1
|
Louwagie A, Vu LP. Emerging interactions between RNA methylation and chromatin architecture. Curr Opin Genet Dev 2024; 89:102270. [PMID: 39426116 DOI: 10.1016/j.gde.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Epitranscriptomics, the study of chemical modifications of RNA molecules, is increasingly recognized as an important component of gene expression regulation. While the majority of research has focused on N6-methyladenosine (m6A) RNA methylation on mRNAs, emerging evidence has revealed that the m6A modification extends beyond mRNAs to include chromatin-associated RNAs (caRNAs). CaRNAs constitute an important class of RNAs characterized by their interaction with the genome and epigenome. These features allow caRNAs to be actively involved in shaping genome organization. In this review, we bring into focus recent findings of the dynamic interactions between caRNAs and chromatin architecture and how RNA methylation impacts caRNAs' function in this interplay. We highlight several enabling techniques, which were critical for genome-wide profiling of caRNAs and their modifications. Given the nascent stage of the field, we emphasize on the need to address critical gaps in study of these modifications in more relevant biological systems. Overall, these exciting progress have expanded the scope and reach of epitranscriptomics, unveiling new mechanisms that underpin the control of gene expression and cellular phenotypes, with potential therapeutic implications.
Collapse
Affiliation(s)
- Amber Louwagie
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, Canada.
| |
Collapse
|
2
|
Zhang R, Chen P, Wang Y, Zeng Z, Yang H, Li M, Liu X, Yu W, Hou P. Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m 6A-YTHDF1-dependent manner. Int J Biol Sci 2024; 20:4750-4766. [PMID: 39309428 PMCID: PMC11414383 DOI: 10.7150/ijbs.97425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has crucial functions in m6A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC50 values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent in vitro and in vivo anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m6A modification of ABCC2 mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m6A-modified mRNA of ABCC2, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m6A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.
Collapse
Affiliation(s)
- Rui Zhang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Pu Chen
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yubo Wang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Zekun Zeng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huini Yang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Mengdan Li
- Department of Cardiology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710061, P.R. China
| | - Xi Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Yu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
3
|
Ming X, Chen S, Li H, Wang Y, Zhou L, Lv Y. m6A RNA Methylation and Implications for Hepatic Lipid Metabolism. DNA Cell Biol 2024; 43:271-278. [PMID: 38635960 DOI: 10.1089/dna.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This review presents a summary of recent progress in research on the N6-methyladenosine (m6A) modification and regulatory roles in hepatic lipid metabolism. As the most abundant internal modification of eukaryotic RNA, the m6A modification is a dynamic and reversible process of the m6A enzyme system, which includes writers, erasers, and readers. m6A methylation depressed lipid synthesis and facilitated lipolysis in liver. The depletion of m6A methyltransferase Mettl14/Mettl3 raised fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), acetyl-CoA carboxylase (ACC), and elongase of very long chain fatty acids 6 (ELOVL6) in rodent liver, causing increases in liver weight, triglyceride (TG) production, and content in hepatocytes. FTO catalyzed m6A demethylation and the suppression m6A reader YTHDC2 promoted hepatocellular TG generation and hepatic steatosis in C57BL/6 mice through sterol regulatory element-binding protein 1c (SREBP-1c) signaling pathway, which upregulated the lipogenic genes FAS, SCD1, ACC, recombinant acetyl coenzyme a carboxylase alpha, and cell death-inducing DNA fragmentation factor-like effector C (CIDEC). Furthermore, FTO overexpression did not only enhance mitochondrial fusion to impair mitochondrial function and lipid oxidation but also promoted lipid peroxidation, accompanied by excessive TG in hepatocytes and rodent liver. Elevated m6A modification potently suppressed hepatic lipid accumulation, while the shrinkage of m6A modification arose hepatic lipid deposition. These findings have highlighted the beneficial role of m6A RNA methylation in hepatic lipid metabolism, potentially protecting liver from lipid metabolic disorders.
Collapse
Affiliation(s)
- Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yun Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Institute of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
He T, Gao Z, Lin L, Zhang X, Zou Q. Prognostic signature analysis and survival prediction of esophageal cancer based on N6-methyladenosine associated lncRNAs. Brief Funct Genomics 2024; 23:239-248. [PMID: 37465899 DOI: 10.1093/bfgp/elad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Esophageal cancer (ESCA) has a bad prognosis. Long non-coding RNA (lncRNA) impacts on cell proliferation. However, the prognosis function of N6-methyladenosine (m6A)-associated lncRNAs (m6A-lncRNAs) in ESCA remains unknown. Univariate Cox analysis was applied to investigate prognosis related m6A-lncRNAs, based on which the samples were clustered. Wilcoxon rank and Chi-square tests were adopted to compare the clinical traits, survival, pathway activity and immune infiltration in different clusters where overall survival, clinical traits (N stage), tumor-invasive immune cells and pathway activity were found significantly different. Through least absolute shrinkage and selection operator and proportional hazard (Lasso-Cox) model, five m6A-lncRNAs were selected to construct the prognostic signature (m6A-lncSig) and risk score. To investigate the link between risk score and clinical traits or immunological microenvironments, Chi-square test and Spearman correlation analysis were utilized. Risk score was found connected with N stage, tumor stage, different clusters, macrophages M2, B cells naive and T cells CD4 memory resting. Risk score and tumor stage were found as independent prognostic variables. And the constructed nomogram model had high accuracy in predicting prognosis. The obtained m6A-lncSig could be taken as potential prognostic biomarker for ESCA patients. This study offers a theoretical foundation for clinical diagnosis and prognosis of ESCA.
Collapse
Affiliation(s)
- Ting He
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Zhipeng Gao
- Beidahuang Industry Group General Hospital, Harbin 150000, China
| | - Ling Lin
- Yucai School Attached to Sichuan Chengdu No. 7 High School, Chengdu 610503, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Sun C, Wang J, Li H, Liu L, Lin Y, Zhang L, Zu X, Zhu Y, Shu Y, Shen D, Wang Q, Liu Y. METTL14 regulates CD8 +T-cell activation and immune responses to anti-PD-1 therapy in lung cancer. World J Surg Oncol 2024; 22:128. [PMID: 38725005 PMCID: PMC11083848 DOI: 10.1186/s12957-024-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification plays an important role in lung cancer. However, methyltransferase-like 14 (METTL14), which serves as the main component of the m6A complex, has been less reported to be involved in the immune microenvironment of lung cancer. This study aimed to analyze the relationship between METTL14 and the immune checkpoint inhibitor programmed death receptor 1 (PD-1) in lung cancer. METHODS CCK-8, colony formation, transwell, wound healing, and flow cytometry assays were performed to explore the role of METTL14 in lung cancer progression in vitro. Furthermore, syngeneic model mice were treated with sh-METTL14 andan anti-PD-1 antibody to observe the effect of METTL14 on immunotherapy. Flow cytometry and immunohistochemical (IHC) staining were used to detect CD8 expression. RIP and MeRIP were performed to assess the relationship between METTL14 and HSD17B6. LLC cells and activated mouse PBMCs were cocultured in vitro to mimic immune cell infiltration in the tumor microenvironment. ELISA was used to detect IFN-γ and TNF-α levels. RESULTS The online database GEPIA showed that high METTL14 expression indicated a poor prognosis in patients with lung cancer. In vitro assays suggested that METTL14 knockdown suppressed lung cancer progression. In vivo assays revealed that METTL14 knockdown inhibited tumor growth and enhanced the response to PD-1 immunotherapy. Furthermore, METTL14 knockdown enhanced CD8+T-cell activation and infiltration. More importantly, METTL14 knockdown increased the stability of HSD17B6 mRNA by reducing its m6A methylation. In addition, HSD17B6 overexpression promoted the activation of CD8+ T cells. CONCLUSION The disruption of METTL14 contributed to CD8+T-cell activation and the immunotherapy response to PD-1 via m6A modification of HSD17B6, thereby suppressing lung cancer progression.
Collapse
Affiliation(s)
- Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jian Wang
- Department of Oncology, Wuxi Second Geriatric Hospital, Wuxi, Jiangsu, 214174, China
| | - Huixing Li
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Luyao Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yu Lin
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215001, China
| | - Ling Zhang
- Department of Oncology, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu, 213200, China
| | - Xianglong Zu
- Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yizhi Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Qiong Wang
- Department of Oncology, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, 214400, China.
| | - Yiqian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
6
|
Li Y, Guo M, Qiu Y, Li M, Wu Y, Shen M, Wang Y, Zhang F, Shao J, Xu X, Zhang Z, Zheng S. Autophagy activation is required for N6-methyladenosine modification to regulate ferroptosis in hepatocellular carcinoma. Redox Biol 2024; 69:102971. [PMID: 38056309 PMCID: PMC10749285 DOI: 10.1016/j.redox.2023.102971] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND & AIMS Although ferroptosis holds promise as a new strategy for treating hepatocellular carcinoma (HCC), there are several obstacles that need to be overcome. One major challenge is the lack of understanding about the mechanisms underlying ferroptosis. Additionally, while the m6A modification has been shown to regulate various forms of cell death, its role in regulating ferroptosis in HCC has been largely overlooked. Bridging this knowledge gap, our study aimed to elucidate the regulatory influence of m6A modification on HCC ferroptosis. MATERIALS Dot blot and EpiQuik m6A RNA Methylation Quantitative kit detected changes in overall m6A modification level during ferroptosis in HCC. MeRIP-qPCR and RIP-qPCR identified that the m6A modification of ATG5 mRNA was significant changed. BALB/c nude mice were used to construct xenograft tumor models to verify the phenotypes upon YTHDC2 silencing. In addition, patient-derived organoid models were used to demonstrate that induction of ferroptosis was an effective strategy against HCC. RESULTS Our study has shown that inducing ferroptosis is a promising strategy for combatting HCC. Specifically, we have found a significant correlation between ferroptosis and high levels of m6A modification in HCC. Notably, we discovered that the elevation of ATG5 mRNA m6A modification mediated by WTAP is dependent on the reading protein YTHDC2. Importantly, inhibition of either WTAP or YTHDC2 effectively prevented ferroptosis and suppressed HCC development in both in vitro and in vivo models. CONCLUSION Our study revealed that WTAP upregulates ATG5 expression post-transcriptionally in an m6A-YTHDC2-dependent manner, thereby promoting the translation of ATG5 mRNA during ferroptosis in HCC. These findings have significant implications for the development of innovative and effective therapeutic approaches for HCC treatment.
Collapse
Affiliation(s)
- Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Wu
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210023, China
| | - Min Shen
- Department of Biochemistry and Molecular Biology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuefen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine.
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Fan G, Wu D, Chen H, Wen Z, Liao L, He S, Yang J. Genes associated with N6-methyladenosine regulators provide insight into the prognosis and immune response to renal clear cell carcinoma. ENVIRONMENTAL TOXICOLOGY 2024; 39:626-642. [PMID: 37555770 DOI: 10.1002/tox.23920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
As one of the most common messenger ribonucleic acid modifications in eukaryotic organisms, N6-methyladenosine (m6A) is involved in a wide variety of biological functions. The imbalance of m6A RNA modification may be linked to cancer and other disorders, according to a growing body of studies. Its effects on clear cell renal cell carcinoma (KIRC) have not been well discussed, though. Here, we acquired the expression patterns of 23 important regulators of m6A RNA modification and assess how they might fare in KIRC. We observed that 17 major m6A RNA modification regulatory factors had a substantial predictive influence on KIRC. Using the "ConsensusCluster" program, we defined two groupings (Cluster 1 and Cluster 2) depending on the expression of the aforementioned 17 key m6A RNA methylation regulators. The Cluster 2 has a less favorable outcome and is strongly related with a lesser immune microenvironment, according to the findings. We also developed a strong risk profile for three m6A RNA modifiers (METTL14, YTHDF1, and LRPPRC) using multivariate Cox regression analysis. According to further research, the aforementioned risk profile could serve as an independent predicting factor for KIRC, and the chemotherapy response sensitivity was analyzed between two risk groups. Moreover, to effectively forecast the future outlook of KIRC clients, we established a novel prognostic approach according to gender, age, histopathological level, clinical stage, and risk score. Finally, the function of hub gene METTL14 was validated by cell proliferation and subcutaneous graft tumor in mice. In conclusion, we discovered that m6A RNA modifiers play an important role in controlling KIRC and created a viable risk profile as a marker of prediction for KIRC clients.
Collapse
Affiliation(s)
- Guobin Fan
- Department of Urology, Wanning People's Hospital, Wanning, China
| | - Dejun Wu
- Department of Urology, Hainan West Central Hospital, Danzhou, China
| | - Huaping Chen
- Department of Urology, Wanning People's Hospital, Wanning, China
| | - Zhi Wen
- Department of Urology, Wanning People's Hospital, Wanning, China
| | - Linhui Liao
- Department of Urology, Wanning People's Hospital, Wanning, China
| | - Shuming He
- Department of Urinary, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Yang
- Department of Urinary, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Yang H, Liu J, Li L, Wang X, Li Z. Comprehensive analysis of m6A RNA methylation regulators in esophageal carcinoma. Transl Cancer Res 2024; 13:381-393. [PMID: 38410211 PMCID: PMC10894331 DOI: 10.21037/tcr-23-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background N6-methyladenosine (m6A) is the most pervasive modification of RNA methylation in eukaryotic cells. m6A modification plays a pivotal role in tumorigenesis and progression in many types of cancers. Until now, the role of m6A modification in esophageal carcinoma (ESCA) has remained obscure. The aim of the study was to construct and validate prognostic signatures based on m6A regulators for ESCA. Methods Transcriptomic data, somatic mutations and clinical information were obtained from The Cancer Genome Atlas (TCGA). Copy number variations were obtained from the UCSC (University of California, Santa Cruz) Xena database. We curated 21 m6A regulators and performed consensus clustering analysis to quantify the m6A modification pattern. Results Of the 184 patients, 23 (12.5%) were genetically altered in m6A regulators, with the highest frequency of mutations in ZC3H13 and LRPPRC. We constructed a m6A score system to investigate the prognosis of ESCA. The m6A score was closely related to immune cell infiltration in the tumor immune microenvironment. Patients with a high m6A score had an unfavorable prognosis. The combination of tumor mutation burden and m6A score would improve the prognostic value. Conclusions Our study established and validated a strong prognostic signature based on m6A regulators. This can be used to accurately predict the prognosis of ESCA.
Collapse
Affiliation(s)
- Hongzhao Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianbo Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Feliciello I, Ugarković Đ. Alpha Satellite DNA in Targeted Drug Therapy for Prostate Cancer. Int J Mol Sci 2023; 24:15585. [PMID: 37958565 PMCID: PMC10648476 DOI: 10.3390/ijms242115585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer is the most common solid cancer in men and, despite the development of many new therapies, metastatic castration-resistant prostate cancer still remains a deadly disease. Therefore, novel concepts for the treatment of metastatic prostate cancer are needed. In our opinion, the role of the non-coding part of the genome, satellite DNA in particular, has been underestimated in relation to diseases such as cancer. Here, we hypothesise that this part of the genome should be considered as a potential target for the development of new drugs. Specifically, we propose a novel concept directed at the possible treatment of metastatic prostate cancer that is mostly based on epigenetics. Namely, metastatic prostate cancer is characterized by the strongly induced transcription of alpha satellite DNA located in pericentromeric heterochromatin and, according to our hypothesis, the stable controlled transcription of satellite DNA might be important in terms of the control of disease development. This can be primarily achieved through the epigenetic regulation of pericentromeric heterochromatin by using specific enzymes as well as their activators/inhibitors that could act as potential anti-prostate cancer drugs. We believe that our concept is innovative and should be considered in the potential treatment of prostate cancer in combination with other more conventional therapies.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Medical School, Department of Clinical Medicine and Surgery, Universiy of Naples Federico II, 80131 Naples, Italy
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
11
|
Hu B, Gao J, Shi J, Wen P, Guo W, Zhang S. m 6 A reader YTHDF3 triggers the progression of hepatocellular carcinoma through the YTHDF3/m 6 A-EGFR/STAT3 axis and EMT. Mol Carcinog 2023; 62:1599-1614. [PMID: 37449789 DOI: 10.1002/mc.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading cause of tumor-related deaths worldwide. N6-methyladenosine (m6 A) mediates RNA metabolism in tumor biology. However, the regulatory role of YTHDF3, an m6 A reader, in HCC progression and its underlying mechanisms remains unclear. Therefore, this study aims to investigate the oncogenic effect of YTHDF3 on HCC progression via the epigenetic regulation of m6 A-modified mRNAs. The expression levels of YTHDF3 in HCC tissues and matched adjacent liver tissues were detected using western blot analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. The function of YTHDF3 in HCC progression and its underlying mechanisms have been studied both in vitro and in vivo. YTHDF3 expression was significantly higher in HCC tissues than in paracancerous liver tissues. YTHDF3 was also significantly upregulated in HCC with microvascular invasion (MVI) compared to that in HCC without MVI. YTHDF3 overexpression facilitated the proliferation, invasion, and migration of HCC cells both in vitro and in vivo. However, the YTHDF3 knockdown resulted in an inverse trend. Mechanistically, YTHDF3 enhanced the translation and stability of the m6 A-modified epidermal growth factor receptor (EGFR) mRNA, which activated the downstream EGFR/signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) oncogenic pathways. YTHDF3 enhanced the stability and translation of m6 A-modified EGFR mRNA and stimulated HCC progression via the YTHDF3/m6 A-EGFR/STAT3 and EMT pathways. These findings reveal that YTHDF3 plays a significant role in regulating HCC progression, suggesting a promising and novel target for HCC treatment.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jihua Shi
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Organ Transplantation Centre, Zhengzhou, Henan, China
- Henan Research Centre for Organ Transplantation, Zhengzhou, Henan, China
- Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Zhao T, Sun D, Long K, Lemos B, Zhang Q, Man J, Zhao M, Zhang Z. N 6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163428. [PMID: 37061066 DOI: 10.1016/j.scitotenv.2023.163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China.
| |
Collapse
|
13
|
Yu L, Wang L, Sun J, Zhou X, Hu Y, Hu L, He Y, Lin C, Chen J, Xu X, Dunlop MG, Theodoratou E, Ding K, Li X. N6-methyladenosine related gene expression signatures for predicting the overall survival and immune responses of patients with colorectal cancer. Front Genet 2023; 14:885930. [PMID: 36936424 PMCID: PMC10020527 DOI: 10.3389/fgene.2023.885930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
N6-methyladenosine (m6A) modification has been demonstrated to exhibit a crucial prognostic effect on colorectal cancer (CRC). Nonetheless, potential mechanism of m6A in survival rate and immunotherapeutic response remains unknown. Here we investigated the genes associated with m6A regulators and developed a risk score for predicting the overall survival (OS) of CRC patients. RNA-seq transcriptomic profiling data of COAD/READ samples were obtained from The Cancer Genome Atlas (TCGA) database. Absolute Shrinkage and Selection Operator (LASSO)- Cox regression analysis was conducted to identify the m6A-related gene expression signatures and the selected genes were inputted into stepwise regression to develop a prognostic risk score in TCGA, and its predictive performance of CRC survival was further validated in Gene Expression Omnibus (GEO) datasets. According to our results, the risk score comprising 18 m6A-related mRNAs was significantly associated with CRC survival in both TCGA and GEO datasets. And the stratified analysis also confirmed that high-risk score acted as a poor factor in different age, sex, T stage, and tumour, node, metastasis (TNM) stages. The m6A-related prognostic score in combination with clinical characteristics yielded time-dependent area under the receiver operating characteristic curve (AUCs) of 0.85 (95%CI: 0.79-0.91), 0.84 (95%CI: 0.79-0.90) and 0.80 (95%CI: 0.71-0.88) for the prediction of the 1-, 3-, 5-year OS of CRC in TCGA cohort. Furthermore, mutation of oncogenes occurred more frequently in the high-risk group and the composition of immune cells in tumour microenvironment (TME) was significantly distinct between the low- and high-risk groups. The low-risk group had a lower microsatellite instability (MSI) score, T-cell exclusion score and dysfunction score, implying that low-risk patients may have a better immunotherapy response than high-risk patients. In summary, a prognostic risk score derived from m6A-related gene expression signatures could serve as a potential prognostic predictor for CRC survival and indicator for predicting immunotherapy response in CRC patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Wang
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunqing Lin
- National Cancer Center, National Clinical Research Center for Cancer, and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Center for Global Health, Zhejiang University, Hangzhou, China
| | - Xiaolin Xu
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G. Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xue Li
- Analytics of The Second Affiliated Hospital and Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Liu WW, Zhang ZY, Wang F, Wang H. Emerging roles of m6A RNA modification in cancer therapeutic resistance. Exp Hematol Oncol 2023; 12:21. [PMID: 36810281 PMCID: PMC9942381 DOI: 10.1186/s40164-023-00386-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Marvelous advancements have been made in cancer therapies to improve clinical outcomes over the years. However, therapeutic resistance has always been a major difficulty in cancer therapy, with extremely complicated mechanisms remain elusive. N6-methyladenosine (m6A) RNA modification, a hotspot in epigenetics, has gained growing attention as a potential determinant of therapeutic resistance. As the most prevalent RNA modification, m6A is involved in every links of RNA metabolism, including RNA splicing, nuclear export, translation and stability. Three kinds of regulators, "writer" (methyltransferase), "eraser" (demethylase) and "reader" (m6A binding proteins), together orchestrate the dynamic and reversible process of m6A modification. Herein, we primarily reviewed the regulatory mechanisms of m6A in therapeutic resistance, including chemotherapy, targeted therapy, radiotherapy and immunotherapy. Then we discussed the clinical potential of m6A modification to overcome resistance and optimize cancer therapy. Additionally, we proposed existing problems in current research and prospects for future research.
Collapse
Affiliation(s)
- Wei-Wei Liu
- grid.59053.3a0000000121679639Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China ,grid.27255.370000 0004 1761 1174School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhong-Yuan Zhang
- grid.59053.3a0000000121679639Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
15
|
A Hypoxia Molecular Signature-Based Prognostic Model for Endometrial Cancer Patients. Int J Mol Sci 2023; 24:ijms24021675. [PMID: 36675190 PMCID: PMC9866886 DOI: 10.3390/ijms24021675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Endometrial cancer has the highest incidence of uterine corpus cancer, the sixth most typical cancer in women until 2020. High recurrence rate and frequent adverse events were reported in either standard chemotherapy or combined therapy. Hence, developing precise diagnostic and prognostic approaches for endometrial cancer was on demand. Four hypoxia-related genes were screened for the EC prognostic model by the univariate, LASSO, and multivariate Cox regression analysis from the TCGA dataset. QT-PCR and functional annotation analysis were performed. Associations between predicted risk and immunotherapy and chemotherapy responses were investigated by evaluating expressions of immune checkpoint inhibitors, infiltrated immune cells, m6a regulators, and drug sensitivity. The ROC curve and calibration plot indicated a fair predictability of our prognostic nomogram model. NR3C1 amplification, along with IL-6 and SRPX suppressions, were detected in tumor. High stromal score and enriched infiltrated aDCs and B cells in the high-risk group supported the hypothesis of immune-deserted tumor. Hypoxia-related molecular subtypes of EC were then identified via the gene signature. Cluster 2 patients showed a significant sensitivity to Vinblastine. In summary, our hypoxia signature model accurately predicted the survival outcome of EC patients and assessed translational and transcriptional dysregulations to explore targets for precise medical treatment.
Collapse
|
16
|
Yanar S, Kasap M, Kanli A, Akpinar G, Sarihan M. Proteomics analysis of meclofenamic acid‐treated small cell lung carcinoma cells revealed changes in cellular energy metabolism for cancer cell survival. J Biochem Mol Toxicol 2022; 37:e23289. [PMID: 36536497 DOI: 10.1002/jbt.23289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/03/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive cancer with low survival rate. Although initial response to chemotherapy in SCLC patients is well-rated, the treatments applied after the disease relapses are not successful. Drug resistance is accepted to be one of the main reasons for this failure. Therefore, there is an urgent need for new treatment strategies for SCLC. Meclofenamic acid, a nonsteroidal anti-inflammatory drug, has been shown to have anticancer effects on various types of cancers via different mechanisms. The aim of this study was to investigate the alterations that meclofenamic acid caused on a SCLC cell line, DMS114 using the tools of proteomics namely two-dimensional gel electrophoresis coupled to MALDI-TOF/TOF and nHPLC coupled to LC-MS/MS. Among the proteins identified by both methods, those showing significantly altered expression levels were evaluated using bioinformatics databases, PANTHER and STRING. The key altered metabolism upon meclofenamic acid treatment appeared to the cellular energy metabolism. Glycolysis was suppressed, whereas mitochondrial activity and oxidative phosphorylation were boosted. The cells underwent metabolic reprogramming to adapt into their new environment for survival. Metabolic reprogramming is known to cause drug resistance in several cancer types including SCLC. The identified differentially regulated proteins in here associated with energy metabolism hold value as the potential targets to overcome drug resistance in SCLC treatment.
Collapse
Affiliation(s)
- Sevinc Yanar
- Department of Medical Biology, Faculty of Medicine Kocaeli University Kocaeli Turkey
- Department of Histology and Embryology, Faculty of Medicine Sakarya University Sakarya Turkey
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine Kocaeli University Kocaeli Turkey
| | - Aylin Kanli
- Department of Medical Biology, Faculty of Medicine Kocaeli University Kocaeli Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Faculty of Medicine Kocaeli University Kocaeli Turkey
| | - Mehmet Sarihan
- Department of Medical Biology, Faculty of Medicine Kocaeli University Kocaeli Turkey
| |
Collapse
|
17
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
18
|
Huang J, Zhou W, Hao C, He Q, Tu X. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet 2022; 18:e1010366. [PMID: 36288387 PMCID: PMC9605029 DOI: 10.1371/journal.pgen.1010366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most prevalent malignancies globally. Previous study has reported the inhibitory effect of methyltransferase-like 14 (METTL14) on BCa tumorigenesis, but its role in the cell migration, invasion and epithelial–mesenchymal transition (EMT) in BCa remains unknown. Materials and methods Quantitative real-time PCR (RT-qPCR) and western blot were applied to measure RNA and protein expression respectively. Cell migration, invasion and EMT were evaluated by wound healing, Transwell, and immunofluorescence (IF) assays as well as western blot of EMT-related proteins. In vivo experiments were performed to analyze metastasis of BCa. Mechanism investigation was also conducted to study METTL14-mediated regulation of BCa progression. Results METTL14 overexpression prohibits BCa cell migration, invasion in vitro and tumor metastasis in vivo. METTL14 stabilizes USP38 mRNA by inducing N6-methyladenosine (m6A) modification and enhances USP38 mRNA stability in YTHDF2-dependent manner. METTL14 represses BCa cell migration, invasion and EMT via USP38. Additionally, miR-3165 inhibits METTL14 expression to promote BCa progression. Conclusions Our study demonstrated that METTL14 suppresses BCa progression and forms a feedback loop with USP38. In addition, miR-3165 down-regulates METTL14 expression to promote BCa progression. The findings may provide novel insight into the underlying mechanism of METTL14 in BCa progression. Bladder cancer (BCa) is a common type of cancer that begins in the cells of the bladder and poses a significant threat to human health worldwide. In order to improve the diagnosis and treatment of BCa, molecular mechanisms associated with BCa tumorigenesis and tumor progression needs to be clarified. Currently, long non-coding RNAs (lncRNAs) have been suggested to act as regulators of cancer progression. Here, we identified lncRNA methyltransferase-like 14 (METTL14) as a tumor-suppressor gene in BCa, acting to inhibit cell migration, invasion and epithelial–mesenchymal transition (EMT) as well as tumor metastasis. We also found that METTL14 forms a feedback loop with ubiquitin specific peptidase 38 (USP38) in BCa. In addition, microRNA-3165 (miR-3165) was verified as an upstream regulator of METTL14 and was elucidated to downregulate METTL14 expression, contributing to the malignancy of BCa. Given that the therapeutic potential of some miRNAs have been identified in a number of diseases, targeting miR-3165 may be a potential therapeutic strategy in BCa treatment. Our study provides new insights into the understanding of molecular mechanism by which METTL14 regulates BCa progression and offer novel and potential targets for BCa treatment.
Collapse
Affiliation(s)
- Ji Huang
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Weimin Zhou
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Chao Hao
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Qiuming He
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xinhua Tu
- Departments of Urology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China,* E-mail:
| |
Collapse
|
19
|
Liu WW, Wang H, Zhu XY. Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. Biomark Res 2022; 10:64. [PMID: 35999621 PMCID: PMC9396796 DOI: 10.1186/s40364-022-00410-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent epigenetic modification of RNA in mammals, has become a hot topic throughout recent years. m6A is involved with every links of the RNA fate, including RNA splicing, nuclear export, translation and stability. Due to the reversible and dynamic regulatory network composed of ‘writers’ (methylase), ‘erasers’ (demethylase) and ‘readers’ (m6A binding proteins), m6A has been deemed as an essential modulator in vast physiological and pathological processes. Previous studies have shown that aberrant expression and dysfunction of these regulators are implicated in diverse tumors, exemplified by hematological malignancies. However, we should hold a dialectic perspective towards the influence of m6A modification on leukemogenesis. Given that m6A itself is neither pro-oncogenic nor anti-oncogenic, whether the modifications promote hematological homeostasis or malignancies occurrence and progression is dependent on the specific targets it regulates. Ample evidence supports the role of m6A in maintaining normal hematopoiesis and leukemogenesis, thereby highlighting the therapeutic potential of intervention in m6A modification process for battling leukemia. In this review, we introduce the advances of m6A modification and summarize the biological functions of m6A in RNA metabolism. Then we discuss the significance of several well-studied m6A regulators in modulating normal and malignant hematopoiesis, with focus on the therapeutic potentials of targeting these regulators for battling hematopoietic malignancies.
Collapse
Affiliation(s)
- Wei-Wei Liu
- School of basic medical sciences, Shandong University, Jinan, China
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiao-Yu Zhu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China.
| |
Collapse
|
20
|
Chen J, Lu T, Zhong F, Lv Q, Fang M, Tu Z, Ji Y, Li J, Gong X. A Signature of N 6-methyladenosine Regulator-Related Genes Predicts Prognoses and Immune Responses for Head and Neck Squamous Cell Carcinoma. Front Immunol 2022; 13:809872. [PMID: 35185897 PMCID: PMC8851317 DOI: 10.3389/fimmu.2022.809872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/14/2022] [Indexed: 01/22/2023] Open
Abstract
This study aimed to construct a signature of N6-methyladenosine (m6A) regulator-related genes that could be used for the prognosis of head and neck squamous cell carcinoma (HNSCC) and to clarify the molecular and immune characteristics and benefits of immune checkpoint inhibitor (ICI) therapy using the prognostic signature to define the subgroups of HNSCC. This study showed that eighteen m6A regulators were abnormally expressed in the Cancer Genome Atlas (TCGA) HNSCC tissues compared with those in normal tissues. We constructed a signature of 12 m6A regulator-related genes using the Cox risk model, combined with the least absolute shrinkage and selection operator (Lasso) variable screening algorithm. Based on the median of the signature risk score, the patients were divided into high- and low-risk groups. The Kaplan-Meier survival analyses showed that patients with high-risk scores demonstrated poorer overall survival (OS) than those with low-risk scores based on TCGA-HNSCC data (p <0.001). The OS of high-risk patients was significantly worse than that of low-risk patients in the GSE65858 (p <0.001) and International Cancer Genome Consortium (ICGC) oral cancer cohorts (p = 0.0089). Furthermore, immune infiltration analyses showed that 8 types of immune cell infiltration showed highly significant differences between the two risk groups (p <0.001). In the Imvigor210CoreBiologies dataset of patients who received ICIs, the objective response rate (ORR) of the low-risk group (32%) was significantly higher than that of the high-risk group (13%). Additionally, patients in the high-risk group presented with a more significant adverse OS than that of the low-risk group (p = 0.00032). GSE78220 also showed that the ORR of the low-risk group (64%) was higher than that of the high-risk group (43%) and the OS of low-risk patients was better than that of high-risk patients (p = 0.0064). The constructed prognostic signature, based on m6A regulator-related genes, could be used to effectively distinguish between prognoses for HNSCC patients. The prognostic signature was found to be related to the immune cell infiltration of HNSCC; it might help predict the responses and prognoses of ICIs during treatment.
Collapse
Affiliation(s)
- Junjun Chen
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Tianzhu Lu
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Fangyan Zhong
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Qiaoli Lv
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Min Fang
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Ziwei Tu
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yulong Ji
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jingao Li
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xiaochang Gong
- National Health Commission (NHC), Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Nie X, Tan J. N6-methyladenosine-related lncRNAs is a potential marker for predicting prognosis and immunotherapy in ovarian cancer. Hereditas 2022; 159:17. [PMID: 35303965 PMCID: PMC8933961 DOI: 10.1186/s41065-022-00222-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background With a lack of specific symptoms, ovarian cancer (OV) is often diagnosed at an advanced stage. This coupled with inadequate prognostic indicators and treatments with limited therapeutic effect make OV the deadliest type of gynecological tumor. Recent research indicates that N6-methyladenosine (m6A) and long-chain non-coding RNA (lncRNA) play important roles in the prognosis of OV and the efficacy of immunotherapy. Results Using the Cancer Genome Atlas (TCGA) OV-related data set and the expression profiles of 21 m6A-related genes, we identified two m6A subtypes, and the differentially expressed genes between the two. Based on the differentially expressed lncRNAs in the two m6A subtypes and the lncRNAs co-expressed with the 21 m6A-related genes, single-factor cox and LASSO regression were used to further isolate the 13 major lncRNAs. Finally, multi-factor cox regression was used to construct a m6A-related lncRNA risk score model for OV, with good performance in patient prognosis. Using risk score, OV tumor samples are divided into with high- and low-score groups. We explored the differences in clinical characteristics, tumor mutational burden, and tumor immune cell infiltration between the two groups, and evaluated the risk score’s ability to predict the benefit of immunotherapy. Conclusion Our m6A-based lncRNA risk model could be used to predict the prognosis and immunotherapy response of future OV patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00222-3.
Collapse
Affiliation(s)
- Xin Nie
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
22
|
Su H, Wang Y, Li H. RNA m6A Methylation Regulators Multi-Omics Analysis in Prostate Cancer. Front Genet 2021; 12:768041. [PMID: 34899855 PMCID: PMC8661905 DOI: 10.3389/fgene.2021.768041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is known to be the most popular RNA modification in animals. Many research reports have elaborated on the effects of m6A regulators in medical practice, such as diagnosis, prognosis, and treatment. M6A modification has evident impacts on many aspects of RNA metabolism, just like RNA splicing, processing, translation, and stability. M6A also has a magnificent role in numerous types of cancers. We analyzed the prostate cancer datasets, from The Cancer Genome Atlas (TCGA) database, for every recognized m6A regulator in their gene expression, DNA methylation status and copy number variations (CNVs). We also systematically analyzed the relationship between different m6A regulators and the prognosis of prostate cancer. The results illustrated considerable differences in the expression of various m6A regulators between the prostate and normal cancer samples. At the same time, there were evident differences in the expression of various m6A regulators in prostate cancers with different Gleason scores. Subsequently, we determined CBLL1, FTO, YTHDC1, HNRNPA2B1 as crucial m6A regulators of prostate cancer. Premised on the expression of CBLL1, we also identified potential therapeutic agents for prostate cancer, and knockdown of FTO prominently inhibited prostate cells migration and invasion in vitro experiment.
Collapse
Affiliation(s)
- Hao Su
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Yutao Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongjun Li
- Department of Urology, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
23
|
Deng Y, Zhu H, Xiao L, Liu C, Liu YL, Gao W. Identification of the function and mechanism of m6A reader IGF2BP2 in Alzheimer's disease. Aging (Albany NY) 2021; 13:24086-24100. [PMID: 34705667 PMCID: PMC8610118 DOI: 10.18632/aging.203652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/03/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer’s disease, the most common form of dementia in the elderly, is a kind of neurodegenerative disease. However, its pathogenesis and diagnosis remain unclear. M6A is related to nervous system development and neurodegenerative diseases. Here in this study, using multiple RNA-seq datasets of Alzheimer’s brain tissues, along with bioinformatic analysis, we innovatively found that m6A reader protein IGF2BP2 was abnormally highly expressed in Alzheimer’s patients. After compared between Alzheimer’s and normal brain samples, and between IGF2BP2- high and IGF2BP2- low subgroups of Alzheimer’s patients, we took the shared differentially expressed genes as the relevant gene sets of IGF2PB2 affecting Alzheimer’s disease occurrence for subsequent analysis. Then, weight gene correlation analysis was conducted and 17 functional modules were identified. The module that most positively correlated with Alzheimer’s disease and IGF2PB2-high subgroups were mainly participated in ECM receptor interaction, focal adhesion, cytokine-cytokine receptor interaction, and TGF-beta signaling pathway. Afterwards, a hub gene-based model including 20 genes was constructed by LASSO regression and validated by ROC curve for Alzheimer diagnosis. Finally, we preliminarily elucidated that IGF2BP2 could bind with mRNAs in a m6A-dependent manner. This study first elucidates the pathogenic role of IGF2BP2 in Alzheimer’s disease. IGF2BP2 and its relevant m6A modifications are potential to be new diagnostic and therapeutic targets for Alzheimer’s patients.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Xiao
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan Province, China
| | - Ya-Lin Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
24
|
Wu S, Makeudom A, Sun X, Li X, Xu D, Sastraruji T, Lumbikananda N, Buranaphatthana W, Krisanaprakornkit S. Overexpression of methyltransferase-like 3 and 14 in oral squamous cell carcinoma. J Oral Pathol Med 2021; 51:134-145. [PMID: 34689367 DOI: 10.1111/jop.13256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This study aimed to determine expressions of methyltransferase-like 3 (METTL3) and METTL14, two enzymes essential for mRNA methylation at the adenosine (m6 A), in oral squamous cell carcinoma (OSCC) and to investigate in vitro aggressiveness of their aberrant expressions. METHODS METTL3 and METTL14 expressions in 50 OSCC and 11 normal oral tissues were examined by immunohistochemistry. METTL3 and METTL14 expressions and m6 A amounts were determined in three OSCC cell lines, including HN5, HN6, and HN15. Cell proliferation, migration, and invasion were studied by BrdU, wound healing, and Transwell chamber assays, after silencing of METTL3, METTL14, or both by siRNA transfection. RESULTS Immunostaining of METTL3 and METTL14 was localized in cancer cell nuclei. The mean percentages of METTL3- and METTL14-positive cells were significantly increased in OSCC tissues (p < 0.001). The percentages of METTL3- and METTL14-positive cells were correlated with the advanced pTNM stages (p < 0.05) and with the degrees of histopathological differentiation in OSCC (r = 0.564 and r = 0.316, respectively; p < 0.001). By the COX multivariate analysis, both overexpressed METTL3 and METTL14 were significantly associated with short overall survival (p < 0.05). Both METTL3 and METTL14 expressions and the m6 A amounts were significantly increased in HN6 (p < 0.05). Silencing of METTL3 and METTL14 in HN6 significantly inhibited cell proliferation (p < 0.01), but it failed to mitigate cell migration or invasion. CONCLUSIONS METTL3 and METTL14 are overexpressed in OSCC tissues and in the HN6 OSCC cell line that promotes cell proliferation. Overexpressed METTL3 or METTL14 is found to be an independent prognostic factor for short overall survival in patients with OSCC.
Collapse
Affiliation(s)
- Shuangjiang Wu
- Faculty of Dentistry, Center of Excellence in Oral and Maxillofacial Biology, Chiang Mai University, Chiang Mai, Thailand
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University, Chiang Rai, Thailand
| | - Xingwang Sun
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Lu Zhou, China
| | - Xiabin Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Lu Zhou, China
| | - Duo Xu
- Department of Pathology & Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Lu Zhou, China
| | - Thanapat Sastraruji
- Faculty of Dentistry, Center of Excellence in Oral and Maxillofacial Biology, Chiang Mai University, Chiang Mai, Thailand
| | | | - Worakanya Buranaphatthana
- Faculty of Dentistry, Center of Excellence in Oral and Maxillofacial Biology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suttichai Krisanaprakornkit
- Faculty of Dentistry, Center of Excellence in Oral and Maxillofacial Biology, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Shang L, Zhang W, Wu H, Wu R, Chen R. Diagnostic Value of FTO Combined with CEA or CYFRA21-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1436088. [PMID: 34691202 PMCID: PMC8531790 DOI: 10.1155/2021/1436088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the diagnostic value of FTO combined with CEA or CYFRA21-1 for nonsmall cell lung cancer (NSCLC) and to provide a theoretical basis for molecular diagnosis of NSCLC. METHODS Totally, 60 patients with nonsmall cell lung cancer (NSCLC) treated in our hospital between Feb. 2018 and Feb. 2019 were enrolled into the patient group (Pat group) and 50 healthy individuals with normal physical examination results in our hospital over the same time span into the control group (Con group). Serum of each participant was collected, and then qRT-PCR was adopted for quantification of serum FTO and the chemiluminescence method for quantification of serum CEA and CYFRA21-1. Additionally, corresponding ROC curves were drawn for diagnostic value analyses of FTO, CEA, and CYFRA21-1 in NSCLC and Cox regression analysis was performed for analysis of independent factors impacting the patients' 3-year prognosis. RESULTS The Pat group presented notably higher FTO, CEA, and CYFRA21-1 levels than the Con group (all P < 0.05), and patients with a high FTO level faced notably higher probabilities of stage III + IV and lymph node metastasis (LNM) (both P < 0.05). Additionally, according to ROC curve-based analysis, with a high level in patients with NSCLC, FTO had high specificity and sensitivity in diagnosing NSCLC; joint detection of it with CEA or CYFRA21-1 demonstrated a higher sensitivity in NSCLC diagnosis and presented a higher specificity in diagnosing early NSCLC compared with detection of CEA or CYFRA21-1 alone. According to Cox regression analysis, clinical stage, LNM, and FTO were independent risk factors impacting the prognosis of patients with LC (all P < 0.05). CONCLUSION FTO presents a high level in NSCLC cases, and joint detection of it with CEA or CYFRA21-1 delivered a higher specificity in diagnosing NSCLC in contrast to detection of CEA or CYFRA21-1 alone, so the joint detection is worth popularizing in clinical scenarios.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xian 710068, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xian 710068, China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xian 710068, China
| | - Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xian 710068, China
| | - Ruilin Chen
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xian 710068, China
| |
Collapse
|
26
|
Zhang Y, Zeng F, Zeng M, Han X, Cai L, Zhang J, Weng J, Gao Y. Identification and Characterization of Alcohol-related Hepatocellular Carcinoma Prognostic Subtypes based on an Integrative N6-methyladenosine methylation Model. Int J Biol Sci 2021; 17:3554-3572. [PMID: 34512165 PMCID: PMC8416726 DOI: 10.7150/ijbs.62168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Alcohol consumption increases the risk of hepatocellular carcinoma (HCC), and associated with a high mortality rate and poor prognosis. N6-methyladenosine (m6A) methylations play key roles in tumorigenesis and progression. However, our current knowledge about m6A in alcohol-related HCC (A-HCC) remains elucidated. Herein, the authors construct an integrative m6A model based on A-HCC subtyping and mechanism exploration workflow. Methods: Based on the m6A expressions of A-HCC and in vivo experiment, different prognosis risk A-HCC subtypes are identified. Meanwhile, multiple interdependent indicators of prognosis including patient survival rate, clinical pathological prognosis and immunotherapy sensitivity. Results: The m6A model includes LRPPRC, YTHDF2, KIAA14219, and RBM15B, classified A-HCC patients into high/low-risk subtypes. The high-risk subtype compared to the low-risk subtype showed phenotypic malignancy, poor prognosis, immunosuppression, and activation of tumorigenesis and proliferation-related pathways, including the E2F target, DNA repair, and mTORC1 signalling pathways. The expression of Immunosuppressive cytokines DNMT1/EZH2 was up-regulated in A-HCC patients, and teniposide may be a potential therapeutic drug for A-HCC. Conclusion: Our model redefined A-HCC prognosis risk, identified potential m6As linking tumour progress and immune regulations and selected possible therapy target, thus promoting understanding and clinical applications about A-HCC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiajun Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Zheng X, Gong Y. Functions of RNA N 6-methyladenosine modification in acute myeloid leukemia. Biomark Res 2021; 9:36. [PMID: 34001273 PMCID: PMC8130309 DOI: 10.1186/s40364-021-00293-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with an unfavorable prognosis. A better understanding of AML pathogenesis and chemotherapy resistance at the molecular level is essential for the development of new therapeutic strategies. Apart from DNA methylation and histone modification, RNA epigenetic modification, another layer of epigenetic modification, also plays a critical role in gene expression regulation. Among the more than 150 kinds of RNA epigenetic modifications, N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes and is involved in various biological processes, such as circadian rhythms, adipogenesis, T cell homeostasis, spermatogenesis, and the heat shock response. As a reversible and dynamic modification, m6A is deposited on specific target RNA molecules by methyltransferases and is removed by demethylases. Moreover, m6A binding proteins recognize m6A modifications, influencing RNA splicing, stability, translation, nuclear export, and localization at the posttranscriptional level. Emerging evidence suggests that dysregulation of m6A modification is involved in tumorigenesis, including that of AML. In this review, we summarize the most recent advances regarding the biological functions and molecular mechanisms of m6A RNA methylation in normal hematopoiesis, leukemia cell proliferation, apoptosis, differentiation, therapeutic resistance, and leukemia stem cell/leukemia initiating cell (LSC/LIC) self-renewal. In addition, we discuss how m6A regulators are closely correlated with the clinical features of AML patients and may serve as new biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- Xue Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
28
|
Guo W, Tan F, Huai Q, Wang Z, Shao F, Zhang G, Yang Z, Li R, Xue Q, Gao S, He J. Comprehensive Analysis of PD-L1 Expression, Immune Infiltrates, and m6A RNA Methylation Regulators in Esophageal Squamous Cell Carcinoma. Front Immunol 2021; 12:669750. [PMID: 34054840 PMCID: PMC8149800 DOI: 10.3389/fimmu.2021.669750] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common cancer types and represents a threat to global public health. N6-Methyladenosine (m6A) methylation plays a key role in the occurrence and development of many tumors, but there are still few studies investigating ESCC. This study attempts to construct a prognostic signature of ESCC based on m6A RNA methylation regulators and to explore the potential association of these regulators with the tumor immune microenvironment (TIME). Methods The transcriptome sequencing data and clinical information of 20 m6A RNA methylation regulators in 453 patients with ESCC (The Cancer Genome Atlas [TCGA] cohort, n = 95; Gene Expression Omnibus [GEO] cohort, n = 358) were obtained. The differing expression levels of m6A regulators between ESCC and normal tissue were evaluated. Based on the expression of these regulators, consensus clustering was performed to investigate different ESCC clusters. PD-L1 expression, immune score, immune cell infiltration and potential mechanisms among different clusters were examined. LASSO Cox regression analysis was utilized to obtain a prognostic signature based on m6A RNA methylation modulators. The relationship between the risk score based on the prognostic signature and the TIME of ESCC patients was studied in detail. Results Six m6A regulators (METTL3, WTAP, IGF2BP3, YTHDF1, HNRNPA2B1 and HNRNPC) were observed to be significantly highly expressed in ESCC tissues. Two molecular subtypes (clusters 1/2) were determined by consensus clustering of 20 m6A modulators. The expression level of PD-L1 in ESCC tissues increased significantly and was significantly negatively correlated with the expression levels of YTHDF2, METL14 and KIAA1429. The immune score, CD8 T cells, resting mast cells, and regulatory T cells (Tregs) in cluster 2 were significantly increased. Gene set enrichment analysis (GSEA) shows that this cluster involves multiple hallmark pathways. We constructed a five-gene prognostic signature based on m6A RNA methylation, and the risk score based on the prognostic signature was determined to be an independent prognostic indicator of ESCC. More importantly, the prognostic value of the prognostic signature was verified using another independent cohort. m6A regulators are related to TIME, and their copy-number alterations will dynamically affect the number of tumor-infiltrating immune cells. Conclusion Our study established a strong prognostic signature based on m6A RNA methylation regulators; this signature was able to accurately predict the prognosis of ESCC patients. The m6A methylation regulator may be a key mediator of PD-L1 expression and immune cell infiltration and may strongly affect the TIME of ESCC.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qilin Huai
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Liu Z, Xiao Y, Yin H, Li X, Chen S, Xia K, Zhang L. BDBB: A Novel Beta-distribution-based Biclustering Algorithm for Revealing Local Co-methylation Patterns in Epi-transcriptome Profiling Data. IEEE J Biomed Health Inform 2021; 26:2405-2416. [PMID: 33764880 DOI: 10.1109/jbhi.2021.3068783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
N6-methyladenosine (m6A) has been shown to play crucial roles in RNA metabolism, physiology, and pathological processes. However, the specific regulatory mechanisms of most methylation sites remain uncharted due to the complexity of life processes. Biological experimental methods are costly to solve this problem, and computational methods are relatively lacking. The discovery of local co-methylation patterns (LCPs) of m6A epi-transcriptome data can benefit to solve the above problems. Based on this, we propose a novel biclustering algorithm based on the beta distribution (BDBB), which realizes the mining of LCPs of m6A epi-transcriptome data. BDBB employs the Gibbs sampling method to complete parameter estimation. In the process of modeling, LCPs are recognized as sharp beta distributions compared to the background distribution. Simulation study showed BDBB can extract all the three actual LCPs implanted in the background data and the overlap conditions between them with considerable accuracy (almost close to 100%). On MeRIP-Seq data of 69,446 methylation sites under 32 experimental conditions from 10 human cell lines, BDBB unveiled two LCPs, and Gene Ontology (GO) enrichment analysis showed that they were enriched in histone modification and embryo development, etc. important biological processes respectively. The GOE_Score scoring indicated that the biclustering results of BDBB in the m6A epi-transcriptome data are more biologically meaningful than the results of other biclustering algorithms.
Collapse
|
30
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag-Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2021; 60:4098-4103. [PMID: 33095964 PMCID: PMC7898847 DOI: 10.1002/anie.202013936] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/19/2022]
Abstract
The mRNA modification N6 -methyladenosine (m6 A) is associated with multiple roles in cell function and disease. The methyltransferases METTL3-METTL14 and METTL16 act as "writers" for different target transcripts and sequence motifs. The modification is perceived by dedicated "reader" and "eraser" proteins, but not by polymerases. We report that METTL3-14 shows remarkable cosubstrate promiscuity, enabling sequence-specific internal labeling of RNA without additional guide RNAs. The transfer of ortho-nitrobenzyl and 6-nitropiperonyl groups allowed enzymatic photocaging of RNA in the consensus motif, which impaired polymerase-catalyzed primer extension in a reversible manner. METTL16 was less promiscuous but suitable for chemo-enzymatic labeling using different types of click chemistry. Since both enzymes act on distinct sequence motifs, their combination allowed orthogonal chemo-enzymatic modification of different sites in a single RNA.
Collapse
Affiliation(s)
- Anna Ovcharenko
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Florian P. Weissenboeck
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Andrea Rentmeister
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
31
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag‐Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Ovcharenko
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Florian P. Weissenboeck
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Andrea Rentmeister
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| |
Collapse
|
32
|
Zhong D, Chen M, Zhang L, Chen H, Shi D, Liu Q, Li H. Aberrant regulation of RNA methylation during spermatogenesis. Reprod Domest Anim 2020; 56:3-11. [PMID: 33174242 DOI: 10.1111/rda.13856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Natural modifications of cellular RNA include various chemical modifications, such as N6-methyladenosine (m6 A), which enable the orderly metabolism and function of RNA structural diversity, thereby affecting gene expression. Spermatogenesis is a complex differentiating developmental process, which includes the proliferation of spermatogonial stem cells, spermatocyte meiosis and sperm maturation. Emerging evidence has shown that RNA methylation can influence RNA splicing, exportation and translation, which are controlled in the male germline in order to ensure coordinated gene expression. In this review, we summarize the typical characteristics of different types of RNA methylation during the process of spermatogenesis. In particular, we emphasize the functions of the RNA methylation effectors during the male germ cell development.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhang
- Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Hong Chen
- Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Shanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| |
Collapse
|
33
|
Pei Y, Lou X, Li K, Xu X, Guo Y, Xu D, Yang Z, Xu D, Cui W, Zhang D. Peripheral Blood Leukocyte N6-methyladenosine is a Noninvasive Biomarker for Non-small-cell Lung Carcinoma. Onco Targets Ther 2020; 13:11913-11921. [PMID: 33239892 PMCID: PMC7682600 DOI: 10.2147/ott.s267344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background N6-methyladenosine (m6A) triggers a new layer of epi-transcription. However, the potential noninvasive screening and diagnostic value of peripheral blood m6A for cancer are still unknown. Here, we intend to investigate whether leukocyte m6A can be a novel biomarker for non-small-cell lung cancer (NSCLC). Materials and Methods Peripheral blood was collected from 119 NSCLC patients and 74 age-matched healthy controls. Total RNA was isolated from leukocytes for m6A measurement, and clinical information of participants was reviewed. The sensitivity, specificity, and area under the curve (AUC) of m6A for cancer diagnosis were evaluated by the receiver-operating characteristic (ROC) curve analysis. Flow cytometry and the Human Protein Atlas (HPA) database were used to characterize m6A in leukocyte differentials. Pearson's correlation was applied to indicate the relationship between m6A level and hematology variables. qPCR and bioinformatic analysis were used to identity the expression of m6A regulators in leukocyte. Results Leukocyte m6A was significantly elevated in 119 NSCLC patients compared with 74 healthy controls (P<0.001). We did not find significant association between m6A and age or gender. Elevated m6A level in NSCLC was associated with tumor stage (P<0.05) and tumor differentiation (P<0.05), and was significantly reduced after surgery (P<0.01). ROC curve analysis revealed that leukocyte m6A could significantly discriminate patients with lung adenocarcinoma (LUAD) (AUC=0.736, P<0.001) and lung squamous cell carcinoma (LUSC) (AUC=0.963, P<0.001) from healthy individuals. m6A displayed superior sensitivity (100%) and specificity (85.7%) for LUSC than squamous cell carcinoma (SCC) antigen and cytokeratin fragment 211 (Cyfra211). Flow cytometry analysis showed m6A modification was mainly localized on T cells and monocytes among leukocyte differentials. Leukocyte m6A was positively correlated with the number of lymphocytes and negatively correlated with monocytes in NSCLC but not in healthy controls. qPCR and bioinformatic analysis showed that elevated leukocyte m6A in NSCLC was caused by upregulated methyltransferase complex and downregulated FTO and ALKBH5. Conclusion Leukocyte m6A represents a potential noninvasive biomarker for NSCLC screening, monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Xiaotian Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Ye Guo
- Department of Laboratory Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zhenxi Yang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Dongsheng Xu
- Hematopathology Program, CBL Path, Inc, Rye Brook, NY 10753, USA
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, Research Science Center, Atlanta, GA 30303, USA
| |
Collapse
|
34
|
Ma T, Liu H, Liu Y, Liu T, Wang H, Qiao F, Song L, Zhang L. USP6NL mediated by LINC00689/miR-142-3p promotes the development of triple-negative breast cancer. BMC Cancer 2020; 20:998. [PMID: 33054738 PMCID: PMC7559130 DOI: 10.1186/s12885-020-07394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC), in part because of the high metastasis rate, is one of the most prevalent causes of malignancy-related mortality globally. Ubiquitin specific peptidase 6 N-terminal like (USP6NL) has been unmasked to be implicated in some human cancers. However, the precise biological function of USP6NL in TNBC has not been defined. Methods RNA expression was examined by real-time quantitative PCR (RT-qPCR), while USP6NL protein level was tested through western blot. Besides, cell proliferation was assessed by using colony formation assay, whereas cell apoptosis estimated by flow cytometry analysis, JC-1 assay and TUNEL assay. Transwell assays were adopted to detect the migration and invasion of indicated TNBC cells. Immunofluorescence (IF) assay evaluated epithelial-mesenchymal transitions (EMT) progress in TNBC. Further, RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were implemented for measuring the mutual interplay among USP6NL, miR-142-3p and long intergenic non-protein coding RNA 689 (LINC00689). Results Elevated USP6NL level was uncovered in TNBC cells. RNA interference-mediated knockdown of USP6NL inhibited TNBC cell growth, motility and EMT. Further, USP6NL was proved as the target of a tumor-inhibitor miR-142-3p, and LINC00689 augmented USP6NL expression by absorbing miR-142-3p. Importantly, miR-142-3p deficiency or USP6NL overexpression fully abolished the inhibitory effect of LINC00689 silence on TNBC cellular behaviors. Conclusion All data revealed the important role of USP6NL/LINC00689/miR-142-3p signaling in TNBC. The findings might provide a new and promising therapeutic biomarker for treating patients with TNBC.
Collapse
Affiliation(s)
- Teng Ma
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Huaidong Liu
- Department of Oncology, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 South Huaihai Road, Huai'an, 223002, Shandong, Jiangsu, China.
| | - Yan Liu
- Department of Vascular Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Tingting Liu
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Hui Wang
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Fulu Qiao
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Lu Song
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Lin Zhang
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| |
Collapse
|
35
|
Pan J, Xu L, Pan H. Development and Validation of an m6A RNA Methylation Regulator-Based Signature for Prognostic Prediction in Cervical Squamous Cell Carcinoma. Front Oncol 2020; 10:1444. [PMID: 32974164 PMCID: PMC7472601 DOI: 10.3389/fonc.2020.01444] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/08/2020] [Indexed: 01/31/2023] Open
Abstract
Background: Cervical squamous cell carcinoma (CESC) is one of the most common causes of cancer-related death worldwide. N6-methyladenosine (m6A) plays an important role in various cellular responses by regulating mRNA biology. This study aimed to develop and validate an m6A RNA methylation regulator-based signature for prognostic prediction in CESC. Methods: Clinical and survival data as well as RNA sequencing data of 13 m6A RNA methylation regulators were obtained from The Cancer Genome Atlas (TCGA) CESC database. Consensus clustering was performed to identify different CESC clusters based on the differential expression of the regulators. LASSO Cox regression analysis was used to generate a prognostic signature based on m6A RNA methylation regulator expression. The effect of the signature was further explored by univariate and multivariate Cox analyses. Results: Four regulators (RBM15, METTL3, FTO, and YTHDF2) were identified to be aberrantly expressed in CESC tissues. A prognostic signature that includes ZC3H13, YTHDC1, and YTHDF1 was developed, which can act as an independent prognostic indicator. Significant differences of survival rate and clinicopathological features were found between the high- and low-risk groups. The results of bioinformatics analysis were then validated in the clinical CESC cohort by qRT-PCR and immunohistochemistry staining. Conclusion: In the present study, we developed and validated an m6A RNA methylation regulator-based prognostic signature, which might provide useful insights regarding the development and prognosis of CESC.
Collapse
Affiliation(s)
- Jingxin Pan
- Department of Internal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lichao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
circ_KIAA1429 accelerates hepatocellular carcinoma advancement through the mechanism of m 6A-YTHDF3-Zeb1. Life Sci 2020; 257:118082. [PMID: 32653519 DOI: 10.1016/j.lfs.2020.118082] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
AIMS Hepatocellular carcinoma (HCC), one of the most common cancer, causes the fourth cancer-related deaths around the world. N6-methyladenosine (m6A) has been reported to mediate circRNA translation in cancer biology. However, the mechanisms by which m6A and circRNA in post-transcriptional in HCC progression remain poorly understood. This study aimed to explore the mechanisms by which m6A and circRNA in post-transcriptional in HCC progression. MAIN METHODS circ_KIAA1429 (hsa_circ_0084922) expression profiles in matched normal and HCC tissues were detected using microarray analysis. The biological roles of circ_KIAA1429 in progression of HCCC were measured both in vitro and in vivo. KEY FINDINGS In this study, we found hsa_circ_0084922, which came from KIAA1429, named circ_KIAA1429, was upregulated in HCC cells and tumor tissues. Overexpression of circ_KIAA1429 can facilitate HCC migration, invasion, and EMT process. However, knockdown of circ_KIAA1429 lead to the opposite results. Furthermore, it was demonstrated that Zeb1 was the downstream target of circ_KIAA1429. Up-regulation of Zeb1 led to HCC cells metastasis induced by circ_KIAA1429. In addition, YTHDF3 enhanced Zeb1 mRNA stability via an m6A dependent manner. SIGNIFICANCE This study revealed that circ_KIAA1429 could accelerate HCC advancement, maintained the expression of Zeb1 through the mechanism of m6A-YTHDF3-Zeb1 in HCC. What's more, it might represent a potential therapeutic target in HCC.
Collapse
|
37
|
Xu LC, Pan JX, Pan HD. Construction and Validation of an m6A RNA Methylation Regulators-Based Prognostic Signature for Esophageal Cancer. Cancer Manag Res 2020; 12:5385-5394. [PMID: 32753956 PMCID: PMC7352013 DOI: 10.2147/cmar.s254870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose N6-methyladenosine (m6A) is reported to play a critical role in cancer through various mechanisms. We aimed to construct and validate an m6A RNA methylation regulators-based prognostic signature for Esophageal cancer (ESCA). Materials and Methods The RNA sequencing transcriptome data of 13 m6A RNA methylation regulators as well as clinical data were obtained from The Cancer Genome Atlas (TCGA) ESCA database. The differential expression of the regulators between ESCA tissues and normal tissues was assessed. Consensus clustering was conducted to explore the different ESCA clusters based on the expression of these regulators. LASSO Cox regression analysis was used to generate a prognostic signature based on m6A RNA methylation regulators expression. Results Eight regulators (KIAA1429, HNRNPC, RBM15, METTL3, WTAP, YTHDF1, YTHDC1, and YTHDF2) were found to be significantly upregulated in ESCA tissues. Significant differences of survival rate and clinicopathological features were found between the two clusters. A prognostic signature, which consists of HNRNPC and ALKBH5, was constructed based on the TCGA ESCA cohort, which can serve as an independent prognostic predictor. The results of bioinformatics analysis were further successfully validated in the clinical ESCA cohort by qRT-PCR and immunohistochemistry staining. Conclusion Our study constructed and validated an m6A RNA methylation regulators-based prognostic signature. This might provide important information for developing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Li-Chao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jing-Xin Pan
- Department of Internal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, People's Republic of China
| | - Hong-da Pan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
38
|
The YTH Domain Family of N6-Methyladenosine "Readers" in the Diagnosis and Prognosis of Colonic Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9502560. [PMID: 32596399 PMCID: PMC7277069 DOI: 10.1155/2020/9502560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/03/2023]
Abstract
To profile the landscape of methylation N6 adenosine (m6A) RNA regulators in colonic adenocarcinoma (COAD) and to explore potential diagnostic and prognostic biomarkers, we assessed the differential expression patterns of m6A RNA methylation regulators between 418 COAD patients and 41 controls based on profiling from The Cancer Genome Atlas (TCGA) database. We plotted the receiver operating characteristic (ROC) curves and calculated the area under the curve (AUC) values to estimate the discrimination ability. The relationship between the expression of m6A RNA methylation regulators and clinicopathological characteristics was explored. Kaplan-Meier plotter, log-rank test, and Cox regression were used and a nomogram was created to explore the prognostic significance of m6A-related genes in overall survival at the mRNA level. Pathway analysis was performed by gene set enrichment analysis (GSEA) using TCGA dataset, and a coexpression network was built based on the STRING database. We observed that YTHDF1, METTL3, and KIAA1429 were significantly upregulated, while YTHDF3, YTHDC2, METTL14, and ALKBH5 were significantly downregulated in COAD samples compared to normal samples. YTHDF1 had the highest diagnostic value. Low expression of YTHDF3 predicted a poor survival rate in COAD patients. YTHDC2 was related to sex and showed a downward trend as clinical stage increased. Our results indicate that the YT521-B homology (YTH) domain family (“readers”), especially YTHDF1, YTHDF3, and YTHDC2, might play a significant role in the detection, progression, and prognosis of COAD, indicating that they are promising cancer biomarkers.
Collapse
|
39
|
Li W, Chen QF, Huang T, Shen L, Huang ZL, Wu P. Profiles of m 6A RNA methylation regulators for the prognosis of hepatocellular carcinoma. Oncol Lett 2020; 19:3296-3306. [PMID: 32256825 PMCID: PMC7074306 DOI: 10.3892/ol.2020.11435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation, which is related to cancer initiation and progression, is dynamically regulated by the m6A RNA methylation regulators (including ‘writers’, ‘erasers’ and ‘readers’). However, the prognostic value of m6A RNA methylation regulators involved in hepatocellular carcinoma (HCC) carcinogenesis and progression remains to be elucidated. The aim of the present study was to determine the prognostic score in predicting the prognosis of HCC patients based on these regulators. In The Cancer Genome Atlas, most of the 13 major m6A RNA methylation regulators were found to be differentially expressed between HCC and normal samples (P<0.001). In addition, two subgroups (clusters 1/2) had also been identified by applying consensus clustering in the m6A RNA methylation regulators. As compared with the cluster 1 subgroup, the cluster 2 subgroup was correlated with a poorer prognosis, as shown by the Kaplan-Meier method (P=6.197e-4). A risk signature was constructed based on these findings using six m6A RNA methylation regulators, which could not only predict the clinicopathological features of HCCs, but also serve as an independent prognostic marker, as shown by Cox regression analysis (hazard ratio=1.219, 95% confidence interval: 1.143–1.299; P<0.001). Data from the International Cancer Genome Consortium were used for external validation. In addition, gene set enrichment analysis identified several pathways that m6A RNA methylation regulators were closely associated with. In conclusion, the m6A RNA methylation regulators are the crucial participants in the malignant progression of HCCs, which are potentially useful for prognosis stratification and therapeutic strategy development for HCC.
Collapse
Affiliation(s)
- Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Tao Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lujun Shen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zi-Lin Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Peihong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
40
|
Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18:176. [PMID: 31801551 PMCID: PMC6892141 DOI: 10.1186/s12943-019-1109-9] [Citation(s) in RCA: 832] [Impact Index Per Article: 138.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023] Open
Abstract
N6-methyladenosine (m6A) is methylation that occurs in the N6-position of adenosine, which is the most prevalent internal modification on eukaryotic mRNA. Accumulating evidence suggests that m6A modulates gene expression, thereby regulating cellular processes ranging from cell self-renewal, differentiation, invasion and apoptosis. M6A is installed by m6A methyltransferases, removed by m6A demethylases and recognized by reader proteins, which regulate of RNA metabolism including translation, splicing, export, degradation and microRNA processing. Alteration of m6A levels participates in cancer pathogenesis and development via regulating expression of tumor-related genes like BRD4, MYC, SOCS2 and EGFR. In this review, we elaborate on recent advances in research of m6A enzymes. We also highlight the underlying mechanism of m6A in cancer pathogenesis and progression. Finally, we review corresponding potential targets in cancer therapy.
Collapse
|
41
|
Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Peng J, Fan J, Yi C. Landscape and Regulation of m 6A and m 6Am Methylome across Human and Mouse Tissues. Mol Cell 2019; 77:426-440.e6. [PMID: 31676230 DOI: 10.1016/j.molcel.2019.09.032] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal mRNA modification, and N6,2'-O-dimethyladenosine (m6Am), found at the first-transcribed nucleotide, are two reversible epitranscriptomic marks. However, the profiles and distribution patterns of m6A and m6Am across human and mouse tissues are poorly characterized. Here, we report the m6A and m6Am methylome through profiling of 43 human and 16 mouse tissues and demonstrate strongest tissue specificity for the brain tissues. A small subset of tissue-specific m6A peaks can also readily classify tissue types. The overall m6A and m6Am level is partially correlated with the expression level of their writers and erasers. Additionally, the m6A-containing regions are enriched for SNPs. Furthermore, cross-species analysis revealed that species rather than tissue type is the primary determinant of methylation. Collectively, our study provides an in-depth resource for dissecting the landscape and regulation of the m6A and m6Am epitranscriptomic marks across mammalian tissues.
Collapse
Affiliation(s)
- Jun'e Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China; Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Mingchang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xizhan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Huang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, China; Human Phenome Institute, Fudan University, Shanghai 200032, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
42
|
Abstract
Ribonucleic acid (RNA) is involved in translation and transcription, which are the mechanisms in which cells express genes (Alberts et al., 2002). The three classes of RNA discussed are transfer RNA (tRNA), messenger RNA (mRNA), and ribosomal RNA (rRNA). mRNA is the transcript encoded from DNA, rRNA is associated with ribosomes, and tRNA is associated with amino acids and is used to read mRNA transcripts to make proteins (Lodish, Berk, Zipursky, et al., 2000). Interestingly, the function of tRNA, rRNA, and mRNA can be significantly altered by chemical modifications at the co-transcriptional and post-transcriptional levels, and there are over 171 of these modifications identified thus far (Boccaletto et al., 2018; Modomics-Modified bases, 2017). Several of these modifications are linked to diseases such as cancer, diabetes, and neurological disorders. In this review, we will introduce a few RNA modifications with biological functions and how dysregulation of these RNA modifications is linked to human disease.
Collapse
Affiliation(s)
- Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Zhao T, Li X, Sun D, Zhang Z. Oxidative stress: One potential factor for arsenite-induced increase of N 6-methyladenosine in human keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:95-103. [PMID: 31004932 DOI: 10.1016/j.etap.2019.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
N6-methyladenosine (m6A) modification is affected by oxidative stress and gets involved in arsenite toxicity. However, whether oxidative stress is one factor in arsenite-induced alteration of m6A levels remains unclear. Here, reactive oxygen species (ROS), product of lipid peroxidation (MDA), antioxidants (GSH and SOD), m6A levels, m6A methyltransferases (METTL3, METTL14, and WTAP) and demethylases (FTO and ALKBH5) were detected in human keratinocytes exposed to different concentrations of arsenite. Antioxidant N-acetylcysteine was used to assess the influence of arsenite-induced oxidative stress on m6A modification. Possible regulations of m6A modification induced by arsenite were explored using bioinformatic analysis. Our results demonstrated that arsenite-induced oxidative stress increased the levels of m6A methylation possibly by mediating m6A methyltransferases and demethylases, especially elevated expressions of WTAP and METTL14, in human keratinocytes. Whereas N-acetylcysteine suppressed the elevated m6A level and its methyltransferases in human keratinocytes exposed to arsenite. Furthermore, arsenite-induced oxidative stress might mediate m6A methyltransferases and demethylases by reducing transcription of 4 genes (HECTD4, ABCA5, SLC22 A17 and KCNQ5) according to our bioinformatic analysis and experiments. Additionally, GO and Pathway analysis further suggested that the increase of m6A modification in arsenite-induced oxidative stress might be involved in some biological processes such as positive regulation of GTPase activity, apoptotic process, and platelet activation. Taken together, our study revealed the significant role of oxidative stress in m6A modification induced by arsenite.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xinyang Li
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
44
|
Zhou Y, Yin Z, Hou B, Yu M, Chen R, Jin H, Jian Z. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets. Cancer Manag Res 2019; 11:3921-3931. [PMID: 31118805 PMCID: PMC6503205 DOI: 10.2147/cmar.s191565] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Background: N6-methyladenosine (m6A) is the most prevalent modification of mammalian RNA. Emerging evidence suggest that m6A has critical roles in multiple biological activities, but little is known about its roles in cancer pathogenesis. Herein, we report the expression profiles and prognostic relevance of twelve m6A-related genes in hepatocellular carcinoma (HCC) by analyzing four independent datasets. Materials and methods: RNA levels of twelve m6A-related genes were detected in samples of 162 HCC patients who underwent curative resection (the Guangdong General Hospital dataset). We additionally analyzed the expression profiles of m6A-related genes in The Cancer Genome Atlas liver HCC dataset and two Gene Expression Omnibus datasets (GSE14520, GSE63898). Prognostic value of genes was evaluated by Kaplan–Meier curves of overall survival (OS) with the log-rank test and multivariate Cox regression analysis. Gene set enrichment analysis (GSEA) was conducted to identify associated KEGG pathways. Results: Five genes (METTL3, YTHDF1, YTHDF2, YTHDF3, and EIF3) showed consistent upregulation in all four datasets. Abnormal expressions of either METTL3 or YTHDF1 but not the other ten genes were associated with OS. Protein expression of METTL3 and YTHDF1 were confirmed in HCC tissues by immunohistochemical staining. Multivariate Cox regression analysis confirmed the independent predictive value of both METTL3 and YTHDF1 on OS. We further divided patients into three groups based on the median expression values of METTL3 and YTHDF1. In all datasets, the low METTL3/low YTHDF1 group showed a consistent better prognosis than other groups. GSEA revealed that both METTL3 and YTHDF1 regulate HCC cell cycle, RNA splicing, DNA replication, base excision repair, and RNA degradation. Conclusion: Both METTL3 and YTHDF1 were upregulated in HCC, and they were independent poor prognostic factors. Combination of METTL3 and YTHDF1 can be regarded as the biological marker that reflect malignant degree and evaluate prognosis in HCC.
Collapse
Affiliation(s)
- Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zi Yin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ruiwan Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
45
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
46
|
Luan S, Luo J, Liu H, Li Z. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2. RNA Biol 2019; 16:160-165. [PMID: 30638126 DOI: 10.1080/15476286.2018.1564466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DIS3L2, in which mutations have been linked to Perlman syndrome, is an RNA-binding protein with 3'-5' exoribonuclease activity. It contains two CSD domains and one S1 domain, all of which are RNA-binding domains, and one RNB domain that is responsible for the exoribonuclease activity. The 3' polyuridine of RNA substrates can serve as a degradation signal for DIS3L2. Because DIS3L2 is predominantly localized in the cytoplasm, it can recognize, bind, and mediate the degradation of cytoplasmic uridylated RNA, including pre-microRNA, mature microRNA, mRNA, and some other non-coding RNAs. Therefore, DIS3L2 plays an important role in cytoplasmic RNA surveillance and decay. DIS3L2 is involved in multiple biological and physiological processes such as cell division, proliferation, differentiation, and apoptosis. Nonetheless, the function of DIS3L2, especially its association with cancer, remains largely unknown. We summarize here the RNA substrates degraded by DIS3L2 with its exonucleolytic activity, together with the corresponding biological functions it is implicated in. Furthermore, we discuss whether DIS3L2 can function independently of its 3'-5' exoribonuclease activity, as well as its potential tumor-suppressive or oncogenic roles during cancer progression.
Collapse
Affiliation(s)
- Siyu Luan
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Junyun Luo
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Hui Liu
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Zhaoyong Li
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| |
Collapse
|