabareesh Pidathala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Chemistry, The University of Chicago, Chicago, USA
| | - Ananth Prasad Burada
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Paciello F, Pisani A, Rolesi R, Montuoro R, Mohamed-Hizam V, Boni G, Ripoli C, Galli J, Sisto R, Fetoni AR, Grassi C. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity. J Neuroinflammation 2024; 21:4. [PMID: 38178142 PMCID: PMC10765700 DOI: 10.1186/s12974-023-02996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Montuoro
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giammarco Boni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Jacopo Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority (INAIL), Monte Porzio Catone, Rome, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Unit of Audiology, Università Degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
3
|
Liu LM, Liang C, Chen J, Fang S, Zhao HB. Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise. SCIENCE ADVANCES 2023; 9:eadf4144. [PMID: 36753545 PMCID: PMC9908021 DOI: 10.1126/sciadv.adf4144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Gap junction gene GJB2 (Cx26) mutations cause >50% of nonsyndromic hearing loss. Its recessive hetero-mutation carriers, who have no deafness, occupy ~10 to 20% of the general population. Here, we report an unexpected finding that these heterozygote carriers have hearing oversensitivity, and active cochlear amplification increased. Mouse models show that Cx26 hetero-deletion reduced endocochlear potential generation in the cochlear lateral wall and caused outer hair cell electromotor protein prestin compensatively up-regulated to increase active cochlear amplification and hearing sensitivity. The increase of active cochlear amplification also increased sensitivity to noise; exposure to daily-level noise could cause Cx26+/- mice permanent hearing threshold shift, leading to hearing loss. This study demonstrates that Cx26 recessive heterozygous mutations are not "harmless" for hearing as previously considered and can cause hyperacusis-like hearing oversensitivity. The data also indicate that GJB2 hetero-mutation carriers are vulnerable to noise and should avoid noise exposure in daily life.
Collapse
Affiliation(s)
- Li-Man Liu
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Department of Surgery–Otolaryngology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06510, USA
| | - Chun Liang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Hearing Function Testing Center, Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen 518017, China
| | - Jin Chen
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Shu Fang
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
- Department of Surgery–Otolaryngology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
5
|
Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A 2022; 119:e2202104119. [PMID: 35486697 PMCID: PMC9171361 DOI: 10.1073/pnas.2202104119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pannexin1 is a glycoprotein that has been shown to form functional plasma membrane channels and mediate many cellular signaling pathways. However, the formation and function of pannexin1-based intercellular cell–cell channels in mammalian cells and vertebrate tissue is a question of substantial debate. This work provides robust electrophysiological evidence to demonstrate that endogenously expressed human pannexin1 forms cell–cell channels and lays the groundwork for studying a potential new type of electrical synapses between many mammalian cell types that endogenously express pannexin1. The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell–cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell–cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell–cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell–cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell–cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell–cell channels in different cell types might require special attention.
Collapse
|
6
|
Hearing loss is an early biomarker in APP/PS1 Alzheimer's disease mice. Neurosci Lett 2019; 717:134705. [PMID: 31870800 DOI: 10.1016/j.neulet.2019.134705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive loss of memory and cognitive decline. Over the last decade, it has been found that defects in sensory systems could be highly associated with AD. Hearing is an important neural sense. However, little is known about hearing functional changes in AD. In this study, APP/PS1 AD mice (Jackson Lab: Stack No. 004462) were used. Hearing function was assessed by auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and cochlear microphonics (CM) recordings. Wild-type (WT) littermates served as control. We found that APP/PS1 AD mice measured as ABR threshold had hearing loss. The hearing loss appeared at high frequency as early as 2 months old, prior to the reported occurrence of spatial learning deficit at 6-7 months of age in this AD mouse model. The hearing loss was progressive and extended from high frequency to low frequency. At 3-4 months old, the hearing loss appeared in the whole-frequency range. Moreover, the wave IV and V in the super-threshold ABR were eliminated, indicating substantial impairment in inferior colliculus, nuclei of lateral lemniscus, and medial geniculate body in the upper brainstem. DPOAE in APP/PS1 AD mice was also reduced. However, there was no reduction in CM in APP/PS1 mice. These data demonstrate that unlike age-related hearing loss APP/PS1 AD mice have early onset of hearing loss. These data also suggest that hearing function testing could provide a simple, sensitive, non-invasive screen-tool for early detecting AD and localizing lesion.
Collapse
|
7
|
Double deletion of Panx1 and Panx3 affects skin and bone but not hearing. J Mol Med (Berl) 2019; 97:723-736. [PMID: 30918989 DOI: 10.1007/s00109-019-01779-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022]
Abstract
Pannexins (Panxs), large-pore channel forming glycoproteins, are expressed in a wide variety of tissues including the skin, bone, and cochlea. To date, the use of single knock-out mouse models of both Panx1 and Panx3 have demonstrated their roles in skin development, bone formation, and auditory phenotypes. Due to sequence homology between Panx1 and Panx3, when one Panx is ablated from germline, the other may be upregulated in a compensatory mechanism to maintain tissue homeostasis and function. To evaluate the roles of Panx1 and Panx3 in the skin, bone, and cochlea, we created the first Panx1/Panx3 double knock-out mouse model (dKO). These mice had smaller litters and reduced body weight compared to wildtype controls. The dKO dorsal skin had decreased epidermal and dermal area as well as decreased hypodermal area in neonatal but not in older mice. In addition, mouse skull shape and size were altered, and long bone length was decreased in neonatal dKO mice. Finally, auditory tests revealed that dKO mice did not exhibit hearing loss and were even slightly protected against noise-induced hearing damage at mid-frequency regions. Taken together, our findings suggest that Panx1 and Panx3 are important at early stages of development in the skin and bone but may be redundant in the auditory system. KEY MESSAGES: Panx double KO mice had smaller litters and reduced body weight. dKO skin had decreased epidermal and dermal area in neonatal mice. Skull shape and size changed plus long bone length decreased in neonatal dKO mice. dKO had no hearing loss and were slightly protected against noise-induced damage.
Collapse
|
8
|
An Overview of the Focus of the International Gap Junction Conference 2017 and Future Perspectives. Int J Mol Sci 2018; 19:ijms19092823. [PMID: 30231591 PMCID: PMC6164644 DOI: 10.3390/ijms19092823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
This Special Issue relates to the 18th biannual International Gap Junction Conference (IGJC2017), held at the Crowne Plaza Hotel, Glasgow, U.K., from the 29 July⁻2 August 2017 [...].
Collapse
|