1
|
Song H, Liang GQ, Yu MS, Shan Y, Shi J, Jiang CB, Ni DL, Sheng MX. Shen-yan-yi-hao oral solution ameliorates IgA nephropathy via intestinal IL-17/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118335. [PMID: 38754644 DOI: 10.1016/j.jep.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1β etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.
Collapse
Affiliation(s)
- Huan Song
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China; Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Guo-Qiang Liang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China; Suzhou Academy of Wumen Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Man-Shu Yu
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Yun Shan
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jun Shi
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chun-Bo Jiang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Dao-Lei Ni
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Mei-Xiao Sheng
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
2
|
Jiang P, Yao C, Guo DA. Traditional Chinese medicine for the treatment of immune-related nephropathy: A review. Acta Pharm Sin B 2024; 14:38-66. [PMID: 38239236 PMCID: PMC10793104 DOI: 10.1016/j.apsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
Immune-related nephropathy (IRN) refers to immune-response-mediated glomerulonephritis and is the main cause of end-stage renal failure. The pathogenesis of IRN is not fully understood; therefore, treatment is challenging. Traditional Chinese medicines (TCMs) have potent clinical effects in the treatment of the IRN conditions immunoglobulin A nephropathy, lupus nephropathy, and diabetic nephropathy. The underlying mechanisms mainly include its inhibition of inflammation; improvements to renal interstitial fibrosis, oxidative stress, autophagy, apoptosis; and regulation of immunity. In this review, we summarize the clinical symptoms of the three IRN subtypes and the use of TCM prescriptions, herbs, and bioactive compounds in treating IRN, as well as the potential mechanisms, intending to provide a reference for the future study of TCM as IRN treatments.
Collapse
Affiliation(s)
- Pu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Zou W, Liu Y, Zhang W, Lin B, Shen W, Li Y, He Q, Jin J. Short-term use of ceftriaxone sodium leads to intestinal barrier disruption and ultrastructural changes of kidney in SD rats. Ren Fail 2023; 45:2230322. [PMID: 37466047 PMCID: PMC10360976 DOI: 10.1080/0886022x.2023.2230322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Antibiotic treatments are known to disturb gut microbiota, but their effects on the mucosal barrier and extraintestinal diseases are rarely discussed. The aim of this study was to evaluate and visualize the impact of antibiotics on colonic mucus and the microbial community, and to assess whether intestinal dysbacteriosis is involved in the pathogenesis and progression of extraintestinal diseases in vivo. MATERIALS AND METHODS Twenty-one SD rats were randomly assigned into three groups followed by different experimental treatments. The albumin-creatinine ratio, urinary protein and occult blood semi-quantified test were tested. Fecal samples were collected at different time points (0,4, and 12 weeks) for 16S rRNA gene sequencing. Colon and kidney specimens were examined using light microscopy and transmission electron microscopy (TEM) to identify morphological changes. RESULTS Ceftriaxone intervention for one week did not cause any symptoms of diarrhea or weight loss, but the alpha and beta diversities of gut microbiota decreased quickly and significantly, a lower Firmicutes/Bacteroidetes (F/B) ratio was observed. At week 12, although the alpha and beta diversities increased to a level similar to that of the control (CON) group, LEfSe analysis indicated that the microbial community composition still differed significantly in each group. In addition, KEGG metabolic prediction revealed different metabolic functions in each group. TEM examination of colon revealed that dramatic morphological changes were observed in the ceftriaxone (Cef) group, wherein microvilli were misaligned and shortened significantly and morphologically intact bacteria were seen on the epithelial cell surface. TEM examination of kidneys from the Cef group showed characteristic glomerular changes in the form of widely irregularly thickened glomerular basement membrane (GBM) and foot process fusion or effacement; mild thickening of the GBM and foot process fusion was detected when ceftriaxone and Resatorvid (TAK242, an inhibitor of TLR4 signaling) are used together in the ceftriaxone + TAK242 (TAK) group. CONCLUSIONS Short-term use of ceftriaxone induced dynamic changes of gut microbiota and lead to intestinal barrier disruption and ultrastructural changes of kidneys in the SD rats. Moreover, interference with the TLR4-dependent signaling pathway can alleviate the damage to the intestinal barrier and kidney.
Collapse
Affiliation(s)
- Wenli Zou
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yueming Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Lin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiwen Li
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang He
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Jin
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu H, Chen W, Tian C, Deng Y, Xu L, Ouyang W, Qiu R, You Y, Jiang P, Zhou L, Cheng J, Kwan HY, Zhao X, Sun X. The mechanism of Shenbing Decoction II against IgA nephropathy renal fibrosis revealed by UPLC-MS/MS, network pharmacology and experimental verification. Heliyon 2023; 9:e21997. [PMID: 38027651 PMCID: PMC10654229 DOI: 10.1016/j.heliyon.2023.e21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background IgA nephropathy (IgAN) is a major and growing public health problem. Renal fibrosis plays a vital role in the progression of IgAN. This study is to investigate the mechanisms of action underlying the therapeutic effects of Shenbing Decoction II (SBDII) in IgAN renal fibrosis treatment based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), network pharmacology and experimental verification. Method We first used UPLC-MS/MS to explore the main compounds of SBDII, and then used network pharmacology to predict the targets and key pathways of SBDII in the treatment of IgAN renal fibrosis. Next, bovine serum albumin (BSA), lipopolysaccharide (LPS), and carbon tetrachloride (CCL4) were used to induce IgAN in rats, and then biochemical indicators, renal tissue pathology, and renal fibrosis-related indicators were examined. At the same time, part of the results predicted by network pharmacology were also verified. Result A total of 105 compounds were identified in SBDII by UPLC-MS/MS. Network pharmacology results showed that the active compounds such as acacetin, eupatilin, and galangin may mediate the therapeutic effects of SBDII in treating IgAN by targeting tumor protein p53 (TP53) and regulating phosphatidylinositol 3-kinase (PI3K)-Akt kinase (Akt) signaling pathway. Animal experiments showed that SBDII not only significantly improved renal function and fibrosis in IgAN rats, but also significantly downregulated the expressions of p53, p-PI3K and p-Akt. Conclusion This UPLC-MS/MS, network pharmacological and experimental study highlights that the TP53 as a target, and PI3K-Akt signaling pathway are the potential mechanism by which SBDII is involved in IgAN renal fibrosis treatment. Acacetin, eupatilin, and galangin are probable active compounds in SBDII, these results might provide valuable guidance for further studies of IgAN renal fibrosis treatment.
Collapse
Affiliation(s)
- Huaxi Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijie Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunyang Tian
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijian Deng
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Liangwo Xu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenkun Ouyang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Renjie Qiu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Jiang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Sun
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Park G, Kwon N, Kim MH, Yang WM. The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis. Food Sci Anim Resour 2023; 43:859-876. [PMID: 37701738 PMCID: PMC10493567 DOI: 10.5851/kosfa.2023.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.
Collapse
Affiliation(s)
- Ganghye Park
- Department of Convergence Korean Medical
Science, College of Korean Medicine, Kyung Hee University,
Seoul 02447, Korea
| | - Namgyu Kwon
- Department of Convergence Korean Medical
Science, College of Korean Medicine, Kyung Hee University,
Seoul 02447, Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical
Science, College of Korean Medicine, Kyung Hee University,
Seoul 02447, Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical
Science, College of Korean Medicine, Kyung Hee University,
Seoul 02447, Korea
| |
Collapse
|
6
|
Mei F, Nie J, Wen Y, Li Z, Zhang D, Gan LS, Li W, Guo DA. Enantiomeric N-acetyldopamine trimers from Cicadae Periostracum and their absolute configurations. PHYTOCHEMISTRY 2023; 213:113780. [PMID: 37379971 DOI: 10.1016/j.phytochem.2023.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Six previously undescribed N-acetyldopamine (NADA) trimmer racemates, percicamides A-F (1-6), were isolated from a 70% ethanol extract of Cicadae Periostracum. Subsequent chiral-phase separation afforded six pairs of enantiomers, (+)- and (-)-percicamides A-F (1a/1b-6a/6b). Their structures including absolute configurations were elucidated by combined extensive spectroscopic data and quantum chemical calculations. Compounds 1-6 represent the first examples of NADA trimmers with a cis-relationship of H-7'/H-8' or H-7''/H-8''. Bioassays verified that all isolated compounds showed weak inhibitory effects on nitric oxide production in RAW 264.7 cells.
Collapse
Affiliation(s)
- Fang Mei
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - Jinchun Nie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yan Wen
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Zhenwei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - Daidi Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - Li-She Gan
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Wei Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - De-An Guo
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
7
|
Ma S, Zhao M, Chang M, Shi X, Shi Y, Zhang Y. Effects and mechanisms of Chinese herbal medicine on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154913. [PMID: 37307737 DOI: 10.1016/j.phymed.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), is the main cause of end-stage renal disease, that causes serious physical and psychological burden to patients worldwide. Some traditional treatment measures, such as blocking the renin-angiotensin-aldosterone system, controlling blood pressure, and following a low-protein diet, may not achieve satisfactory results. Therefore, more effective and safe therapies for IgAN are urgently needed. PURPOSE The aim of this review is to summarize the clinical efficacy of Chinese herbal medicines (CHMs) and their active ingredients in the treatment and management of IgAN based on the results of clinical trials, systematic reviews, and meta-analyses, to fully understand the advantages and perspectives of CHMs in the treatment of IgAN. STUDY DESIGN AND METHODS For this review, the following electronic databases were consulted: PubMed, ResearchGate, Science Direct, Web of Science, Chinese National Knowledge Infrastructure and Wanfang Data, "IgA nephropathy," "traditional Chinese medicine," "Chinese herbal medicine," "herb," "mechanism," "Meta-analysis," "systematic review," "RCT" and their combinations were the keywords to search the relevant literature. Data were collected from 1990 to 2022. RESULTS This review found that the active ingredients of CHMs commonly act on multiple signaling pathways in the clinical treatment of IgAN, mainly with antioxidant, anti-inflammatory and anti-fibrosis effects, and regulation of autophagy. CONCLUSION Compared with the single-target therapy of modern medicine, CHMs can regulate the corresponding pathways from the aspects of anti-inflammation, anti-oxidation, anti-fibrosis and autophagy to play a multi-target treatment of IgAN through syndrome differentiation and treatment, which has good clinical efficacy and can be used as the first choice or alternative therapy for IgAN treatment. This review provides evidence and research direction for a comprehensive clinical understanding of the protective effect of Chinese herbal medicine on IgAN.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
8
|
Chemical composition-based characterization of the anti-allergic effect of Guominkang Formula on IgE-mediated mast cells activation and passive cutaneous anaphylaxis. Chin J Nat Med 2022; 20:925-936. [PMID: 36549806 DOI: 10.1016/s1875-5364(22)60225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/24/2022]
Abstract
Guominkang (GMK), a Chinese medicine formula, has been used to treat allergic diseases in clinical settings for many years. To evaluate the antiallergic effect and molecular mechanism of action of GMK extract, RBL-2H3 cell models and passive cutaneous anaphylaxis (PCA) mouse models were established. High performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses were performed to characterize the chemical composition of GMK. A total of 94 compounds were identified or tentatively identified from GMK. Three of them, emodin, ursolic acid, and hamaudol, were identified for the first time as potential active compounds in GMK, since they inhibited the degranulation of mast cells. The anti-allergic effect of hamaudol was the first to be discovered. GMK could markedly mitigate the shade of Evans Blue extravasation and ear incrassation in PCA mouse models. Additionally, GMK significantly inhibited the degranulation of mast cells, suppressed mast cell degranulation by reducing Ca2+ influx and the levels of TNF-α, IL-4, and histamine, and markedly inhibited the phosphorylation of Lyn, Syk, PLCγ1, IκBα, and NF-κB p65. Molecular docking results indicated that hamaudol and emodin had strong interaction with FcɛRI and NF-κB related proteins, while ursolic acid only interacted with NF-κB associated proteins. These results suggest GMK suppresses the activation of MCs both in vivo and in vitro. The underlying mechanism of its anti-allergic activity is associated with the inhibition of FcɛRI and NF-κB activation.
Collapse
|
9
|
Luo J, Wei W, Wang P, Guo T, Chen S, Zhang L, Feng S. (±)-Cryptamides A-D, Four Pairs of Novel Dopamine Enantiomer Trimers from the Periostracum Cicadae. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196707. [PMID: 36235243 PMCID: PMC9571589 DOI: 10.3390/molecules27196707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Four pairs of novel dopamine enantiomer trimers, (±)-cryptamides A–D (1–4), and 10 pairs of previously described dopamine enantiomer dimers (5–14) were isolated from the Periostracum cicadae, the cast-off shell of the insect Cryptotympana pustulata. Aside from being pairs of enantiomers, the eight trimers were also elucidated to be regioisomers, most likely resulting from their mechanism of formation, [4 + 2] cycloaddition. The discovery of dopamine trimers is rarely reported when it comes to natural products derived from insects.
Collapse
Affiliation(s)
- Junjian Luo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wenjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (T.G.); (S.C.); (S.F.)
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (T.G.); (S.C.); (S.F.)
| | - Liping Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (T.G.); (S.C.); (S.F.)
| |
Collapse
|
10
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
11
|
Wang XH, Lang R, Liang Y, Zeng Q, Chen N, Yu RH. Traditional Chinese Medicine in Treating IgA Nephropathy: From Basic Science to Clinical Research. J Transl Int Med 2021; 9:161-167. [PMID: 34900626 PMCID: PMC8629415 DOI: 10.2478/jtim-2021-0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
IgA nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and end-stage renal disease worldwide. Currently, clinical interventions for IgAN are limited, and many patients seek out alternative therapies such as traditional Chinese medicine (TCM). In the last several years, TCM has accumulated ample application experiences and achieved favorable clinical effects. This article summarizes high-quality research from basic science to clinical applications aimed to provide more evidence-based medicine proof for the clinical treatment of IgAN. In summary, qi and yin deficiency accounted for the largest proportion in IgAN patients, and the treatment of IgAN should be based on supplementing qi and nourishing yin. Further, for patients with severe IgAN, the treatment combination of Chinese and Western medicines is better than pure Chinese medicine or hormone therapy. In addition, the pharmacological mechanism of Chinese herbal medicines is mostly based on restoring the immune function, relieving the inflammation damage, and inhibiting proliferation of the glomerular mesangial cells.
Collapse
Affiliation(s)
- Xin-hui Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Lang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zeng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ren-huan Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Chang TY, Wang YP, Wang HA, Jin D, Ma JH, Zhang SL, Thabane L. Comparative efficacy and safety of traditional Chinese medicine for IgA nephropathy: A systematic review and meta-analysis. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Chang M, Yang B, Li L, Si Y, Zhao M, Hao W, Zhao J, Zhang Y. Modified Huangqi Chifeng Decoction Attenuates Proteinuria by Reducing Podocyte Injury in a Rat Model of Immunoglobulin a Nephropathy. Front Pharmacol 2021; 12:714584. [PMID: 34381367 PMCID: PMC8350133 DOI: 10.3389/fphar.2021.714584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023] Open
Abstract
Modified Huangqi Chifeng decoction (MHCD) has been used to reduce proteinuria in immunoglobulin A nephropathy (IgAN) for many years. Previously, we have demonstrated its protective role in glomerular mesangial cells. Podocyte injury, another key factor associated with proteinuria in IgAN, has also attracted increasing attention. However, whether MHCD can reduce proteinuria by protecting podocytes remains unclear. The present study aimed to investigate the protective effects of MHCD against podocyte injury in a rat model of IgAN. To establish the IgAN model, rats were administered bovine serum albumin, carbon tetrachloride, and lipopolysaccharide. MHCD in three doses or telmisartan was administered once daily for 8 weeks (n = 10 rats/group). Rats with IgAN developed proteinuria at week 6, which worsened over time until drug intervention. After drug intervention, MHCD reduced proteinuria and had no effect on liver and kidney function. Furthermore, MHCD alleviated renal pathological lesions, hyperplasia of mesangial cells, mesangial matrix expansion, and podocyte foot process fusion. Western blot analysis revealed that MHCD increased the expression of the podocyte-associated proteins nephrin and podocalyxin. Additionally, we stained podocyte nuclei with an antibody for Wilms’ tumor protein one and found that MHCD increased the podocyte number in rats with IgAN. In conclusion, these results demonstrate that MHCD attenuates proteinuria by reducing podocyte injury.
Collapse
Affiliation(s)
- Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liusheng Li
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Si
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Hao
- Medical Animal Experimental Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinning Zhao
- Medical Animal Experimental Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Kim SH, Hong JH, Yang WK, Kim HJ, An HJ, Lee YC. Cryptotympana pustulata Extract and Its Main Active Component, Oleic Acid, Inhibit Ovalbumin-Induced Allergic Airway Inflammation through Inhibition of Th2/GATA-3 and Interleukin-17/RORγt Signaling Pathways in Asthmatic Mice. Molecules 2021; 26:molecules26071854. [PMID: 33806085 PMCID: PMC8037444 DOI: 10.3390/molecules26071854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cicadae Periostracum (CP), derived from the slough of Cryptotympana pustulata, has been used as traditional medicine in Korea and China because of its diaphoretic, antipyretic, anti-inflammatory, antioxidant, and antianaphylactic activities. The major bioactive compounds include oleic acid (OA), palmitic acid, and linoleic acid. However, the precise therapeutic mechanisms underlying its action in asthma remain unclear. The objective of this study was to determine the antiasthmatic effects of CP in an ovalbumin (OVA)-induced asthmatic mouse model. CP and OA inhibited the inflammatory cell infiltration, airway hyperresponsiveness (AHR), and production of interleukin (IL)7 and Th2 cytokines (IL-5) in the bronchoalveolar lavage fluid and OVA-specific imunoglobin E (IgE) in the serum. The gene expression of IL-5, IL-13, CCR3, MUC5AC, and COX-2 was attenuated in lung tissues. CP and OA might inhibit the nuclear translocation of GATA-binding protein 3 (GATA-3) and retinoic acid receptor-related orphan receptor γt (RORγt) via the upregulation of forkhead box p3 (Foxp3), thereby preventing the activation of GATA-3 and RORγt. In the in vitro experiment, a similar result was observed for Th2 and GATA-3. These results suggest that CP has the potential for the treatment of asthma via the inhibition of the GATA-3/Th2 and IL-17/RORγt signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea;
| | - Won-Kyung Yang
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Hyo-Jung Kim
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea; (H.-J.K.); (H.-J.A.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea; (H.-J.K.); (H.-J.A.)
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju 26339, Korea;
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
15
|
Li J, Cao Y, Lu R, Li H, Pang Y, Fu H, Fang G, Chen Q, Liu B, Wu J, Zhou Y, Zhou J. Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang. Front Pharmacol 2021; 11:606689. [PMID: 33584283 PMCID: PMC7872959 DOI: 10.3389/fphar.2020.606689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/08/2020] [Indexed: 01/16/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN), an autoimmune renal disease with complicated pathogenesis, is one of the principal reasons for end-stage renal disease in the clinic. Evidence has linked apparent alterations in the components of the microbiome and metabolome to renal disease in rats. However, thus far, there is insufficient evidence that supports the potential relationship between gut microbiome, circulating metabolites, and IgAN. This study was designed to probe the effects of IgAN on intestinal microecology and metabolic phenotypes and to understand the possible underlying mechanisms. Fecal and serum samples were collected from IgAN rats. Composition of the gut microbiota and biochemical changes in the metabolites was analyzed using 16S rDNA sequencing and untargeted metabolomics. The IgAN rats exhibited renal insufficiency and increased concentration of 24-h urine protein, in addition to deposition of IgA and IgG immune complexes in the kidney tissues. There was a disturbance in the balance of gut microbiota in IgAN rats, which was remarkably associated with renal damage. Marked changes in microbial structure and function were accompanied by apparent alterations in 1,403 serum metabolites, associated with the disorder of energy, carbohydrate, and nucleotide metabolisms. Administration of Zhen Wu Tang ameliorated microbial dysbiosis and attenuated the renal damage. Besides, treatment with Zhen Wu Tang modulated the metabolic phenotype perturbation in case of gut microbiota dysbiosis in IgAN rats. In conclusion, these findings provided a comprehensive understanding of the potential relationship between the intestinal microbiota and metabolic phenotypes in rats with IgAN. Elucidation of the intestinal microbiota composition and metabolic signature alterations could identify predictive biomarkers for disease diagnosis and progression, which might contribute to providing therapeutic strategies for IgAN.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Pang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxin Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxing Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhe Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China.,Guangdong Institute of Gastroenterology, Sun Yat-Sen University, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Zhao J, Yang Y, Wu Y. The Clinical Significance and Potential Role of Cathepsin S in IgA Nephropathy. Front Pediatr 2021; 9:631473. [PMID: 33912521 PMCID: PMC8071879 DOI: 10.3389/fped.2021.631473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Objective: Cathepsin S (CTSS) is an important lysosomal cysteine protease. This study aimed at investigating the clinical significance of CTSS and underlying mechanism in immunoglobulin A nephropathy (IgAN). Methods: This study recruited 25 children with IgAN and age-matched controls and their serum CTSS levels were measured by enzyme-linked immunosorbent assay (ELISA). Following induction of IgAN in rats, their kidney CTSS expression, IgA accumulation and serum CTSS were characterized by immunohistochemistry, immunofluorescence, and ELISA. The impact of IgA1 aggregates on the proliferation of human mesangial cells (HMCs) was determined by Cell Counting Kit-8 and Western blot analysis of Ki67. Results: Compared to the non-IgAN controls, significantly up-regulated CTSS expression was detected in the renal tissues, particularly in the glomerular mesangium and tubular epithelial cells of IgAN patients, accompanied by higher levels of serum CTSS (P < 0.05), which were correlated with the levels of 24-h-urine proteins and microalbumin and urine erythrocytes and grades of IgAN Lee's classification in children with IgAN (P < 0.01 for all). Following induction of IgAN, we detected inducible IgA accumulation and increased levels of CTSS expression in the glomerular mesangium and glomerular damages in rats, which were mitigated by LY3000328, a CTSS-specific inhibitor. Treatment with LY3000328 significantly mitigated the Ki67 expression in the kidney of IgAN rats (P < 0.01) and significantly minimized the IgA1 aggregate-stimulated proliferation of HMCs and their Ki67 expression in vitro (P < 0.01). Conclusions: CTSS promoted the proliferation of glomerular mesangial cells, contributing to the pathogenesis of IgAN and may be a new therapeutic target for intervention of aberrant mesangial cell proliferation during the process of IgAN.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongchang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Wang Z, Wang ZZ, Geliebter J, Tiwari R, Li XM. Traditional Chinese medicine for food allergy and eczema. Ann Allergy Asthma Immunol 2020; 126:639-654. [PMID: 33310179 DOI: 10.1016/j.anai.2020.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To summarize the recent evidence of traditional Chinese medicine (TCM) for food allergy and eczema. DATA SOURCES Published literature from PubMed database and abstract conference presentations. STUDY SELECTIONS Studies relevant to TCM for food allergy and eczema were included. RESULTS TCM is the main component of complementary and alternative medicine in the United States. Food Allergy Herbal Formula 2 (FAHF-2) (derived from the classical formula Wu Mei Wan) prevented systemic anaphylaxis in murine models and was found to have safety and preliminary immunomodulatory effects on T cells and basophils. The phase II trial of combined TCM with oral immunotherapy and omalizumab for multiple food allergy is ongoing. Retrospective practice-based evidence study revealed that comprehensive TCM therapy effectively prevented frequent and severe food anaphylaxis triggered by skin contact or protein inhalation. The traditional Japanese herbal medicine Kakkonto suppressed allergic diarrhea and decreased mast cells in intestinal mucosa in a murine model. The active compounds from TCM were found to have potent inhibition of immunoglobulin (Ig) E, mast cell activation, and proinflammatory cytokine or signaling pathway (tumor necrosis factor alpha, interleukin 8, NF-κB) suggesting value for both IgE and non-IgE-mediated food allergy. Triple TCM therapy including ingestion, bath, and cream markedly improved skin lesion, itching, and sleep loss in patients with corticosteroid dependent, recalcitrant, or topical steroid withdrawal. Xiao Feng San and Japanese and Korean formulas were found to have effectiveness in eczema. Furthermore, acupuncture reduced wheal size, skin itching, and basophil activation in atopic dermatitis. Moreover, TCM is generally safe. CONCLUSION TCM has potential as safe and effective therapy for food allergy and eczema. Further research is needed for botanical drug development and to further define the mechanisms of actions. TRIAL REGISTRATION FAHF-2: https://ichgcp.net/clinical-trials-registry/NCT00602160; ethyl acetate and butanol purified FAHF-2: https://clinicaltrials.gov/ct2/show/NCT02879006.
Collapse
Affiliation(s)
- Zixi Wang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, Beijing, People's Republic of China
| | - Zhen-Zhen Wang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China; Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York
| | - Jan Geliebter
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York; Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York
| | - Raj Tiwari
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York; Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York
| | - Xiu-Min Li
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, New York; Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, New York.
| |
Collapse
|
18
|
Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF‑κB signaling pathway in glomerular mesangial cells. Mol Med Rep 2019; 21:795-805. [PMID: 31974601 PMCID: PMC6947818 DOI: 10.3892/mmr.2019.10870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the involvement of B cell-activating factor (BAFF) in the pathogenesis of IgA nephropathy by activating the tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB signaling pathway in glomerular mesangial cells. For the clinical analysis, blood, urine and kidney tissue samples were collected from 58 patients diagnosed with primary IgA nephropathy by renal biopsy. For the in vitro study, glomerular mesangial cells were divided into five groups: Control (con)-short hairpin RNA (shRNA) (control group); con-shRNA + BAFF (20 ng/ml); con-shRNA + BAFF + BAFF-RFc chimera protein (500 µg/ml); TRAF6-shRNA; and TRAF6-shRNA + BAFF (20 ng/ml). For the in vivo experiments, 60 Sprague-Dawley rats were randomly divided into four groups: Con-small interfering RNA (siRNA) (control group); con-siRNA + IgA (IgA nephropathy group), BAFF-RFc chimera protein (2 µg/ml) + IgA, and TRAF6-siRNA (0.2 µM) + IgA. Reverse transcription-quantitative PCR was performed to evaluate the mRNA expression levels of TRAF6, connective tissue growth factor (CTGF), fibronectin (FN) and NF-κBP65. Western blot analysis was used to detect the protein expression levels of TRAF6, FN, CTGF and phosphorylated-NF-κBP65 in glomerular mesangial cells and kidney tissues. The results revealed that plasma BAFF levels were positively correlated with the severity of pathological damage in patients with IgA nephropathy. In vitro, BAFF induced the mRNA and protein expression of TRAF6, CTGF, FN and NF-κBP65 in glomerular mesangial cells. After the BAFF-RFc chimera protein was added to inhibit the binding of BAFF and BAFF-receptor (-R), this effect was reduced. In vivo, inhibition of the effects of BAFF via injection with the BAFF-R Fc chimera protein reduced kidney damage in rats suffering from IgA nephropathy. The effect on the expression of signaling pathway-associated proteins was also alleviated. In conclusion, BAFF enhanced the expression of fibroblast factors in the kidneys by activating the TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xu Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Naifeng Guo
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Wenwen Li
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|