1
|
Naveed M, Aslam M, Ahmed SR, Tan DKY, De Mastro F, Tariq MS, Sakhawat A, Asad MA, Liu Y. An overview of heat stress in Chickpea ( Cicer arietinum L.): effects, mechanisms and diverse molecular breeding approaches for enhancing resilience and productivity. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:18. [PMID: 39850651 PMCID: PMC11751345 DOI: 10.1007/s11032-025-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Chickpea (Cicer arietinum. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production. This legume is sensitive to heat stress at its reproductive stage leading to reduced flowering, flower abortion, and lack of pod formation, therefore emerging as a major limiting factor for yield. Chickpea, predominantly cultivated in semi-arid regions, is frequently subjected to high-temperature stress, which adversely affects its growth and yield. Given the escalating impacts of climate change, the development of heat-tolerant chickpea genotypes is imperative and can be achieved through the integration of advanced biotechnological approaches. The appropriate solution devised by some researchers is the modification of genetic architecture by targeting specific genes associated with tolerance to heat stress and harnessing them in the development of more robust chickpea varieties. Besides this, multi-omics strategies (Genomics, Transcriptomics, Proteomics, and Metabolomics) have made it easier to reveal the distinct genes / quantitative trait loci (QTLs) / markers, proteins, and metabolites correlated with heat tolerance. This review compiles noteworthy revelations and different tactics to boost chickpea tolerance under heat temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01538-4.
Collapse
Affiliation(s)
- Mahak Naveed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Mariyah Aslam
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Horticulture Research Institute (HRI), Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006 Australia
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Muhammad Sayyam Tariq
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ammara Sakhawat
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Azeem Asad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024 China
| |
Collapse
|
2
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Jeffrey C, Kaiser B, Trethowan R, Ziems L. Genome-wide association study reveals heat tolerance QTL for canopy-closure and early flowering in chickpea. FRONTIERS IN PLANT SCIENCE 2024; 15:1458250. [PMID: 39741685 PMCID: PMC11685022 DOI: 10.3389/fpls.2024.1458250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Chickpeas are a vital source of protein and starch for a large portion of the world's population and are known to be impacted by heat stress at every life stage. Previously known as an "Orphan Legume", little is known of the genetic control of heat stress tolerance, and most previous research has focused on heat avoidance rather than tolerance. This study utilised a population of 148 chickpea genotypes, primarily Kabulis, in 12 field trials conducted at 2 locations, two sowing periods, and across 3 years. Physiology was examined, and data was paired with Diversity Arrays Technology (DArT) sequencing to perform a Genome Wide Association Study to connect phenotypic and genotypic regions. Fourteen QTL related to yield, seed size, time to flowering, time to maturity, and final canopy closure were found. Among these, are the first Quantitative Trait Loci (QTL) ever identified for canopy closure in chickpea, along with a QTL that is likely linked to early flowering under heat stress. Early flowering in this case refers to a cultivar flowering significantly earlier than the others in the genotype set. Additionally, several other QTL provide validation of previous research. These QTL hotspots that can be targeted for selective breeding of several traits concurrently. Overall, new targets for genome assisted breeding for heat tolerance in chickpea were identified and can be utilised by the breeder community to improve the status of selective breeding for heat tolerance in this crop.
Collapse
Affiliation(s)
- Cara Jeffrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brent Kaiser
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- The Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- The Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
- The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Laura Ziems
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- The Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
- The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Altaf MT, Liaqat W, Ali A, Jamil A, Fahad M, Rahman MAU, Baloch FS, Mohamed HI. Advancing Chickpea Breeding: Omics Insights for Targeted Abiotic Stress Mitigation and Genetic Enhancement. Biochem Genet 2024:10.1007/s10528-024-10954-8. [PMID: 39532827 DOI: 10.1007/s10528-024-10954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chickpea is a major source of proteins and is considered the most economically vital food legume. Chickpea production is threatened by several abiotic and biotic factors worldwide. The main constraints limiting worldwide chickpea production are abiotic conditions such as drought, heat, salinity, and cold. It is clear that chickpea is treasured for its nutritive value, in particular its high protein content, and hence study of problems like drought, cold and salinity stresses are very important concerning chickpeas. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. The most crippling economic losses in agriculture occur due to these abiotic stressors, which affect plants in many ways. All these abiotic stresses affect the water relations of the plant, both at the cellular level as well as the whole-plant level, causing both specific and non-specific reactions, damage and adaptation reactions. These stresses share common features. Breeding programs use a huge collection of over 100,000 chickpea accessions as their foundation. Significant advancements in conventional breeding, including mutagenesis, gene/allele introgression, and germplasm introduction, have been made through this method. Abiotic tolerance and yield component selection are made easier by creating unique DNA markers for the genus Cicer, which has been made possible by developments in high-throughput sequencing and molecular biology. Transcriptomics, proteomics, and metabolomics have also made it possible to identify particular genes, proteins, and metabolites linked to chickpea tolerance to abiotic stress. Chickpea abiotic stress tolerance has been directly and potentially improved by biotechnological applications, which are covered by all 'Omics' approaches. It requires information on the abiotic stress response at the different molecular levels, which comprises gene expression analysis for metabolites or proteins and its impact on phenotype. Studies on chickpea genome-wide expression profiling have been conducted to determine important candidate genes and their regulatory networks for abiotic stress response. This study aimed to offer a detailed overview of the diverse 'Omics' approaches for resilience's to abiotic stresses on chickpea plants.
Collapse
Affiliation(s)
- Muhammad Tanveer Altaf
- Department of Field Crops, Faculty of Agriculture, Recep Tayyip Erdoğan University, Rize/Pazar, Türkiye.
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Türkiye
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Türkiye
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Fahad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Aneeq Ur Rahman
- Biotechnology Research Institute, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Faheem Shehzad Baloch
- Department of biotechnology, faculty of science, Mersin University, Mersin, Türkiye
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Korea
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
5
|
Bhardwaj R, Gayacharan, Gawade BH, Pathania P, Talukdar A, Kumar P, Khan S, Singh GP. Identification of heat-tolerant mungbean genotypes through morpho-physiological evaluation and key gene expression analysis. Front Genet 2024; 15:1482956. [PMID: 39449825 PMCID: PMC11499165 DOI: 10.3389/fgene.2024.1482956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mungbean plays a significant role in global food and nutritional security. However, the recent drastic rise in atmospheric temperature has posed an imminent threat to mungbean cultivation. Therefore, this study investigates the growth and physiological changes of 87 mungbean germplasm lines under heat stress. Genotypes were examined using parameters including leaf area, chlorophyll content, membrane stability index (MSI), stomatal conductance, pollen viability, number of pods per cluster, number of pods per plant, number of seeds/pod, 100-seed weight and grain yield/plant under heat stress and control environments. A wide range of variation was observed for these traits among genotypes under heat stress and control environments. Genotypes were also identified with variable responses under both environments. The phenotypic expression of selected promising accessions was also validated in control environment conditions at the National Phytotron facility. The selected promising genotypes viz., IC76475, IC418452 and IC489062 validated their heat tolerance behavior for key candidate genes revealed by quantitative real-time PCR (qRT-PCR). These mungbean genotypes can act as potential resources in the mungbean improvement programs for heat stress tolerance. This study also provides a comprehensive understanding of the key mechanisms underlying heat tolerance in mungbean.
Collapse
Affiliation(s)
- Ragini Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Vanasthali, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Bharat H. Gawade
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pooja Pathania
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Akshay Talukdar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prakash Kumar
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Vanasthali, India
| | | |
Collapse
|
6
|
Danakumara T, Kumar N, Patil BS, Kumar T, Bharadwaj C, Jain PK, Nimmy MS, Joshi N, Parida SK, Bindra S, Kole C, Varshney RK. Unraveling the genetics of heat tolerance in chickpea landraces ( Cicer arietinum L.) using genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1376381. [PMID: 38590753 PMCID: PMC10999645 DOI: 10.3389/fpls.2024.1376381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Chickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives. Furthermore, the study revealed that yield-related traits exhibited high heritability, suggesting their potential suitability for marker-assisted selection. We carried out single-nucleotide polymorphism (SNP) genotyping using the genotyping-by-sequencing (GBS) method for a genome-wide association study (GWAS). Overall, 27 marker-trait associations (MTAs) linked to yield-related traits, among which we identified five common MTAs displaying pleiotropic effects after applying a stringent Bonferroni-corrected p-value threshold of <0.05 [-log10(p) > 4.95] using the BLINK (Bayesian-information and linkage-disequilibrium iteratively nested keyway) model. Through an in-depth in silico analysis of these markers against the CDC Frontier v1 reference genome, we discovered that the majority of the SNPs were located at or in proximity to gene-coding regions. We further explored candidate genes situated near these MTAs, shedding light on the molecular mechanisms governing heat stress tolerance and yield enhancement in chickpeas such as indole-3-acetic acid-amido synthetase GH3.1 with GH3 auxin-responsive promoter and pentatricopeptide repeat-containing protein, etc. The harvest index (HI) trait was associated with marker Ca3:37444451 encoding aspartic proteinase ortholog sequence of Oryza sativa subsp. japonica and Medicago truncatula, which is known for contributing to heat stress tolerance. These identified MTAs and associated candidate genes may serve as valuable assets for breeding programs dedicated to tailoring chickpea varieties resilient to heat stress and climate change.
Collapse
Affiliation(s)
| | - Neeraj Kumar
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | - Tapan Kumar
- International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, India
| | | | | | | | - Nilesh Joshi
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Chittaranjan Kole
- Prof. Chittaranjan Kole Foundation for Science & Society, Kolkatta, India
| | | |
Collapse
|
7
|
Thudi M, Samineni S, Li W, Boer MP, Roorkiwal M, Yang Z, Ladejobi F, Zheng C, Chitikineni A, Nayak S, He Z, Valluri V, Bajaj P, Khan AW, Gaur PM, van Eeuwijk F, Mott R, Xin L, Varshney RK. Whole genome resequencing and phenotyping of MAGIC population for high resolution mapping of drought tolerance in chickpea. THE PLANT GENOME 2024; 17:e20333. [PMID: 37122200 DOI: 10.1002/tpg2.20333] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, India
| | - Srinivasan Samineni
- Crop Improvement Program-Asia, ICRISAT, Patancheru, India
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Wenhao Li
- Wageningen University and Research, Wageningen, The Netherlands
| | - Martin P Boer
- Wageningen University and Research, Wageningen, The Netherlands
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Funmi Ladejobi
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London, UK
| | - Chaozhi Zheng
- Wageningen University and Research, Wageningen, The Netherlands
- BGI-Shenzhen, Shenzhen, China
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sourav Nayak
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Vinod Valluri
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Aamir W Khan
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Pooran M Gaur
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | | | - Richard Mott
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London, UK
| | - Liu Xin
- BGI-Shenzhen, Shenzhen, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
8
|
Mohanty JK, Thakro V, Yadav A, Nayyar H, Dixit GP, Agarwal P, Parida SK, Jha UC. Delineation of genes for a major QTL governing heat stress tolerance in chickpea. PLANT MOLECULAR BIOLOGY 2024; 114:19. [PMID: 38363401 DOI: 10.1007/s11103-024-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024]
Abstract
Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.
Collapse
Affiliation(s)
- Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Antima Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Girish P Dixit
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur, 208024, India.
| |
Collapse
|
9
|
Naveed M, Bansal U, Kaiser BN. Impact of low light intensity on biomass partitioning and genetic diversity in a chickpea mapping population. FRONTIERS IN PLANT SCIENCE 2024; 15:1292753. [PMID: 38362449 PMCID: PMC10867217 DOI: 10.3389/fpls.2024.1292753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
With recent climatic changes, the reduced access to solar radiation has become an emerging threat to chickpeas' drought tolerance capacity under rainfed conditions. This study was conducted to assess, and understand the effects of reduced light intensity and quality on plant morphology, root development, and identifying resistant sources from a Sonali/PBA Slasher mapping population. We evaluated 180 genotypes, including recombinant inbred lines (RILs), parents, and commercial checks, using a split-block design with natural and low light treatments. Low light conditions, created by covering one of the two benches inside two growth chambers with a mosquito net, reduced natural light availability by approximately 70%. Light measurements encompassed photosynthetic photon flux density, as well as red, and far-red light readings taken at various stages of the experiment. The data, collected from plumule emergence to anthesis initiation, encompassed various indices relevant to root, shoot, and carbon gain (biomass). Statistical analysis examined variance, treatment effects, heritability, correlations, and principal components (PCs). Results demonstrated significant reductions in root biomass, shoot biomass, root/shoot ratio, and plant total dry biomass under suboptimal light conditions by 52.8%, 28.2%, 36.3%, and 38.4%, respectively. Plants also exhibited delayed progress, taking 9.2% longer to produce their first floral buds, and 19.2% longer to commence anthesis, accompanied by a 33.4% increase in internodal lengths. A significant genotype-by-environment interaction highlighted differing genotypic responses, particularly in traits with high heritability (> 77.0%), such as days to anthesis, days to first floral bud, plant height, and nodes per plant. These traits showed significant associations with drought tolerance indicators, like root, shoot, and plant total dry biomass. Genetic diversity, as depicted in a genotype-by-trait biplot, revealed contributions to PC1 and PC2 coefficients, allowing discrimination of low-light-tolerant RILs, such as 1_52, 1_73, 1_64, 1_245, 1_103, 1_248, and 1_269, with valuable variations in traits of interest. These RILs could be used to breed desirable chickpea cultivars for sustainable production under water-limited conditions. This study concludes that low light stress disrupts the balance between root and shoot morphology, diverting photosynthates to vegetative structures at the expense of root development. Our findings contribute to a better understanding of biomass partitioning under limited-light conditions, and inform breeding strategies for improved drought tolerance in chickpeas.
Collapse
Affiliation(s)
- Muhammad Naveed
- Centre for Carbon, Water and Food, The University of Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
- Sydney Institute of Agriculture, The University of Sydney, NSW, Australia
- Plant Breeding Institute, Cobbitty, The University of Sydney, NSW, Australia
| | - Brent N. Kaiser
- Centre for Carbon, Water and Food, The University of Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
- Sydney Institute of Agriculture, The University of Sydney, NSW, Australia
| |
Collapse
|
10
|
Kumar R, Sharma VK, Rangari SK, Jha UC, Sahu A, Paul PJ, Gupta S, Gangurde SS, Kudapa H, Mir RR, Gaur PM, Varshney RK, Elango D, Thudi M. High confidence QTLs and key genes identified using Meta-QTL analysis for enhancing heat tolerance in chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274759. [PMID: 37929162 PMCID: PMC10623133 DOI: 10.3389/fpls.2023.1274759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
The rising global temperatures seriously threaten sustainable crop production, particularly the productivity and production of heat-sensitive crops like chickpeas. Multiple QTLs have been identified to enhance the heat stress tolerance in chickpeas, but their successful use in breeding programs remains limited. Towards this direction, we constructed a high-density genetic map spanning 2233.5 cM with 1069 markers. Using 138 QTLs reported earlier, we identified six Meta-QTL regions for heat tolerance whose confidence interval was reduced by 2.7-folds compared to the reported QTLs. Meta-QTLs identified on CaLG01 and CaLG06 harbor QTLs for important traits, including days to 50% flowering, days to maturity, days to flower initiation, days to pod initiation, number of filled pods, visual score, seed yield per plant, biological yield per plant, chlorophyll content, and harvest index. In addition, key genes identified in Meta-QTL regions like Pollen receptor-like kinase 3 (CaPRK3), Flowering-promoting factor 1 (CaFPF1), Flowering Locus C (CaFLC), Heat stress transcription factor A-5 (CaHsfsA5), and Pollen-specific leucine-rich repeat extensins (CaLRXs) play an important role in regulating the flowering time, pollen germination, and growth. The consensus genomic regions, and the key genes reported in this study can be used in genomics-assisted breeding for enhancing heat tolerance and developing heat-resilient chickpea cultivars.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Kumar Sharma
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Sagar Krushnaji Rangari
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Uday Chand Jha
- Indian Council for Agricultural Research (ICAR)- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Aakash Sahu
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Pronob J Paul
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Rice Breeding Innovations, International Rice Research Institute (IRRI), South Asia-Hub, Patancheru, Telangana, India
| | - Shreshth Gupta
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
| | - Sunil S Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Himabindu Kudapa
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Pooran M Gaur
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar, India
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
11
|
Bhardwaj R, Lone JK, Pandey R, Mondal N, Dhandapani R, Meena SK, Khan S. Insights into morphological and physio-biochemical adaptive responses in mungbean ( Vigna radiata L.) under heat stress. Front Genet 2023; 14:1206451. [PMID: 37396038 PMCID: PMC10308031 DOI: 10.3389/fgene.2023.1206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mungbean (Vigna radiata L. Wilczek) is an important food legume crop which contributes significantly to nutritional and food security of South and Southeast Asia. The crop thrives in hot and humid weather conditions, with an optimal temperature range of 28°-35°C, and is mainly cultivated under rainfed environments. However, the rising global temperature has posed a serious threat to mungbean cultivation. Optimal temperature is a vital factor in cellular processes, and every crop species has evolved with its specific temperature tolerance ability. Moreover, variation within a crop species is inevitable, given the diverse environmental conditions under which it has evolved. For instance, various mungbean germplasm can grow and produce seeds in extreme ambient temperatures as low as 20°C or as high as 45°C. This range of variation in mungbean germplasm for heat tolerance plays a crucial role in developing heat tolerant and high yielding mungbean cultivars. However, heat tolerance is a complex mechanism which is extensively discussed in this manuscript; and at the same time individual genotypes have evolved with various ways of heat stress tolerance. Therefore, to enhance understanding towards such variability in mungbean germplasm, we studied morphological, anatomical, physiological, and biochemical traits which are responsive to heat stress in plants with more relevance to mungbean. Understanding heat stress tolerance attributing traits will help in identification of corresponding regulatory networks and associated genes, which will further help in devising suitable strategies to enhance heat tolerance in mungbean. The major pathways responsible for heat stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ragini Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| | - Jafar K Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nupur Mondal
- Shivaji College, University of Delhi, New Delhi, India
| | - R Dhandapani
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Surendra Kumar Meena
- Division of Crop Improvement, ICAR-Indian Grassland and Research Institute, Jhansi, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| |
Collapse
|
12
|
Sharma V, Gangurde SS, Nayak SN, Gowda AS, Sukanth B, Mahadevaiah SS, Manohar SS, Choudhary RS, Anitha T, Malavalli SS, Srikanth S, Bajaj P, Sharma S, Varshney RK, Latha P, Janila P, Bhat RS, Pandey MK. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. FRONTIERS IN PLANT SCIENCE 2023; 14:1182867. [PMID: 37287715 PMCID: PMC10243373 DOI: 10.3389/fpls.2023.1182867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/09/2023]
Abstract
Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Sunil S. Gangurde
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Anjan S. Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - B.S. Sukanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | | | - Surendra S. Manohar
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - T. Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Sachin S. Malavalli
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - S.N. Srikanth
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU), Meerut, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| |
Collapse
|
13
|
Devi J, Sagar V, Mishra GP, Jha PK, Gupta N, Dubey RK, Singh PM, Behera TK, Prasad PVV. Heat stress tolerance in peas ( Pisum sativum L.): Current status and way forward. FRONTIERS IN PLANT SCIENCE 2023; 13:1108276. [PMID: 36733601 PMCID: PMC9887200 DOI: 10.3389/fpls.2022.1108276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the era of climate change, the overall productivity of pea (Pisum sativum L.) is being threatened by several abiotic stresses including heat stress (HS). HS causes severe yield losses by adversely affecting several traits in peas. A reduction in pod yield has been reported from 11.1% to 17.5% when mean daily temperature increase from 1.4 to 2.2°C. High-temperature stress (30.5-33°C) especially during reproductive phase is known to drastically reduce both seed yield and germination. HS during germination and early vegetative stage resulted in poor emergence and stunted plant growth along with detrimental effects on physiological functions of the pea plant. To combat HS and continue its life cycle, plants use various defense strategies including heat escape, avoidance or tolerance mechanisms. Ironically, the threshold temperatures for pea plant and its responses are inconsistent and not yet clearly identified. Trait discovery through traditional breeding such as semi leaflessness (afila), upright growing habit, lodging tolerance, lower canopy temperature and small seeded nature has highlighted their utility for greater adaptation under HS in pea. Screening of crop gene pool and landraces for HS tolerance in a targeted environment is a simple approach to identify HS tolerant genotypes. Thus, precise phenotyping using modern phenomics tools could lead to increased breeding efficiency. The NGS (next generation sequencing) data can be associated to find the candidate genes responsible for the HS tolerance in pea. In addition, genomic selection, genome wide association studies (GWAS) and marker assisted selection (MAS) can be used for the development of HS tolerant pea genotypes. Additionally, development of transgenics could be an alternative strategy for the development of HS tolerant pea genotypes. This review comprehensively covers the various aspects of HS tolerance mechanisms in the pea plant, screening protocols, omic advances, and future challenges for the development of HS tolerant genotypes.
Collapse
Affiliation(s)
- Jyoti Devi
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Vidya Sagar
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Gyan P. Mishra
- Indian Council of Agricultural Research-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Nakul Gupta
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Rakesh K. Dubey
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Prabhakar M. Singh
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - Tusar K. Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Jakhini, Varanasi, India
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Ali A, Altaf MT, Nadeem MA, Karaköy T, Shah AN, Azeem H, Baloch FS, Baran N, Hussain T, Duangpan S, Aasim M, Boo KH, Abdelsalam NR, Hasan ME, Chung YS. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:952759. [PMID: 36247536 PMCID: PMC9554552 DOI: 10.3389/fpls.2022.952759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The world is facing rapid climate change and a fast-growing global population. It is believed that the world population will be 9.7 billion in 2050. However, recent agriculture production is not enough to feed the current population of 7.9 billion people, which is causing a huge hunger problem. Therefore, feeding the 9.7 billion population in 2050 will be a huge target. Climate change is becoming a huge threat to global agricultural production, and it is expected to become the worst threat to it in the upcoming years. Keeping this in view, it is very important to breed climate-resilient plants. Legumes are considered an important pillar of the agriculture production system and a great source of high-quality protein, minerals, and vitamins. During the last two decades, advancements in OMICs technology revolutionized plant breeding and emerged as a crop-saving tool in wake of the climate change. Various OMICs approaches like Next-Generation sequencing (NGS), Transcriptomics, Proteomics, and Metabolomics have been used in legumes under abiotic stresses. The scientific community successfully utilized these platforms and investigated the Quantitative Trait Loci (QTL), linked markers through genome-wide association studies, and developed KASP markers that can be helpful for the marker-assisted breeding of legumes. Gene-editing techniques have been successfully proven for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. A number of efforts have been made to perform gene editing in legumes. Moreover, the scientific community did a great job of identifying various genes involved in the metabolic pathways and utilizing the resulted information in the development of climate-resilient legume cultivars at a rapid pace. Keeping in view, this review highlights the contribution of OMICs approaches to abiotic stresses in legumes. We envisage that the presented information will be helpful for the scientific community to develop climate-resilient legume cultivars.
Collapse
Affiliation(s)
- Amjad Ali
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hajra Azeem
- Department of Plant Pathology, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Tajamul Hussain
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Saowapa Duangpan
- Laboratory of Plant Breeding and Climate Resilient Agriculture, Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Thailand
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, South Korea
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| |
Collapse
|
15
|
Construction of a single nucleotide polymorphism linkage map and identification of quantitative trait loci controlling heat tolerance in cowpea, Vigna unguiculata (L.) Walp. Mol Genet Genomics 2022; 297:1481-1493. [PMID: 35933483 DOI: 10.1007/s00438-022-01928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
Plant tolerance to heat or high temperature is crucial to crop production, especially in the situation of elevated temperature resulting from global climate change. Cowpea, Vigna unguiculata (L.) Walp., is an internationally important legume food crop and an excellent pool of genes for numerous traits resilient to environmental extremes, particularly heat and drought. Here, we report a single nucleotide polymorphism (SNP) genetic map for cowpea and identification of the loci controlling the heat tolerance in the species. The SNP map consists of 531 bins containing 4,154 SNPs grouped into 11 linkage groups, and collectively spans 1,084.7 cM, thus having a density of one SNP in 0.26 cM or 149 kb. The 11 linkage groups of the map were aligned to the 11 cowpea chromosomes. Quantitative trait locus (QTL) mapping identified nine QTLs responsible for the cowpea heat tolerance on seven of the 11 chromosomes, with each QTL explaining 6.5-21.8% of heat tolerance phenotypic variation. Moreover, we aligned these nine QTLs to the cowpea genome. Each of the QTLs was positioned in a genomic region ranging from 209,000 bp to 12,590,450 bp, and the QTL with the largest effect (21.8%) on heat tolerance, qHT4-1, was located within an interval of only 234,195 bp. These results provide SNP markers useful for marker-assisted selection for heat tolerance and lay a foundation for cloning, characterization, and applications of the genes controlling the cowpea heat tolerance for heat tolerance genetic improvement in cowpea and related crops.
Collapse
|
16
|
Singh RK, Singh C, Chandana BS, Mahto RK, Patial R, Gupta A, Gahlaut V, Hamwieh A, Upadhyaya HD, Kumar R. Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses. Front Genet 2022; 13:905771. [PMID: 36035111 PMCID: PMC9416867 DOI: 10.3389/fgene.2022.905771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%–24% protein, 41%–51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, β-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridization and introgression of the target gene sequences from wild Cicer species. Additionally, recent advances in “Omics” sciences along with high-throughput and precise phenotyping tools have made it easier to identify genes that regulate traits of interest. Next-generation sequencing technologies, whole-genome sequencing, transcriptomics, and differential genes expression profiling along with a plethora of novel techniques like single nucleotide polymorphism exploiting high-density genotyping by sequencing assays, simple sequence repeat markers, diversity array technology platform, and whole-genome re-sequencing technique led to the identification and development of QTLs and high-density trait mapping of the global chickpea germplasm. These altogether have helped in broadening the narrow genetic base of chickpeas.
Collapse
Affiliation(s)
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Rohit K Mahto
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Ranjana Patial
- Department of Agricultural Sciences, Chandigarh University, Mohali, India
| | - Astha Gupta
- School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Pālampur, India
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - H D Upadhyaya
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
17
|
Chaudhary S, Devi P, HanumanthaRao B, Jha UC, Sharma KD, Prasad PVV, Kumar S, Siddique KHM, Nayyar H. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:878498. [PMID: 35837452 PMCID: PMC9274134 DOI: 10.3389/fpls.2022.878498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Bindumadhava HanumanthaRao
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Hyderabad, India
- Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, India
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H. M. Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
18
|
Arriagada O, Cacciuttolo F, Cabeza RA, Carrasco B, Schwember AR. A Comprehensive Review on Chickpea ( Cicer arietinum L.) Breeding for Abiotic Stress Tolerance and Climate Change Resilience. Int J Mol Sci 2022; 23:ijms23126794. [PMID: 35743237 PMCID: PMC9223724 DOI: 10.3390/ijms23126794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea is one of the most important pulse crops worldwide, being an excellent source of protein. It is grown under rain-fed conditions averaging yields of 1 t/ha, far from its potential of 6 t/ha under optimum conditions. The combined effects of heat, cold, drought, and salinity affect species productivity. In this regard, several physiological, biochemical, and molecular mechanisms are reviewed to confer tolerance to abiotic stress. A large collection of nearly 100,000 chickpea accessions is the basis of breeding programs, and important advances have been achieved through conventional breeding, such as germplasm introduction, gene/allele introgression, and mutagenesis. In parallel, advances in molecular biology and high-throughput sequencing have allowed the development of specific molecular markers for the genus Cicer, facilitating marker-assisted selection for yield components and abiotic tolerance. Further, transcriptomics, proteomics, and metabolomics have permitted the identification of specific genes, proteins, and metabolites associated with tolerance to abiotic stress of chickpea. Furthermore, some promising results have been obtained in studies with transgenic plants and with the use of gene editing to obtain drought-tolerant chickpea. Finally, we propose some future lines of research that may be useful to obtain chickpea genotypes tolerant to abiotic stress in a scenario of climate change.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Felipe Cacciuttolo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), Av. Lircay s/n, Talca 3480094, Chile;
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (O.A.); (F.C.)
- Correspondence:
| |
Collapse
|
19
|
Razzaq MK, Akhter M, Ahmad RM, Cheema KL, Hina A, Karikari B, Raza G, Xing G, Gai J, Khurshid M. CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep 2022; 49:8977-8985. [DOI: 10.1007/s11033-022-07391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/19/2022] [Accepted: 03/16/2022] [Indexed: 02/09/2023]
|
20
|
Genomics Associated Interventions for Heat Stress Tolerance in Cool Season Adapted Grain Legumes. Int J Mol Sci 2021; 23:ijms23010399. [PMID: 35008831 PMCID: PMC8745526 DOI: 10.3390/ijms23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cool season grain legumes occupy an important place among the agricultural crops and essentially provide multiple benefits including food supply, nutrition security, soil fertility improvement and revenue for farmers all over the world. However, owing to climate change, the average temperature is steadily rising, which negatively affects crop performance and limits their yield. Terminal heat stress that mainly occurred during grain development phases severely harms grain quality and weight in legumes adapted to the cool season, such as lentils, faba beans, chickpeas, field peas, etc. Although, traditional breeding approaches with advanced screening procedures have been employed to identify heat tolerant legume cultivars. Unfortunately, traditional breeding pipelines alone are no longer enough to meet global demands. Genomics-assisted interventions including new-generation sequencing technologies and genotyping platforms have facilitated the development of high-resolution molecular maps, QTL/gene discovery and marker-assisted introgression, thereby improving the efficiency in legumes breeding to develop stress-resilient varieties. Based on the current scenario, we attempted to review the intervention of genomics to decipher different components of tolerance to heat stress and future possibilities of using newly developed genomics-based interventions in cool season adapted grain legumes.
Collapse
|
21
|
Partitioning of nutritional and bioactive compounds between the kernel, hull and husk of five new chickpea genotypes grown in Australia. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Jeffrey C, Trethowan R, Kaiser B. Chickpea tolerance to temperature stress: Status and opportunity for improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153555. [PMID: 34739858 DOI: 10.1016/j.jplph.2021.153555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chickpea is a globally important commercial crop and a key source of protein for vegetarian populations. Though chickpea was domesticated at least 3000 years ago, research into abiotic stress tolerance has been limited compared to cereal crops such as wheat. This review investigates the impacts of heat stress on chickpea, focusing on reproductive development. The fertilisation process is particularly sensitive to environmental stress, such as drought and heat that can reduce yields by up to 70%. Current research has largely focused on breeding cultivars that reach maturity faster to avoid stress rather than true thermotolerance and little is known of the impact of heat on cellular processes. This review suggests that there is ample variation within the chickpea gene pool for selective breeding to achieve improved abiotic stress tolerance. Rates of genetic progress will improve once key QTL are identified and the link between thermotolerance and pollen viability confirmed. Other benefits may arise from better understanding of heat shock proteins and molecular chaperones and their role in the protection of reproductive processes.
Collapse
Affiliation(s)
- Cara Jeffrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| | - Richard Trethowan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia.
| | - Brent Kaiser
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Singh D, Chaudhary P, Taunk J, Singh CK, Singh D, Tomar RSS, Aski M, Konjengbam NS, Raje RS, Singh S, Sengar RS, Yadav RK, Pal M. Fab Advances in Fabaceae for Abiotic Stress Resilience: From 'Omics' to Artificial Intelligence. Int J Mol Sci 2021; 22:10535. [PMID: 34638885 PMCID: PMC8509049 DOI: 10.3390/ijms221910535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut 250001, India
| | - Ram Sewak Singh Tomar
- College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Noren Singh Konjengbam
- College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University, Imphal 793103, India
| | - Ranjeet Sharan Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sanjay Singh
- ICAR- National Institute of Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh Sengar
- College of Biotechnology, Sardar Vallabh Bhai Patel Agricultural University, Meerut 250001, India
| | - Rajendra Kumar Yadav
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
24
|
Discerning molecular diversity and association mapping for phenological, physiological and yield traits under high temperature stress in chickpea (Cicer arietinum L.). J Genet 2021. [DOI: 10.1007/s12041-020-01254-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Jha UC, Nayyar H, Palakurthi R, Jha R, Valluri V, Bajaj P, Chitikineni A, Singh NP, Varshney RK, Thudi M. Major QTLs and Potential Candidate Genes for Heat Stress Tolerance Identified in Chickpea ( Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:655103. [PMID: 34381469 PMCID: PMC8350164 DOI: 10.3389/fpls.2021.655103] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 05/15/2023]
Abstract
In the context of climate change, heat stress during the reproductive stages of chickpea (Cicer arietinum L.) leads to significant yield losses. In order to identify the genomic regions responsible for heat stress tolerance, a recombinant inbred line population derived from DCP 92-3 (heat sensitive) and ICCV 92944 (heat tolerant) was genotyped using the genotyping-by-sequencing approach and evaluated for two consecutive years (2017 and 2018) under normal and late sown or heat stress environments. A high-density genetic map comprising 788 single-nucleotide polymorphism markers spanning 1,125 cM was constructed. Using composite interval mapping, a total of 77 QTLs (37 major and 40 minor) were identified for 12 of 13 traits. A genomic region on CaLG07 harbors quantitative trait loci (QTLs) explaining >30% phenotypic variation for days to pod initiation, 100 seed weight, and for nitrogen balance index explaining >10% PVE. In addition, we also reported for the first time major QTLs for proxy traits (physiological traits such as chlorophyll content, nitrogen balance index, normalized difference vegetative index, and cell membrane stability). Furthermore, 32 candidate genes in the QTL regions that encode the heat shock protein genes, heat shock transcription factors, are involved in flowering time regulation as well as pollen-specific genes. The major QTLs reported in this study, after validation, may be useful in molecular breeding for developing heat-tolerant superior lines or varieties.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Ramesh Palakurthi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rintu Jha
- Institute of Crop Science, Chinese Academy of Agricultural Science (CAAS), Beijing, China
| | - Vinod Valluri
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Narendra P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- University of Southern Queensland, Toowoomba, QLD, Australia
- *Correspondence: Mahendar Thudi
| |
Collapse
|
26
|
Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS One 2020; 15:e0227663. [PMID: 33170849 PMCID: PMC7654804 DOI: 10.1371/journal.pone.0227663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Heat is a major abiotic stress that seriously affects watermelon (Citrullus lanatus) production. However, its effects may be mitigated through grafting watermelon to heat tolerant bottle gourd (Lagenaria siceraria) rootstocks. Understanding the genetic basis of heat tolerance and development of reliable DNA markers to indirectly select for the trait are necessary in breeding for new varieties with heat tolerance. The objectives of this study were to investigate the inheritance of heat tolerance and identify molecular markers associated with heat tolerance in bottle gourd. A segregating F2 population was developed from a cross between two heat tolerant and sensitive inbred lines. The population was phenotyped for relative electrical conductivity (REC) upon high temperature treatment which was used as an indicator for heat tolerance. QTL-seq was performed to identify regions associated with heat tolerance. We found that REC-based heat tolerance in this population exhibited recessive inheritance. Seven heat-tolerant quantitative trait loci (qHT1.1, qHT2.1, qHT2.2, qHT5.1, qHT6.1, qHT7.1, and qHT8.1) were identified with qHT2.1 being a promising major-effect QTL. In the qHT2.1 region, we identified three non-synonymous SNPs that were potentially associated with heat tolerance. These SNPs were located in the genes that may play roles in pollen sterility, intracellular transport, and signal recognition. Association of the three SNPs with heat tolerance was verified in segregating F2 populations, which could be candidate markers for marker assisted selection for heat tolerance in bottle gourd. The qHT2.1 region is an important finding that may be used for fine mapping and discovery of novel genes associated with heat tolerance in bottle gourd.
Collapse
Affiliation(s)
- Hui Song
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
- * E-mail:
| | - Yunping Huang
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| | - Binquan Gu
- Key Lab of Cucurbit Vegetable Breeding, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Mohajel Kazemi E, Kolahi M, Yazdi M, Goldson-Barnaby A. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea ( Cicer arietinum) seedlings under cadmium induction and identification of PCS and FC genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1551-1568. [PMID: 32801486 PMCID: PMC7415060 DOI: 10.1007/s12298-020-00804-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 05/16/2023]
Abstract
ABSTRACT Chickpea (Cicer arietinum) belonging to the Fabaceae family is a major legume crop and is a good source of protein and carbohydrates. Industrialization has resulted in soil contamination with heavy metals such as cadmium. Adsorption of cadmium by plants can lead to reduced yields and heavy metal toxicity. In the current study, changes in the anatomical, morphological features and biochemical properties of the chickpea plant were evaluated. Two indexes DWSTI and PHSTI were determined. Anatomically, there was a change in the number of xylem poles within the root structure which was most significant at treatments of 125 μg cadmium. There was also a noticeable change in leaf pigmentation, the total phenolics and soluble protein in the plant. Cadmium levels were elevated attaining concentrations of 0.21, 0.40 and 0.52 mg per gram dry weight in plants exposed to 62, 125 and 250 μg/g Perlit cadmium after a period of 30 days. A noticeable increase in the level of cadmium in the plant was observed. Two PCS genes, glutathione gamma-glutamylcysteinyltransferase 1 and glutathione gamma-glutamylcysteinyltransferase and four FC genes, 4 proteins and 4 mRNA were detected in chickpeas. Bioinformatics tools were utilized to predict enzyme structure and binding sites. Chickpea may be classified as a cadmium hyperaccumulator and may be considered for use in phytoremediation. This study provides a better understanding with regards to the response of chickpeas to cadmium and the genetic mechanism by which the plant regulates heavy metal toxicity.
Collapse
Affiliation(s)
- Elham Mohajel Kazemi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Milad Yazdi
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | |
Collapse
|
28
|
Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, Chaturvedi SK, Fikre A, Hamwieh A, Kumar S, Sachdeva S, Ojiewo CO, Tar'an B, Wordofa NG, Singh NP, Siddique KHM, Varshney RK. Integrating genomics for chickpea improvement: achievements and opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1703-1720. [PMID: 32253478 PMCID: PMC7214385 DOI: 10.1007/s00122-020-03584-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/18/2020] [Indexed: 05/19/2023]
Abstract
Integration of genomic technologies with breeding efforts have been used in recent years for chickpea improvement. Modern breeding along with low cost genotyping platforms have potential to further accelerate chickpea improvement efforts. The implementation of novel breeding technologies is expected to contribute substantial improvements in crop productivity. While conventional breeding methods have led to development of more than 200 improved chickpea varieties in the past, still there is ample scope to increase productivity. It is predicted that integration of modern genomic resources with conventional breeding efforts will help in the delivery of climate-resilient chickpea varieties in comparatively less time. Recent advances in genomics tools and technologies have facilitated the generation of large-scale sequencing and genotyping data sets in chickpea. Combined analysis of high-resolution phenotypic and genetic data is paving the way for identifying genes and biological pathways associated with breeding-related traits. Genomics technologies have been used to develop diagnostic markers for use in marker-assisted backcrossing programmes, which have yielded several molecular breeding products in chickpea. We anticipate that a sequence-based holistic breeding approach, including the integration of functional omics, parental selection, forward breeding and genome-wide selection, will bring a paradigm shift in development of superior chickpea varieties. There is a need to integrate the knowledge generated by modern genomics technologies with molecular breeding efforts to bridge the genome-to-phenome gap. Here, we review recent advances that have led to new possibilities for developing and screening breeding populations, and provide strategies for enhancing the selection efficiency and accelerating the rate of genetic gain in chickpea.
Collapse
Affiliation(s)
- Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | | | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Girish P Dixit
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooran M Gaur
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Asnake Fikre
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Addis Ababa, Ethiopia
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Supriya Sachdeva
- ICAR-Indian Agricultural Research Institute (IARI), Delhi, India
| | - Chris O Ojiewo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Bunyamin Tar'an
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia.
| |
Collapse
|
29
|
Kumari P, Rastogi A, Yadav S. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea. Mol Biol Rep 2020; 47:4659-4670. [PMID: 32133603 DOI: 10.1007/s11033-020-05358-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
Global warming has an adverse impact on agriculture and food security is in doldrums around the world. A sharp increase in the temperature of earth is expected and may lead to ~ 1.8-4 °C rise in average earth temperature by the year 2100. Thus, heat stress is a critical factor for plant growth development and crop yield. Chickpea, which is an important leguminous crop and rich source of proteins is also a heat sensitive crop but high temperature exceeding 35 °C inhibit its productivity. Climate-smart agriculture seems to be a plausible approach to minimize the drastic effect of climate change on plant's adaptation. This may help in better selection of tolerant cultivars of chickpea that can be used in breeding programmes for heat stress tolerance in chickpea. Also the biotechnological approaches using candidate genes expressed in transgenics plants may play pivotal role in the production of climate resilient chickpea plants. Some preliminary findings using CAP2, Galactinol synthase genes, proteomic approaches, RNA seq data, stay green traits and -OMICS in general, have proved to be promising. A close collaboration between agronomists, plant physiologists, geneticists, biotechnologists is the pressing need and must be envisioned in order to address heat stress tolerance in chickpea under the prevailing climatic conditions and continuously increasing temperature. In the context of global heat stress and climate change, adaptation and mitigation are the keywords for employing transdisciplinary methodologies with respect to plant growth, development and agronomy.
Collapse
Affiliation(s)
- Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan, 333515, India. .,Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Science, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University,, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
30
|
Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM, Nayyar H. Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2020; 10:1759. [PMID: 32161601 PMCID: PMC7052492 DOI: 10.3389/fpls.2019.01759] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/16/2019] [Indexed: 05/19/2023]
Abstract
Chickpea is one of the most economically important food legumes, and a significant source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe, Australia, North America, and South America. Chickpea production is limited by various abiotic stresses (cold, heat, drought, salt, etc.). Being a winter-season crop in northern south Asia and some parts of the Australia, chickpea faces low-temperature stress (0-15°C) during the reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield potential by 30-40%. The winter-sown chickpea in the Mediterranean, however, faces cold stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress during reproductive and pod filling stages, causing considerable yield losses. Both the low and the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube growth resulting in poor pod set. Chickpea also experiences drought stress at various growth stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields by 40-45%. In southern Australia and northern regions of south Asia, lack of chilling tolerance in cultivars delays flowering and pod set, and the crop is usually exposed to terminal drought. The incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are expected to increase in near future owing to climate change thereby necessitating the development of stress-tolerant and climate-resilient chickpea cultivars having region specific traits, which perform well under drought, heat, and/or low-temperature stress. Different approaches, such as genetic variability, genomic selection, molecular markers involving quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have been exploited to improve chickpea production in extreme environments. Biotechnological tools have broadened our understanding of genetic basis as well as plants' responses to abiotic stresses in chickpea, and have opened opportunities to develop stress tolerant chickpea.
Collapse
Affiliation(s)
- Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | - Uday Chand Jha
- Department of Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Himachal Pradesh Agricultural University, Palampur, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
31
|
Ghangal R, Singh VK, Khemka NK, Rajkumar MS, Garg R, Jain M. Updates on Genomic Resources in Chickpea for Crop Improvement. Methods Mol Biol 2020; 2107:19-33. [PMID: 31893441 DOI: 10.1007/978-1-0716-0235-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, rapid advancement has been done in generation of genomic resources for the important legume crop chickpea. Here, we provide an update on important advancements made on availability of genomic resources for this crop. The availability of reference genome and transcriptome sequences, and resequencing of several accessions have enabled the discovery of gene space and molecular markers in chickpea. These resources have helped in elucidating evolutionary relationship and identification of quantitative trait loci for important agronomic traits. Gene expression in different tissues/organs during development and under abiotic/biotic stresses has been interrogated. In addition, single-base resolution DNA methylation patterns in different organs have been analyzed to understand gene regulation. Overall, we provide a consolidated overview of available genomic resources of chickpea that may help in fulfilling the promises for improvement of this important crop.
Collapse
Affiliation(s)
- Rajesh Ghangal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vikash K Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niraj K Khemka
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
32
|
Singh B, Salaria N, Thakur K, Kukreja S, Gautam S, Goutam U. Functional genomic approaches to improve crop plant heat stress tolerance. F1000Res 2019; 8:1721. [PMID: 31824669 PMCID: PMC6896246 DOI: 10.12688/f1000research.19840.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
Heat stress as a yield limiting issue has become a major threat for food security as global warming progresses. Being sessile, plants cannot avoid heat stress. They respond to heat stress by activating complex molecular networks, such as signal transduction, metabolite production and expressions of heat stress-associated genes. Some plants have developed an intricate signalling network to respond and adapt it. Heat stress tolerance is a polygenic trait, which is regulated by various genes, transcriptional factors, proteins and hormones. Therefore, to improve heat stress tolerance, a sound knowledge of various mechanisms involved in the response to heat stress is required. The classical breeding methods employed to enhance heat stress tolerance has had limited success. In this era of genomics, next generation sequencing techniques, availability of genome sequences and advanced biotechnological tools open several windows of opportunities to improve heat stress tolerance in crop plants. This review discusses the potential of various functional genomic approaches, such as genome wide association studies, microarray, and suppression subtractive hybridization, in the process of discovering novel genes related to heat stress, and their functional validation using both reverse and forward genetic approaches. This review also discusses how these functionally validated genes can be used to improve heat stress tolerance through plant breeding, transgenics and genome editing approaches.
Collapse
Affiliation(s)
- Baljeet Singh
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Neha Salaria
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kajal Thakur
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sarvjeet Kukreja
- School of Agriculture, Lovely Professional University, Phagwara, Jalandhar, 144411, India
| | - Shristy Gautam
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Umesh Goutam
- Molecular Biology and Genetic Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
33
|
Liu Y, Li J, Zhu Y, Jones A, Rose RJ, Song Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. FRONTIERS IN PLANT SCIENCE 2019; 10:938. [PMID: 31417579 PMCID: PMC6684746 DOI: 10.3389/fpls.2019.00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/04/2019] [Indexed: 05/21/2023]
Abstract
Grain legumes provide a rich resource of plant nutrition to human diets and are vital for food security and sustainable cropping. Heat stress during flowering has a detrimental effect on legume seed yield, mainly due to irreversible loss of seed number. To start with, we provide an overview of the developmental and physiological basis of controlling seed setting in response to heat stress. It is shown that every single process of seed setting including male and female gametophyte development, fertilization, and early seed/fruit development is sensitive to heat stress, in particular male reproductive development in legume crops is especially susceptible. A series of physiochemical processes including heat shock proteins, antioxidants, metabolites, and hormones centered with sugar starvation are proposed to play a key role in regulating legume seed setting in response to heat stress. The exploration of the molecular mechanisms underlying reproductive heat tolerance is in its infancy. Medicago truncatula, with a small diploid genome, and well-established transformation system and molecular platforms, has become a valuable model for testing gene function that can be applied to advance the physiological and molecular understanding of legume reproductive heat tolerance.
Collapse
Affiliation(s)
- Yonghua Liu
- College of Horticulture, Hainan University, Haikou, China
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Zwart RS, Thudi M, Channale S, Manchikatla PK, Varshney RK, Thompson JP. Resistance to Plant-Parasitic Nematodes in Chickpea: Current Status and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2019; 10:966. [PMID: 31428112 PMCID: PMC6689962 DOI: 10.3389/fpls.2019.00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Plant-parasitic nematodes constrain chickpea (Cicer arietinum) production, with annual yield losses estimated to be 14% of total global production. Nematode species causing significant economic damage in chickpea include root-knot nematodes (Meloidogyne artiella, M. incognita, and M. javanica), cyst nematode (Heterodera ciceri), and root-lesion nematode (Pratylenchus thornei). Reduced functionality of roots from nematode infestation leads to water stress and nutrient deficiency, which in turn lead to poor plant growth and reduced yield. Integration of resistant crops with appropriate agronomic practices is recognized as the safest and most practical, economic and effective control strategy for plant-parasitic nematodes. However, breeding for resistance to plant-parasitic nematodes has numerous challenges that originate from the narrow genetic diversity of the C. arietinum cultigen. While levels of resistance to M. artiella, H. ciceri, and P. thornei have been identified in wild Cicer species that are superior to resistance levels in the C. arietinum cultigen, barriers to interspecific hybridization restrict the use of these crop wild relatives, as sources of nematode resistance. Wild Cicer species of the primary genepool, C. reticulatum and C. echinospermum, are the only species that have been used to introgress resistance genes into the C. arietinum cultigen. The availability of genomic resources, including genome sequence and re-sequence information, the chickpea reference set and mini-core collections, and new wild Cicer collections, provide unprecedented opportunities for chickpea improvement. This review surveys progress in the identification of novel genetic sources of nematode resistance in international germplasm collections and recommends genome-assisted breeding strategies to accelerate introgression of nematode resistance into elite chickpea cultivars.
Collapse
Affiliation(s)
- Rebecca S. Zwart
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Mahendar Thudi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sonal Channale
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Praveen K. Manchikatla
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - John P. Thompson
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
35
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
36
|
Martínez-Gómez P. Editorial for Special Issue "Plant Genetics and Molecular Breeding". Int J Mol Sci 2019; 20:ijms20112659. [PMID: 31151169 PMCID: PMC6600240 DOI: 10.3390/ijms20112659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
The development of new plant varieties is a long and tedious process involving the generation of large seedling populations to select the best individuals [...].
Collapse
Affiliation(s)
- Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| |
Collapse
|
37
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
38
|
Abstract
Global climate change has caused severe crop yield losses worldwide and is endangering food security in the future. The impact of climate change on food production is high in Australia and globally. Climate change is projected to have a negative impact on crop production. Chickpea is a cool season legume crop mostly grown on residual soil moisture. High temperature and terminal drought are common in different regions of chickpea production with varying intensities and frequencies. Therefore, stable chickpea production will depend on the release of new cultivars with improved adaptation to major events such as drought and high temperature. Recent progress in chickpea breeding has increased the efficiency of assessing genetic diversity in germplasm collections. This review provides an overview of the integration of new approaches and tools into breeding programs and their impact on the development of stress tolerance in chickpea.
Collapse
|