1
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Tian S, Du S, Wang C, Zhang Y, Wang H, Fan Y, Gao Y, Gu L, Huang Q, Wang B, Ma X, Zhang X, Huang Y. Inhibition of primary cilia-hedgehog signaling axis triggers autophagic cell death and suppresses malignant progression of VHL wild-type ccRCC. Cell Death Dis 2024; 15:739. [PMID: 39389955 PMCID: PMC11466958 DOI: 10.1038/s41419-024-07085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Primary cilia are present on renal tubules and are implicated to play a pivotal role in transducing signals during development; however, the oncogenic role of cilia in clear cell renal cell carcinoma (ccRCC) has not been examined. Here we show that VHL wild-type ccRCC cell lines have a high incidence of primary cilia, and a high frequency of primary cilia is positively correlated with VHL expression and poor prognosis. Besides, the depletion of KIF3A and IFT88, genes required for ciliogenesis, significantly inhibited tumor proliferation and metastasis in vitro and in vivo. Further analysis found that mutations of key genes in hedgehog signaling are enriched in VHL wild ccRCC, its downstream signaling activation depends on ciliogenesis. Moreover, depletion of primary cilia or suppression of hedgehog pathway activation with inhibitor-induced robust autophagic cell death. Collectively, our findings revealed that primary cilia could serve as a diagnostic tool and provide new insights into the mechanism of VHL wild-type ccRCC progression. Targeting the primary cilia-hedgehog pathway may represent an effective therapeutic strategy for VHL wild-type ccRCC.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, China
| | - Yu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Fan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Gao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA Medical School, Beijing, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
4
|
Ma H, Kong L, Liu L, Du Y, Zhu X, Wang J, Zhao W. ENO1 contributes to the gemcitabine resistance of pancreatic cancer through the YAP1 signaling pathway. Mol Carcinog 2024; 63:1221-1234. [PMID: 38517039 DOI: 10.1002/mc.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.
Collapse
Affiliation(s)
- Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Kong
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Sun F, Chen H, Dai X, Hou Y, Li J, Zhang Y, Huang L, Guo B, Yang D. Liposome-lentivirus for miRNA therapy with molecular mechanism study. J Nanobiotechnology 2024; 22:329. [PMID: 38858736 PMCID: PMC11165871 DOI: 10.1186/s12951-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3β at ser 9 (p-GSK-3β S9) to inactivate GSK3β, and facilitate translocation of β-catenin into the nucleus to activate the Wnt/β-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3β/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.
Collapse
Affiliation(s)
- Fen Sun
- Institute of Animal Sciences and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyong Dai
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, Guangdong, China
| | - Yibo Hou
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jing Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yinghe Zhang
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Dongye Yang
- Division of Gastroenterology and Hepatology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Hu X, Yuan X, Zhang G, Song H, Ji P, Guo Y, Liu Z, Tian Y, Shen R, Wang D. The intestinal epithelial-macrophage-crypt stem cell axis plays a crucial role in regulating and maintaining intestinal homeostasis. Life Sci 2024; 344:122452. [PMID: 38462226 DOI: 10.1016/j.lfs.2024.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
The intestinal tract plays a vital role in both digestion and immunity, making its equilibrium crucial for overall health. This equilibrium relies on the dynamic interplay among intestinal epithelial cells, macrophages, and crypt stem cells. Intestinal epithelial cells play a pivotal role in protecting and regulating the gut. They form vital barriers, modulate immune responses, and engage in pathogen defense and cytokine secretion. Moreover, they supervise the regulation of intestinal stem cells. Macrophages, serving as immune cells, actively influence the immune response through the phagocytosis of pathogens and the release of cytokines. They also contribute to regulating intestinal stem cells. Stem cells, known for their self-renewal and differentiation abilities, play a vital role in repairing damaged intestinal epithelium and maintaining homeostasis. Although research has primarily concentrated on the connections between epithelial and stem cells, interactions with macrophages have been less explored. This review aims to fill this gap by exploring the roles of the intestinal epithelial-macrophage-crypt stem cell axis in maintaining intestinal balance. It seeks to unravel the intricate dynamics and regulatory mechanisms among these essential players. A comprehensive understanding of these cell types' functions and interactions promises insights into intestinal homeostasis regulation. Moreover, it holds potential for innovative approaches to manage conditions like radiation-induced intestinal injury, inflammatory bowel disease, and related diseases.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zihua Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu Province 73000, China
| | - Yixiao Tian
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
7
|
Li F, Wen Z. Identification roles of NFE2L3 in digestive system cancers. J Cancer Res Clin Oncol 2024; 150:150. [PMID: 38514488 PMCID: PMC10957624 DOI: 10.1007/s00432-024-05656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Morbidity and mortality rates of Digestive System Cancers (DSC) continue to pose human lives and health. Nuclear factor erythroid 2-like protein 3 (NFE2L3) is aberrantly expressed in DSC. This study aimed to explore the clinical value and underlying mechanisms of NFE2L3 as a novel biomarker in DSC. METHODS We utilized data from databases and clinical gastric cancer specimens to validate the aberrant expression level of NFE2L3 and further assessed the clinical value of NFE2L3. To investigate the potential molecular mechanism of NFE2L3, we analyzed the correlation of NFE2L3 with immune molecular mechanisms, constructed PPI network, performed GO analysis and KEGG analysis, and finally explored the biological function of NFE2L3 in gastric cancer cells. RESULTS NFE2L3 expression is up-regulated in DSC and has both prognostic and diagnostic value. NFE2L3 correlates with various immune mechanisms, PPI network suggests proteins interacting with NFE2L3, GSEA analysis suggests potential molecular mechanisms for NFE2L3 to play a role in cancer promotion, and in vitro cellular experiments also confirmed the effect of NFE2L3 on the biological function of gastric cancer cells. CONCLUSION Our study confirms the aberrant expression and molecular mechanisms of NFE2L3 in DSC, indicating that NFE2L3 could serve as a novel biomarker for diagnosis and prognosis of DSC.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital, JiangXi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Li Z, Yin X, Lyu C, Wang J, Liu K, Cui S, Ding S, Wang Y, Wang J, Guo D, Xu R. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study. Biol Trace Elem Res 2024; 202:913-926. [PMID: 37432567 DOI: 10.1007/s12011-023-03737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023]
Abstract
Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jingyi Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Kui Liu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Siyuan Cui
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Shumin Ding
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Yingying Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan, 250014, Shandong Province, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
9
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|
10
|
Ballini A, Zhurakivska K, Troiano G, Lo Muzio L, Caponio VCA, Spirito F, Porro R, Rella M, Cantore S, Arrigoni R, Dioguardi M. Dietary Polyphenols against Oxidative Stress in Head and Neck Cancer: What's New, What's Next. J Cancer 2024; 15:293-308. [PMID: 38169656 PMCID: PMC10758035 DOI: 10.7150/jca.90545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024] Open
Abstract
Head and neck cancers (HNC) are a worldwide health problem, accounting for over 5% of all types of cancers. Their varied nature makes it sometimes difficult to find clear explanations for the molecular mechanisms that underline their onset and development. While chemio- and radiotherapy are clearly not to be dismissed, we cannot undervalue the effect that polyphenols - especially dietary polyphenols - can have in helping us to cope with this medical emergency. By influencing several different proteins involved in numerous different metabolic pathways, polyphenols can have a broad spectrum of biological action and can hopefully act synergistically to tackle down head and neck cancer. Moreover, being natural molecules, polyphenols does not present any side effects and can even enhance drugs efficacy, making our clinical therapy against head and neck cancer more and more effective. Certainly, oxidative stress plays an important role, altering several molecular pathways, lowering the body's defenses, and ultimately helping to create a microenvironment conducive to the appearance and development of the tumor. In this regard, the regular and constant intake of foods rich in polyphenols can help counteract the onset of oxidative stress, improving the health of the general population. In this review, we highlight the role of polyphenols in managing oxidative stress, with such positive effects that they can be considered new tools to use in our anti-head and neck cancer strategy.
Collapse
Affiliation(s)
- Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosa Porro
- Department of Informatics, University of Bari “Aldo Moro”, Bari, Italy
| | - Martina Rella
- AULSS4 - Veneto Orientale - Portogruaro, Venice, Italy
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
12
|
Zhang Y, Xin W, Hu X, Wang H, Ye X, Xu C, Nan Y, Wu Z, Ju D, Fan J. Inhibition of Hedgehog signaling ameliorates foam cell formation by promoting autophagy in early atherosclerosis. Cell Death Dis 2023; 14:740. [PMID: 37963874 PMCID: PMC10646116 DOI: 10.1038/s41419-023-06270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/15/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Macrophages are the origin of most foam cells in the early stage of atherosclerotic plaques. However, the mechanism involved in the formation of macrophage-derived foam cell formation remains unclear. Here, we revealed that the hedgehog (Hh) signaling is critical in autophagy-lysosome pathway regulation and macrophage-derived foam cell formation. Inhibition of Hh signaling by vismodegib ameliorated lipid deposition and oxidative stress level in atherosclerotic plaques in high-fat diet-fed apoE-/- mice. For mechanistic study, how the Hh signaling modulate the process of foam cell formation were accessed afterward. Unexpectedly, we found that suppression of Hh signaling in apoE-/- mice had no significant impact on circulating cholesterol levels, indicating that Hh pathway modulate the procession of atherosclerotic plaque not through a traditional lipid-lowing mechanism. Instead, vismodegib was found to accelerate autophagosomes maturation as well as cholesterol efflux in macrophage-derived foam cell and in turn improve foam cell formation, while autophagy inhibitors (LY294002 or CQ) administration significantly attenuated vismodegib-induced cholesterol efflux and reversed the effect on foam cell formation. Therefore, our result demonstrated that inhibition of the Hh signaling pathway increases cholesterol efflux and ameliorates macrophage-derived foam cell formation by promoting autophagy in vitro. Our data thus suggested a novel therapeutic target of atherosclerosis and indicated the potential of vismodegib to treat atherosclerosis.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Weijuan Xin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hanqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Zhengyu Wu
- TAU Cambridge Ltd, The Bradfield Centre UNIT 184, Cambridge Science Park, CB4 0GA, Cambridge, UK.
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
13
|
Ge G, Guo Q, Zhou Y, Li W, Zhang W, Bai J, Wang Q, Tao H, Wang W, Wang Z, Gan M, Xu Y, Yang H, Li B, Geng D. GLI1 facilitates collagen-induced arthritis in mice by collaborative regulation of DNA methyltransferases. eLife 2023; 12:e92142. [PMID: 37929702 PMCID: PMC10627516 DOI: 10.7554/elife.92142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/08/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.
Collapse
Affiliation(s)
- Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Qianping Guo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
- Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow UniversitySuzhouChina
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaAnhuiChina
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Wei Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital Shanghai Jiao Tong University School of MedicineSuzhouChina
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| | - Bin Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
- Medical 3D Printing Center, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow UniversitySuzhouChina
- Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Medical College, Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Ma B, Hu Y, Zhu J, Zheng Z, Ye J. Research on the role of cellular autophagy in the sensitivity of human tongue cancer cells to radiotherapy and chemotherapy. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101430. [PMID: 36878357 DOI: 10.1016/j.jormas.2023.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE This paper aims to investigate the role of cisplatin-induced autophagy in human tongue squamous carcinoma Tca8113 cells. METHODS After inhibiting the expression of autophagic proteins with different autophagy inhibitors (3-methyladenine, chloroquine), the sensitivity of human tongue squamous cell carcinoma (Tca8113) cells to killing by gradient concentrations of cisplatin and gradient doses of radiation was detected using a colony formation assay. Further, the changes of autophagy expression in Tca8113 cells that had been treated with cisplatin and radiation were detected using western immunoblot, GFP-LC3 fluorescence and transmission electron microscopy. RESULTS The sensitivity of Tca8113 cells to cisplatin and radiation was significantly increased (P < 0.05) after reducing autophagy expression using different autophagy inhibitors. Meanwhile, the expression of autophagy in the cells was significantly increased by cisplatin and radiation treatment. CONCLUSION Tca8113 cells upregulated autophagy under the effect of either radiation or cisplatin, and the sensitivity of Tca8113 cells to cisplatin and radiation could be improved by inhibiting autophagy using multiple pathways.
Collapse
Affiliation(s)
- Ben Ma
- Department of Oral and Maxillofacial Surgery, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, 518118, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China
| | - Yong Hu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jiadong Zhu
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Zeguang Zheng
- Department of Stomatology, The Affiliated Suzhou Science and Technology, Town Hospital of Nanjing Medical University, Suzhou, 215153, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Yao Y, Li T, Yu T, Yang X, Wang Y, Cai J, Cheng SY, Liu C, Yue S. Hedgehog signal activates AMPK via Smoothened to promote autophagy and lipid degradation in hepatocytes. Biochem Cell Biol 2023; 101:284-293. [PMID: 36821837 DOI: 10.1139/bcb-2022-0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Studies in the past decade have shown that lipid droplets stored in liver cells under starvation are encapsulated by autophagosomes and fused to lysosomes via the endocytic system. Autophagy responds to a variety of environmental factors inside and outside the cell, so it has a complex signal regulation network. To this end, we first explored the role of Hedgehog (Hh) in autophagy and lipid metabolism. Treatment of normal mouse liver cells with SAG and GDC-0449 revealed elevated phosphorylation of AMP-activated protein kinase (AMPK) and increased lipidation of LC3. SAG, and GDC-0449 were agonist and antagonist of Smoothened (Smo) in canonical Hh pathway, respectively, but they played a consistent role in the regulation of autophagy in hepatocytes. Moreover, SAG and GDC-0449 did not affect the expression of glioma-associated oncogene (Gli1) and patched 1, suggesting the absence of canonical Hh signaling in hepatocytes. We further knocked down the Smo and found that the effects of SAG and GDC-0449 disappeared, indicating that the non-canonical Smo pathway was involved in the regulation of autophagy in hepatocytes. In addition, SAG and GDC-0449 promoted lipid degradation and inhibited lipid production signals. Knockdown of Smo slowed down the rate of lipid degradation rather than Sufu or Gli1, indicating that Hh signaling regulated the lipid metabolism via Smo. In summary, activates AMPK via Smo to promote autophagy and lipid degradation.
Collapse
Affiliation(s)
- Yixing Yao
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
- Department of Pathology, Suzhou Ninth People's Hospital, Suzhou 215200, China
| | - Tianyuan Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Tingting Yu
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Xin Yang
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Jing Cai
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Steven Y Cheng
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Shen Yue
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Yang S, Hui TL, Wang HQ, Zhang X, Mi YZ, Cheng M, Gao W, Geng CZ, Li SN. High expression of autophagy-related gene EIF4EBP1 could promote tamoxifen resistance and predict poor prognosis in breast cancer. World J Clin Cases 2023; 11:4788-4799. [PMID: 37583983 PMCID: PMC10424051 DOI: 10.12998/wjcc.v11.i20.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) remains a public health problem. Tamoxifen (TAM) resistance has caused great difficulties for treatment of BC patients. Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) plays critical roles in the tumorigenesis and progression of BC. However, the expression and mechanism of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients are still unclear. AIM To investigate the expression and functions of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients. METHODS High-throughput sequencing data of breast tumors were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis identified EIF4EBP1 to be significantly upregulated in cancer tissues. Its prognostic value was analyzed. The biological function and related pathways of EIF4EBP1 was analyzed. Subsequently, the expression of EIF4EBP1 was determined by real-time reverse transcription polymerase chain reaction and western blotting. Cell Counting Kit-8 assays, colony formation assay and wound healing assay were used to understand the phenotypes of function of EIF4EBP1. RESULTS EIF4EBP1 was upregulated in the TAM-resistant cells, and EIF4EBP1 was related to the prognosis of BC patients. Gene Set Enrichment Analysis showed that EIF4EBP1 might be involved in Hedgehog signaling pathways. Decreasing the expression of EIF4EBP1 could reverse TAM resistance, whereas overexpression of EIF4EBP1 promoted TAM resistance. CONCLUSION This study indicated that EIF4EBP1 was overexpressed in the BC and TAM-resistant cell line, which increased cell proliferation, invasion, migration and TAM resistance in BC cells.
Collapse
Affiliation(s)
- Shan Yang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Tian-Li Hui
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hao-Qi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xi Zhang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yun-Zhe Mi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Meng Cheng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cui-Zhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Sai-Nan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
18
|
Liu H, Wang X, Gao H, Yang C, Xie C. Physiological and pathological characteristics of vascular endothelial injury in diabetes and the regulatory mechanism of autophagy. Front Endocrinol (Lausanne) 2023; 14:1191426. [PMID: 37441493 PMCID: PMC10333703 DOI: 10.3389/fendo.2023.1191426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular endothelial injury in diabetes mellitus (DM) is the major cause of vascular disease, which is closely related to the occurrence and development of a series of vascular complications and has a serious negative impact on a patient's health and quality of life. The primary function of normal vascular endothelium is to function as a barrier function. However, in the presence of DM, glucose and lipid metabolism disorders, insulin resistance, inflammatory reactions, oxidative stress, and other factors cause vascular endothelial injury, leading to vascular endothelial lesions from morphology to function. Recently, numerous studies have found that autophagy plays a vital role in regulating the progression of vascular endothelial injury. Therefore, this article compares the morphology and function of normal and diabetic vascular endothelium and focuses on the current regulatory mechanisms and the important role of autophagy in diabetic vascular endothelial injury caused by different signal pathways. We aim to provide some references for future research on the mechanism of vascular endothelial injury in DM, investigate autophagy's protective or injurious effect, and study potential drugs using autophagy as a target.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
19
|
Galasso A, Xu DC, Hill C, Iakovleva D, Stefana MI, Baena‐Lopez LA. Non-apoptotic caspase activation ensures the homeostasis of ovarian somatic stem cells. EMBO Rep 2023; 24:e51716. [PMID: 37039000 PMCID: PMC10240206 DOI: 10.15252/embr.202051716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.
Collapse
Affiliation(s)
- Alessia Galasso
- Faculty of Medicine CentreImperial College London, South Kensington CampusLondonUK
| | - Derek Cui Xu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Claire Hill
- School of Medicine, Dentistry and Biomedical SciencesQueen's University Belfast MedicineBelfastUK
| | - Daria Iakovleva
- Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
20
|
Tilemis FN, Marinakis NM, Kosma K, Fostira F, Traeger-Synodinos J. Identification of a Novel IQCE Large Deletion through Copy Number Variant Analysis from Whole-Exome Sequencing Data of a Patient with Postaxial Polydactyly Type A7. Mol Syndromol 2023; 14:225-230. [PMID: 37323200 PMCID: PMC10267488 DOI: 10.1159/000527777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Introduction Non-syndromic polydactyly has been associated with pathogenic variants in 11 genes until today, including IQCE gene. More precisely, loss-of-function of IQCE is associated with the autosomal recessive disorder postaxial polydactyly type A7 (PAPA7, MIM #617642). Case Presentation A 3-year-old female patient was referred to our genetics department with postaxial polydactyly, syndactyly, brachydactyly, and hypoplastic teeth. Through whole-exome sequencing (WES), a pathogenic IQCE variant was identified (c.895_904del) in the homozygous state, which adequately explained the disease phenotype of our patient. However, copy number variant (CNV) analysis from WES data, using ExomeDepth, revealed a novel, likely pathogenic large deletion involving IQCE genomic regions (DEL:chr7:2606751_2641098) encompassing exons 2-18 of the gene. Conclusion IQCE gene codes for a 695-amino acid protein located at the base of the primary cilia that positively regulates the Hedgehog signaling pathway. This case report represents the first description of a large deletion in IQCE and indicates that implementation of ExomeDepth in routine WES analysis can contribute valuable information toward elucidating the correct etiology of rare genetic diseases, increasing the diagnostic yield, and minimizing the need for additional tests.
Collapse
Affiliation(s)
- Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRaSTES, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
22
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
23
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
24
|
Salvatorelli E, Minotti G, Menna P. New Targeted Drugs for Acute Myeloid Leukemia and Antifungals: Pharmacokinetic Challenges and Opportunities. Chemotherapy 2023; 68:170-182. [PMID: 37004510 DOI: 10.1159/000530447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a life-threatening disease whose treatment is made difficult by a number of mutations or receptor overexpression in the proliferating cellular clones. Life expectancy of patients diagnosed with new, relapsed-refractory, or secondary AML has been improved by drugs targeted at such moieties. Regrettably, however, clinical use of new AML drugs is complicated by pharmacokinetic interactions with other drugs the patient is exposed to. SUMMARY The most relevant drug-drug interactions (DDI) with clinical implications build on competition for or induction/inhibition of CYP3A4, which is a versatile metabolizer of a plethora of pharmacological agents. Here, we review DDI between AML drugs and the agents used to prevent or treat invasive fungal infections (IFI). The pathophysiology of AML, characterized by functionally defective white blood cells and neutropenic/immunosuppressive effects of concomitant induction chemotherapy, can in fact increase the risk of infectious complications, with IFI causing high rates of morbidity and mortality. Triazole antifungals, such as posaconazole, are strong inhibitors of CYP3A4 and may thus cause patient's overexposure to AML drugs that are metabolized by CYP3A4. We describe potential strategies to minimize the consequences of DDI between triazole antifungals and targeted therapies for AML and the role that collaboration between clinical pharmacologists, hematologists, and clinical or laboratory microbiologists may have in these settings. KEY MESSAGES Therapeutic drug monitoring and clinical pharmacology stewardship could represent two strategies that best express multidisciplinary collaboration for improving patient management.
Collapse
Affiliation(s)
| | - Giorgio Minotti
- Department of Medicine, University Campus Bio-Medico, Rome, Italy
- Research Unit of Clinical Pharmacology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Pierantonio Menna
- Research Unit of Clinical Pharmacology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
25
|
Pezzotta A, Brioschi L, Carbone S, Mazzoleni B, Bontempi V, Monastra F, Mauri L, Marozzi A, Mione M, Pistocchi A, Viani P. Combined Inhibition of Hedgehog and HDAC6: In Vitro and In Vivo Studies Reveal a New Role for Lysosomal Stress in Reducing Glioblastoma Cell Viability. Int J Mol Sci 2023; 24:ijms24065771. [PMID: 36982845 PMCID: PMC10051748 DOI: 10.3390/ijms24065771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients’ survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.
Collapse
Affiliation(s)
- Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Sabrina Carbone
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Beatrice Mazzoleni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Vittorio Bontempi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Monastra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| |
Collapse
|
26
|
RUNX3 Meets the Ubiquitin-Proteasome System in Cancer. Cells 2023; 12:cells12050717. [PMID: 36899853 PMCID: PMC10001085 DOI: 10.3390/cells12050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.
Collapse
|
27
|
Yu X, Chen W, Zhang J, Gao X, Cui Q, Song Z, Du J, Lv W. Antitumor activity and mechanism of cucurbitacin B in A549/DDP cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1095-1103. [PMID: 36642716 DOI: 10.1007/s00210-023-02386-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Cucurbitacin B (CuB) is a class of tetracyclic triterpenoids isolated from Cucurbitaceae with a wide range of anti-inflammatory and anti-tumor activities, mainly used in hepatitis and hepatocellular carcinoma, while there is relatively little research and application of this drug for lung cancer. In this study, CuB was administered on A549/DDP cells to observe how it affected the cells and their mechanism of action. CuB demonstrated good anti-tumor activity against A549/DDP cells in a dose-dependent manner and caused changes in the hedgehog (Hh) pathway. The results showed that CuB greatly inhibits the proliferation and the invasion of A549/DDP cells, and promoted apoptosis of A549/DDP cells. Meanwhile, it changed the expression of p53-related genes at the RNA and protein level. In conclusion, this experiment provides a theoretical basis for new applications of CuB and new thoughts on the mechanism of its anti-tumor activity, and provides a direction for deep research.
Collapse
Affiliation(s)
- Xinyuan Yu
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Weiwei Chen
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinjie Zhang
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xinfu Gao
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qidi Cui
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zheng Song
- Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Du
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wenwen Lv
- Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
28
|
Li J, Zhang H, Wu J, Li L, Xu B, Song Q. Granzymes expression patterns predict immunotherapy response and identify the heterogeneity of CD8+ T cell subsets. Cancer Biomark 2023; 38:77-102. [PMID: 37545222 DOI: 10.3233/cbm-230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Recent studies illustrated the effects of granzymes (GZMs) gene alterations on immunotherapy response of cancer patients. Thus, we aimed to systematically analyze the expression and prognostic value of GZMs for immunotherapy in different cancers, and identified heterogeneity of the GZMs expression-based CD8+ T cell subsets. METHODS First, we analyzed GZMs expression and prognostic value at pan-cancer level. Meanwhile, we established a GZMs score by using the single-sample gene set enrichment analysis (ssGSEA) algorithm to calculate the enrichment scores (ES) based on a gene set of five GZMs. The potential value of GZMs score for predicting survival and immunotherapy response was evaluated using the tumor immune dysfunction and exclusion (TIDE) and immunophenoscore (IPS) algorithm, and we validated it in immunotherapy cohorts. CellChat, scMetabolism, and SCENIC R packages were used for intercellular communication networks, quantifying metabolism activity, and regulatory network reconstruction, respectively. RESULTS The GZMs score was significantly associated with IPS, TIDE score. Patients with high GZMs score tended to have higher objective response rates of immunotherapy in melanoma and urothelial carcinoma. GZMs expression-based CD8+ T cell subsets presented heterogeneity in functions, metabolism, intercellular communications, and the tissue-resident memory programs in lung adenocarcinoma (LUAD). The transcription factors RUNX3 and ETS1, which may regulate the expression of GZMs, was found to be positively correlated with the tissue-resident memory T cells-related marker genes. CONCLUSIONS The higher GZMs score may indicate better response and overall survival (OS) outcome for immunotherapy in melanoma and urothelial carcinoma but worse OS in renal cell carcinoma (RCC). The GZMs score is a potential prognostic biomarker of diverse cancers. RUNX3 and ETS1 may be the potential targets to regulate the infiltration of GZMs expression-based CD8+ T cell subsets and affect the tissue-resident memory programs in LUAD, which may affect the prognosis of LUAD patients and the response to immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huibo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Transcriptome Analysis Reveals the Anti-Tumor Mechanism of Eucalyptol Treatment on Neuroblastoma Cell Line SH-SY5Y. Neurochem Res 2022; 47:3854-3862. [DOI: 10.1007/s11064-022-03786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
AbstractEucalyptol (1.8-cineole), an active component in traditional Chinese medicine Artemisia argyi for moxibustion. Previous studies have shown that eucalyptol has anti-tumor effects on leukemia and colon cancer. Nonetheless, the effect and mechanism of eucalyptol on neuroblastoma remains unclear. In the present study, we intended to reveal the effect and mechanism of eucalyptol treatment on the neuroblastoma cell line SH-SY5Y through transcriptome analysis. In the group treated with eucalyptol, 566 brain genes were up-regulated, while 757 genes were down-regulated. GO function analysis showed that positive regulation of cell cycle was down-regulated in biological processes. Meanwhile, cancer-related pathways were identified in KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, including pathways in cancer, PI3K-Akt signaling pathway, cAMP signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, p53 signaling pathway, and additional pathways. Furthermore, we found a key gene, such as MYC, by constructing a network of cancer related pathways with differentially expressed genes and transcription factor analysis. In conclusion, our research indicates that MYC might play a central role in the anit-tumor mechanisms of eucalyptol.
Collapse
|
30
|
Comprehensive Exploration of M2 Macrophages and Its Related Genes for Predicting Clinical Outcomes and Drug Sensitivity in Lung Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1163924. [PMID: 36157235 PMCID: PMC9492411 DOI: 10.1155/2022/1163924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023]
Abstract
Background M2 macrophages play an important role in cancers. However, the role of M2 macrophages has not been clarified in lung squamous cell carcinoma. Methods All the open-accessed data were downloaded from The Cancer Genome Atlas database. All the analysis was performed in the R software. The CIBERSORT algorithm was utilized to quantify the immune cell infiltration in the tumor microenvironment. LASSO regression and multivariate Cox regression analysis were carried out for the creation of the prognostic model. Pathway enrichment analysis was performed using the single sample Gene Set Enrichment Analysis (ssGSEA) and clueGO algorithm. Results In our study, we comprehensively explored the role of M2 macrophages and its related genes in LUSC patients. We found that the patients with high M2 macrophage infiltration tend to have a worse prognosis. Also, some oncogenetic pathways were activated in the patients with high M2 macrophage infiltration. Further, a prognosis model based on six M2 macrophage-related genes was established, including TRIM58, VIPR2, CTNNA3, KIAA0408, CLEC4G, and MATN4, which showed a good prognosis prediction efficiency in both training and validation cohort. Pathway enrichment analysis showed that the pathway of allograft rejection, bile acid metabolism, coagulation, inflammatory response, IL6/JAK/STAT3 signaling, hedgehog signaling, peroxisome, and myogenesis were significantly activated in the high-risk patients. Based on the results of an investigation of immune infiltration, risk score was found to have a positive correlation with M2 macrophages and resting CD4+ memory T cells, but a negative correlation with follicular helper T cells, M1 macrophages, and Tregs. In addition, we discovered that patients in high-risk groups may respond better to immunotherapy than individuals in lower-risk groups. However, low-risk patients might be more sensitive to cisplatin. Conclusions Our model is a powerful tool to predict LUSC patient prognosis and could indicate the sensitivity of immunotherapy and chemotherapy.
Collapse
|
31
|
Lee SH, Lee JS, Park JH, Yoon S, Lee KY, Kim HS. Glycolytic Metabolic Remodeling by the Truncate of Glioma-Associated Oncogene Homolog 1 in Triple-Negative Breast Cancer Cells. J Cancer 2022; 13:3031-3043. [PMID: 36046646 PMCID: PMC9414023 DOI: 10.7150/jca.72793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. In particular, terminal effectors of the Hh signaling pathway are associated with the regulation of glioma-associated oncogene homolog 1 (GLI1) transcription factors. Overexpression of GLI1 is closely associated with poor prognosis in breast cancer. The Hh-GLI1 signaling pathway is activated and participates in the tumorigenesis and progression of breast cancer, especially in the aggressive subtype of triple-negative breast cancer (TNBC). However, the role of GLI1 in regulating TNBC metabolism remains unclear. This study aimed to explore the functional role of GLI1 in glycolytic metabolism in TNBC. Immunohistochemical analysis of GLI1 expression in a tissue microarray revealed significant correlations between GLI1 expression and advanced tumor stage and grade. GLI1 expression levels were drastically increased in MDA-MB-231 cells compared to those in other cell lines. Inhibition of GLI1 expression using GLI1 small interfering RNA (siRNA) in MDA-MB-231 cells resulted in a significant reduction in cell proliferation and induced cell cycle arrest at the G1 phase. Furthermore, GLI1 downregulation significantly reduced the expression of glycolysis-regulated proteins. GLI1 knockdown resulted in reduced glycolytic rates and extracellular lactate levels. Moreover, metabolic stress after GLI1 knockdown activated the energy sensor, adenosine monophosphate-activated protein kinase, which subsequently resulted in autophagy induction. In conclusion, this study indicates that targeting GLI1 reprograms the tumor glucose metabolism to suppress breast cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ji Sun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
32
|
Feng L, Pérez-Sánchez H, Bai Q. Studying noncovalent or covalent bond problem between smoothened and cholesterol by molecular dynamics simulation and Markov state model. Phys Chem Chem Phys 2022; 24:19564-19575. [PMID: 35942902 DOI: 10.1039/d2cp01453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smoothened (SMO) is an attractive therapeutic target for the treatment and prevention of several malignant tumors of the nervous system. The crystal structure of SMO shows cholesterol interacts with residue Asp95 via the noncovalent bond. However, some studies indicate that cholesterol covalently binds to residue Asp95 of SMO. To study these contradictory results, we performed molecular dynamics (MD) simulations and Markov state model (MSM) on SMO in complex with noncovalent-bound and covalent-bound cholesterol. The MD simulated results showed that the noncovalent-bound cholesterol was extremely unstable around the position of residue Asp95 of SMO, while the covalent-bound cholesterol could keep the stable connection with residue Asp95 of SMO. The free energy landscape showed that noncovalent-bound cholesterol had more deep energy wells than covalent-bound cholesterol when it dynamically interacted with the extracellular domain of SMO crystal structure. The MSM results showed the noncovalent-bound cholesterol had more dynamic configuration transformation pathways than the covalent-bound cholesterol. These results theoretically revealed cholesterol should have a covalent bond with residue Asp95 if cholesterol could be stable in the near position of residue Asp95 of SMO. Our studies not only elucidate the covalent binding contradictory issue between cholesterol and residue Asp95 of SMO, but also supply helpful information for antagonists design of SMO.
Collapse
Affiliation(s)
- Liya Feng
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain.
| | - Qifeng Bai
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
33
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
34
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
35
|
Zhang D, Fu Y, Tian G, Li J, Shang D, Zhou S. UCHL1 promotes proliferation and metastasis in head and neck squamous cell carcinoma and could be a potential therapeutic target. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:684-697. [PMID: 35165060 DOI: 10.1016/j.oooo.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to research the physiological roles of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Ten HNSCC samples and matched normal oral mucosal tissues were collected. UCHL1 expression of these tissues was detected by the immunohistochemical staining and real-time quantitative polymerase chain reaction. The human HNSCC cell line HN6 UCHL1 knockout (UCHL1 KO) cell line was constructed using CRISPR/CAS9 gene editing and verified by western blotting. Wound healing assay, cell proliferation assay, cell invasion assay, and flow cytometric analysis of the cell cycle and apoptosis were applied to research the role of UCHL1 in HNSCC. Also, an RNAseq gene expression data set and HNSCC patient survival data from The Cancer Genome Atlas were analyzed. RESULTS UCHL1 was highly expressed in HNSCC tissues compared with normal oral mucosal tissues (P = .032). A decreased proliferation (P < .0001), migration (P < .0001), and invasion (P = .0049) ability of HN6 cells was exhibited after knockout of UCHL1. However, HN6 UCHL1 KO cells showed no significant differences in the cell cycle or apoptosis. The progression, nodal metastasis status, and stage of HNSCC had a positive correlation with the expression of UCHL1. CONCLUSIONS UCHL1 plays an important role in HNSCC, and we consider that targeting UCHL1 may be a feasible therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Dahe Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - You Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Guocai Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Dihua Shang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China
| | - Shanghui Zhou
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, Shanghai, China; National Center for Stomatology, Shanghai, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, Shanghai, China.
| |
Collapse
|
36
|
Study on the Expression Profile of Autophagy-Related Genes in Colon Adenocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7525048. [PMID: 35572821 PMCID: PMC9095386 DOI: 10.1155/2022/7525048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Colon adenocarcinoma (COAD) is a common digestive tract tumor. Autophagy-related genes (ARGs) may play an obbligato role in the biological processes of COAD. This study was aimed at exploring the role of ARGs in COAD. Clinical data and RNA sequencing data of tumor and healthy samples were obtained from The Cancer Genome Atlas (TCGA), and discrepantly expressed ARGs were screened. Statistical differences of ARGs were performed with Gene Ontology (GO) functional annotation and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Eight ARGs were selected by univariate Cox and multivariate Cox regression. Kaplan–Meier (K-M) and multivariate receiver operating characteristic (multi-ROC) were used to check the fitness of the model. Among 398 COAD samples and 39 normal samples obtained from the TCGA database, 37 differentially expressed ARGs were screened. In the training group, eight prognostics-related ARGs (MTMR14, VAMP3, HSPA8, TSC1, DAPK1, CX3CL1, ATG13, and MAP1LC3C) were identified by Cox regression. A gene signature risk prediction model was constructed base on 8 autophagy-related genes. The survival time of the low-risk group was longer than the high-risk group, and the AUC of the model was 0.794. Univariate and multivariate Cox regression analysis showed that age and riskscore were the independent predictor. In conclusion, the prognosis model we built based one ARGs of COAD patients can estimate the prognosis of patients in clinical treatment.
Collapse
|
37
|
Guo P, Chen Q, Peng K, Xie J, Liu J, Ren W, Tong Z, Li M, Xu J, Zhang Y, Yu C, Mo P. Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated Hedgehog signaling. Oncogene 2022; 41:2846-2859. [PMID: 35418691 DOI: 10.1038/s41388-022-02308-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/20/2023]
Abstract
Overexpression of nuclear coactivator steroid receptor coactivator 1 (SRC-1) and aberrant activation of the Hedgehog (Hh) signaling pathway are associated with various tumorigenesis; however, the significance of SRC-1 in colorectal cancer (CRC) and its contribution to the activation of Hh signaling are unclear. Here, we identified a conserved Hh signaling signature positively correlated with SRC-1 expression in CRC based on TCGA database; SRC-1 deficiency significantly inhibited the proliferation, survival, migration, invasion, and tumorigenesis of both human and mouse CRC cells, and SRC-1 knockout significantly suppressed azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC in mice. Mechanistically, SRC-1 promoted the expression of GLI family zinc finger 2 (GLI2), a major downstream transcription factor of Hh pathway, and cooperated with GLI2 to enhance multiple Hh-regulated oncogene expression, including Cyclin D1, Bcl-2, and Slug. Pharmacological blockages of SRC-1 and Hh signaling retarded CRC progression in human CRC cell xenograft mouse model. Together, our studies uncover an SRC-1/GLI2-regulated Hh signaling looping axis that promotes CRC tumorigenesis, offering an attractive strategy for CRC treatment.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kesong Peng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, China
| | - Jianyuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenjing Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhangwei Tong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ming Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China. .,National Institute for Data Science in Health and Medicine Engineering, Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
38
|
Zhang M, Gao L, Ye Y, Li X. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2022; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K, Yamasaki A. Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 2022; 47:93. [DOI: 10.3892/or.2022.8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuya Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shuntaro Nagai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Keigo Ozono
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
40
|
Cui X, Shan T, Qiao L. Collagen type Ⅳ alpha 1 (COL4A1) silence hampers the invasion, migration and epithelial-mesenchymal transition (EMT) of gastric cancer cells through blocking Hedgehog signaling pathway. Bioengineered 2022; 13:8972-8981. [PMID: 35297303 PMCID: PMC9161915 DOI: 10.1080/21655979.2022.2053799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC), which features high prevalence and mortality rate, remains the third most lethal cancer worldwide. The paper was designed to explore the impacts of collagen type Ⅳ alpha 1 (COL4A1) on GC, along with its potential mechanism. The mRNA and protein expressions of COL4A1 in GC cells were assessed by RT-qPCR and western blot. After depleting COL4A1, RT-qPCR and western blot were conducted again to check the transfection efficacy. With the application of CCK-8, wound healing and transwell, the capabilities of cells to proliferate, migrate and invade were appraised, respectively. Moreover, western blot tested the protein levels of factors involved in migration, proliferation, epithelial mesenchymal transition (EMT) and Hedgehog signaling. As a result, COL4A1 displayed elevated expression in GC tissues and cells while its knockdown inhibited the cell viability, migration, invasion and EMT in GC. According to Gene Set Enrichment Analysis (GSEA), COL4A1 was involved in the regulation of Hedgehog signaling pathway, which was then further verified by the detection of Hedgehog-related proteins. To figure out the relationship between COL4A1 and Hedgehog signaling pathway, we used purmorphamine, an agonist of Hedgehog, to treat GC cells, finding that COL4A1 blocked Hedgehog signaling to inhibit the aggressive phenotypes of GC cells. In short, COL4A1 silence was testified to exhibit suppressive effects on the malignant process of GC, suggesting that COL4A1 might be a potent hallmark for GC therapy.
Collapse
Affiliation(s)
- Xijuan Cui
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| | - Tao Shan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| | - Lina Qiao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| |
Collapse
|
41
|
MiR-221-3p Facilitates Thyroid Cancer Cell Proliferation and Inhibit Apoptosis by Targeting FOXP2 Through Hedgehog Pathway. Mol Biotechnol 2022; 64:919-927. [DOI: 10.1007/s12033-022-00473-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
42
|
Wu ZX, Huang X, Cai MJ, Huang PD, Guan Z. Development and Validation of a Prognostic Index Based on Genes Participating in Autophagy in Patients With Lung Adenocarcinoma. Front Oncol 2022; 11:799759. [PMID: 35145906 PMCID: PMC8821527 DOI: 10.3389/fonc.2021.799759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BackgroundLung adenocarcinoma (LUAD) is a deadly respiratory system malignancy with poor prognosis. Autophagy is essential for the beginning, development, and therapy resistance of cancer. However, the expression of genes participating in autophagy in LUAD and their associations with prognosis remain unclear.MethodsPredictive genes participating in autophagy in LUAD samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were investigated. TCGA and GEO cohorts were divided into two risk groups, while the low-risk group having a longer overall survival (OS) time. This article aims to point out the interaction between genes participating in autophagy and immune function, immune checkpoints, and m6a in LUAD. The prediction model was designed for exploring least absolute shrinkage and selection operator (LASSO) regression. It has been revealed that gene expression and autophagy are inextricably connected.ResultsGenes participating in autophagy were shown to be somewhat overexpressed in the high-risk group even though no different clinical symptoms were present, indicating that they might be used in a model to predict LUAD prognosis. The majority of genes participating in autophagy prognostic signatures controlled immunological and tumor-related pathways, according to gene set enrichment analysis (GSEA). KRT6A, KYNU, IGFBP1, DKK1, PKP2, PLEK2, GAPDH, FLNC, and NTSR1 might be related to the oncology process for LUAD patients. CERS4, CMAHP, and PLEKHB1 have been identified as being associated with low risk in patients with LUAD. Furthermore, the immune function and m6a gene expression differed significantly between the two groups.ConclusionsGenes participating in autophagy are connected to the development and progression of LUAD. LUAD patients’ prognoses are often foreseen utilizing matched prognostic models. Genes participating in autophagy in LUAD may be therapeutic targets that ought to be investigated more.
Collapse
Affiliation(s)
- Zi-Xuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuyan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Pei-Dong Huang
- Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Pei-Dong Huang,
| | - Zunhui Guan
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
43
|
Gao Q, Chang X, Yang M, Zheng J, Gong X, Liu H, Li K, Wang X, Zhan H, Li S, Feng S, Sun X, Sun Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2022; 37:79-91. [PMID: 34608745 DOI: 10.1002/tox.23379] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) was down-regulated in pulmonary fibrosis of rats induced by Nickel oxide nanoparticles (NiO NPs), while the downstream regulatory mechanisms of MEG3 remain unclear. This study aimed to investigate the relationship among MEG3, Hedgehog (Hh) signaling pathway and autophagy in pulmonary fibrosis caused by NiO NPs. The pulmonary fibrosis model in rats was constructed by intratracheal instillation of 0.015, 0.06, and 0.24 mg/kg NiO NPs twice a week for 9 weeks. Collagen deposition model was established by treating A549 cells with 25, 50, and 100 μg/mL NiO NPs for 24 h. Our results indicated that NiO NPs activated Hh pathway, down-regulated the expression of MEG3, and reduced autophagy activity in vivo and in vitro. Meanwhile, the autophagy process was promoted by Hh pathway inhibitor (CDG-0449), while the collagen formation in A549 cells was reduced by autophagy activator (Rapamycin). Furthermore, the overexpressed MEG3 inhibited the activation of Hh pathway, resulting in autophagy activity enhancement along with collagen formation reduction. In summary, lncRNA MEG3 can restrain pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy, which may serve as a potential therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Qing Gao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mengmeng Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinfa Zheng
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuefeng Gong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou city, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Xingchang Sun
- Institute of Occupational Diseases, Gansu Baoshihua Hospital, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X, Qian X. Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne) 2022; 13:1081585. [PMID: 36568117 PMCID: PMC9772455 DOI: 10.3389/fendo.2022.1081585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastasis. The hepatic portal venous system, responsible for collecting most intestinal blood, makes the liver the most common site of CRC metastasis. The formation of liver metastases from colorectal cancer is a long and complex process. It involves the maintenance of primary tumors, vasculature invasion, distant colonization, and metastasis formation. In this review, we serve on how the CRC cells acquire stemness, invade the vascular, and colonize the liver. In addition, we highlight how the resident cells of the liver and immune cells interact with CRC cells. We also discuss the current immunotherapy approaches and challenges we face, and finally, we look forward to finding new therapeutic targets based on novel sequencing technologies.
Collapse
|
45
|
Constructing a thyroid cancer prognostic risk model based on CD8 + T cell associated genes. Cent Eur J Immunol 2022; 47:234-245. [PMID: 36817266 PMCID: PMC9896991 DOI: 10.5114/ceji.2022.119171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer (TC) is a common and curable endocrine tumor occurring in the head and neck characterized by a low mortality rate compared to other malignancies. In this study, the immune microenvironment of TC was investigated to identify biomarkers. The mRNA and clinical data available in this study were accessed from The Cancer Genome Atlas-Thyroid Cancer (TCGA-THCA) dataset. Differences in immune infiltration levels of TC and normal samples were assessed by CIBERSORT. Thyroid cancer samples were classified into high- and low-abundance groups according to the median abundance of immune cell infiltration, and CD8+ T cells were notably correlated with the survival status. Differential expression analysis was conducted on CD8+ T cells to obtain immune-related differentially expressed genes (DEGs). Subsequently, a prognostic risk model was established through Cox regression analysis. According to the median risk score, samples in the training set and validation set were assigned to high- and low-risk groups. The survival and ROC curves demonstrated that the model possesses favorable prognostic prediction ability. Furthermore, the results of gene set enrichment analysis (GSEA) indicated differences between the high- and low-risk groups in terms of ECM receptor interaction and transforming growth factor β (TGF-β) signaling pathways. The tumor microenvironment of TC samples was evaluated by ESTIMATE, which showed that stromal scores were higher in the high-risk group. Finally, simple-sample GSEA (ssGSEA) was performed on TC samples. The results indicated a higher infiltration level of NK cells in the low-risk group, as well as a lower level in the high-risk group. In terms of immune function-related gene sets, genes related to APC co-inhibition, cytolytic activity, HLA and T cell co-inhibition were observed to present higher expression levels in the low-risk group. In general, this study built a 6-gene prognostic risk assessment model based on CD8+ T cells through bioinformatics analysis, which is expected to be a reference for clinicians to judge the prognosis of TC patients.
Collapse
|
46
|
Giovannuzzi S, D’Ambrosio M, Luceri C, Osman SM, Pallecchi M, Bartolucci G, Nocentini A, Supuran CT. Aromatic Sulfonamides including a Sulfonic Acid Tail: New Membrane Impermeant Carbonic Anhydrase Inhibitors for Targeting Selectively the Cancer-Associated Isoforms. Int J Mol Sci 2021; 23:ijms23010461. [PMID: 35008884 PMCID: PMC8745330 DOI: 10.3390/ijms23010461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
We report here a new drug design strategy for producing membrane-impermeant carbonic anhydrase (CA; EC 4.2.1.1) inhibitors selectively targeting the tumor-associated, membrane-bound human CAs IX and XII over off-target cytosolic isoforms. To date, this approach has only been pursued by including permanent positively charged pyridinium type or highly hydrophilic glycosidic moieties into the structure of aromatic sulfonamide CA inhibitors (CAIs). Aliphatic (propyl and butyl) sulfonic acid tails, deprotonated at physiological pH, were thus incorporated onto a benzenesulfonamide scaffold by a common 1,2,3-triazole linker and different types of spacers. Twenty such derivatives were synthesized and tested for their inhibition of target (hCAs IV, IX, and XII) and off-target CAs (hCAs I and II). Most sulfonate CAIs induced a potent inhibition of hCAs II, IX, and XII up to a low nanomolar KI range (0.9–459.4 nM) with a limited target/off-target CA selectivity of action. According to the drug design schedule, a subset of representative derivatives was assessed for their cell membrane permeability using Caco-2 cells and a developed FIA-MS/MS method. The complete membrane impermeability of the sulfonate tailed CAIs (≥98%) validated these negatively charged moieties as being suitable for achieving, in vivo, the selective targeting of the tumor-associated CAs over off-target ones.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (S.G.); (M.P.); (G.B.); (C.T.S.)
| | - Mario D’Ambrosio
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Firenze, Italy; (M.D.); (C.L.)
| | - Cristina Luceri
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, Viale Gaetano Pieraccini 6, 50100 Firenze, Italy; (M.D.); (C.L.)
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Marco Pallecchi
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (S.G.); (M.P.); (G.B.); (C.T.S.)
| | - Gianluca Bartolucci
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (S.G.); (M.P.); (G.B.); (C.T.S.)
| | - Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (S.G.); (M.P.); (G.B.); (C.T.S.)
- Correspondence:
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy; (S.G.); (M.P.); (G.B.); (C.T.S.)
| |
Collapse
|
47
|
Wei G, Dong Y, He Z, Qiu H, Wu Y, Chen Y. Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis. PLoS One 2021; 16:e0261728. [PMID: 34968391 PMCID: PMC8718005 DOI: 10.1371/journal.pone.0261728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background Gastric carcinoma (GC) is one of the most common cancer globally. Despite its worldwide decline in incidence and mortality over the past decades, gastric cancer still has a poor prognosis. However, the key regulators driving this process and their exact mechanisms have not been thoroughly studied. This study aimed to identify hub genes to improve the prognostic prediction of GC and construct a messenger RNA-microRNA-long non-coding RNA(mRNA-miRNA-lncRNA) regulatory network. Methods The GSE66229 dataset, from the Gene Expression Omnibus (GEO) database, and The Cancer Genome Atlas (TCGA) database were used for the bioinformatic analysis. Differential gene expression analysis methods and Weighted Gene Co-expression Network Analysis (WGCNA) were used to identify a common set of differentially co-expressed genes in GC. The genes were validated using samples from TCGA database and further validation using the online tools GEPIA database and Kaplan-Meier(KM) plotter database. Gene set enrichment analysis(GSEA) was used to identify hub genes related to signaling pathways in GC. The RNAInter database and Cytoscape software were used to construct an mRNA-miRNA-lncRNA network. Results A total of 12 genes were identified as the common set of differentially co-expressed genes in GC. After verification of these genes, 3 hub genes, namely CTHRC1, FNDC1, and INHBA, were found to be upregulated in tumor and associated with poor GC patient survival. In addition, an mRNA-miRNA-lncRNA regulatory network was established, which included 12 lncRNAs, 5 miRNAs, and the 3 hub genes. Conclusions In summary, the identification of these hub genes and the establishment of the mRNA-miRNA-lncRNA regulatory network provide new insights into the underlying mechanisms of gastric carcinogenesis. In addition, the identified hub genes, CTHRC1, FNDC1, and INHBA, may serve as novel prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gang Wei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youhong Dong
- Department of Clinical Oncology, The First People’s Hospital of Xiangyang, Xiangyang, China
| | - Zhongshi He
- Department of Clinical Oncology, The First People’s Hospital of Xiangyang, Xiangyang, China
| | - Hu Qiu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong Wu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
48
|
Peng X, Xiong X, Li Y, Feng C, Liu H, Wu P, Li C, Weng W. Encouraging Early Outcomes of Treatment With Arsenic Trioxide Combined With Chemotherapy for Alveolar Rhabdomyosarcoma in Children: 4 Case Reports. Front Oncol 2021; 11:751623. [PMID: 34778066 PMCID: PMC8586416 DOI: 10.3389/fonc.2021.751623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Alveolar rhabdomyosarcoma (ARMS) is a subtype of rhabdomyosarcoma characterized by its aggressive behavior and poor prognosis, highlighting the need for novel treatment options. Arsenic trioxide (ATO) has been shown to specifically inhibit tumor growth and the metastasis of ARMS in vitro by acting on the hedgehog pathway. Here we report on a pilot clinical study to evaluate the activity of an ATO-combined chemotherapy approach for the treatment of ARMS patients. Methods We designed a therapeutic schedule of an ATO-combined chemotherapy, incorporating comprehensive management according to the Intergroup Rhabdomyosarcoma Study Group protocol. ATO was administered at 0.16 mg/kg per day over 8 h via an IV for 10 days combined with a chemotherapeutic regimen of vincristine, actinomycin, and cyclophosphamide (VAC regimen) on the third day, which was repeated every 21 days. A total of eight cycles of ATO-combined chemotherapy were applied throughout the entire scheme. Results A total of three refractory/recurrent and one untreated ARMS patient, three male and one female, with a median age of 5.8 years (range, 5.1 to 12.5 years), were enrolled in the present study. All patients were sensitive to combined chemotherapy with ATO and achieved partial or complete remission during treatment. Except for reversible gastrointestinal reaction and myelosuppression, no other adverse events were observed during the process of treatment. Conclusions The combined chemotherapy of ATO and the VAC regimen exhibited beneficial activities against ARMS in pediatrics and was well tolerated, but prospective large-scale clinical trials are warranted to determine the long-term efficacy, optimal courses, and late toxicity in this population.
Collapse
Affiliation(s)
- Xiaomin Peng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xilin Xiong
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuchu Feng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Liu
- Hematology and Oncology Department ward 7, Beijing Jingdu Children's Hospital, Beijing, China
| | - Pingping Wu
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunmou Li
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Weng
- Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
49
|
Singh S, Utreja D, Kumar V. Pyrrolo[2,1-f][1,2,4]triazine: a promising fused heterocycle to target kinases in cancer therapy. Med Chem Res 2021; 31:1-25. [PMID: 34803342 PMCID: PMC8590428 DOI: 10.1007/s00044-021-02819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide responsible for about 10 million deaths per year. To date several approaches have been developed to treat this deadly disease including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy, and synthetic lethality. The targeted therapy refers to targeting only specific proteins or enzymes that are dysregulated in cancer rather than killing all rapidly dividing cells, has gained much attention in the recent past. Kinase inhibition is one of the most successful approaches in targeted therapy. As of 30 March 2021, FDA has approved 65 small molecule protein kinase inhibitors and most of them are for cancer therapy. Interestingly, several kinase inhibitors contain one or more fused heterocycles as part of their structures. Pyrrolo[2,1-f][1,2,4]triazine is one the most interesting fused heterocycle that is an integral part of several kinase inhibitors and nucleoside drugs viz. avapritinib and remdesivir. This review articles focus on the recent advances made in the development of kinase inhibitors containing pyrrolo[2,1-f][1,2,4]triazine scaffold. ![]()
Collapse
Affiliation(s)
- Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Vimal Kumar
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144011 Punjab India
| |
Collapse
|
50
|
Zheng J, Cheng C, Xu J, Gao P, Wang J, Chen L. miR-142-3p Regulates Tumor Cell Autophagy and Promotes Colon Cancer Progression by Targeting TP53INP2. Chemotherapy 2021; 67:57-66. [PMID: 34753133 DOI: 10.1159/000520750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Colon cancer (CC) is the third largest cancer worldwide. Investigation of the molecular mechanism of CC progression helps to explore novel therapeutic targets. We attempted to understand the modulatory mechanism of miR-142-3p in CC cell autophagy and CC progression, which will lay a theoretical groundwork for seeking potential diagnostic and therapeutic targets for CC. METHODS Through bioinformatics methods, miRNA expression data were subjected to differential analysis for identification of target miRNA. Downstream target mRNAs were predicted and gene set enrichment analysis (GSEA) was completed. qRT-PCR assessed gene expression in cells. Cell Counting Kit-8, cell doubling time calculation, colony formation, and flow cytometry were used to assess cellular biological functions. Dual-luciferase assay was used for targeting relationship validation of the target miRNA and mRNA. Western blot was performed to evaluate expression of proteins related to HEDGEHOG signaling pathway and autophagy. RESULTS miR-142-3p was markedly highly expressed in CC, and high miR-142-3p expression in CC patients was implicated with relatively poor prognosis. Over-expressing miR-142-3p facilitated proliferation and inhibited apoptosis of CC cells, whereas silencing it produced an opposite result. miR-142-3p targeted and decreased TP53INP2 level. TP53INP2 over-expression suppressed the HEDGEHOG signaling pathway and induced the activation of CC cell autophagy. Rescue experiments revealed that influence of miR-142-3p inhibitor on CC cell proliferation and apoptosis could be reversed by silencing TP53INP2. CONCLUSION miR-142-3p hampered tumor cell autophagy and promoted CC progression via targeting TP53INP2, which will offer a fresh research orientation for the diagnosis of CC.
Collapse
Affiliation(s)
- Jiujian Zheng
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Chuan Cheng
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Jie Xu
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Peng Gao
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Jianping Wang
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Lifei Chen
- Department of Colorectal and Anal Surgery, Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|