1
|
Wang H, Zhu J, Zhang Q, Tang J, Huang X. Current scenario of chalcone hybrids with antibreast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2300640. [PMID: 38227398 DOI: 10.1002/ardp.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.
Collapse
Affiliation(s)
- Huan Wang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Juanying Zhu
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Tang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Lee Y, Lee S, Lee Y, Song D, Park SH, Kim J, Namkung W, Kim I. Anticancer Evaluation of Novel Benzofuran-Indole Hybrids as Epidermal Growth Factor Receptor Inhibitors against Non-Small-Cell Lung Cancer Cells. Pharmaceuticals (Basel) 2024; 17:231. [PMID: 38399447 PMCID: PMC10893492 DOI: 10.3390/ph17020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The epidermal growth factor receptor (EGFR), also known as ErbB1 and HER1, belongs to the receptor tyrosine kinase family. EGFR serves as the primary driver in non-small-cell lung cancer (NSCLC) and is a promising therapeutic target for NSCLC. In this study, we synthesized a novel chemical library based on a benzofuran-indole hybrid scaffold and identified 8aa as a potent and selective EGFR inhibitor. Interestingly, 8aa not only showed selective anticancer effects against NSCLC cell lines, PC9, and A549, but it also showed significant inhibitory effects against the double mutant L858R/T790M EGFR, which frequently occurs in NSCLC. In addition, in PC9 and A549 cells, 8aa potently blocked the EGFR signaling pathway, cell viability, and cell migration. These findings suggest that 8aa, a benzofuran-indole hybrid derivative, is a novel EGFR inhibitor that may be a potential candidate for the treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Yechan Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Sunhee Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Younho Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Doona Song
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - So-Hyeon Park
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Jieun Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (Y.L.); (S.L.); (Y.L.); (S.-H.P.); (J.K.)
| |
Collapse
|
3
|
Mir SA, Murmu N, Meher RK, Baitharu I, Nayak B, Khan A, Khan MI, Abdulaal WH. Design, synthesis, molecular modeling, and biological evaluations of novel chalcone based 4-Nitroacetophenone derivatives as potent anticancer agents targeting EGFR-TKD. J Biomol Struct Dyn 2024:1-16. [PMID: 38281944 DOI: 10.1080/07391102.2024.2301746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024]
Abstract
A series of chalcone-based 4-Nitroacetophenone derivatives were designed and synthesized by the single-step condensation method. These compounds were identified by 1H NMR,13C NMR, MS, and FTIR analysis. Further, the derivatives were evaluated against four cancer cell lines H1299, MCF-7, HepG2, and K526. The IC50 value of potent compounds NCH-2, NCH-4, NCH-5, NCH-6, NCH-8, and NCH-10 was 4.5-11.4 μM in H1299, 4.3-15.7 μM in MCF-7, 2.7-4.1 μM in HepG2 and 4.9-19.7 μM in K562. To assess the toxicity against healthy cells all potent molecules were evaluated against the HEK-293T cell line, and IC50 values exhibited by NCH-2, and NCH-3 were 77.8, 74.3, and other molecules showed IC50 values > 100 μM. The EGFR expression was determined by using rabbit anti-EGFR monoclonal antibody and significant EGFR expression was knocked down observed in H1299 treated with NCH-10 as well as erlotinib. The underlying mechanism behind cell death was investigated through bioinformatics. First, the molecules were optimized and docked to the binding site of the EGFR kinase domain. The best complexes were simulated for 100-ns and compounds NCH-2, NCH-4, and NCH-10 achieved stability similar to the erlotinib bound kinase domain. The free energy binding (ΔGbind) of NCH-10 was found to be more negative -226.616 ± 2.148 kJ/mol calculated by Molecular Mechanics Poisson Boltzmann's Surface Area (MM-PBSA) method. Both in vitro and in silico results conclude that the present class of chalcone-based 4-Nitroacetophenone derivatives are potent anti-cancer agents targeting EGFR-TKD and are 39 folds more effective against H1299, MCF-7, HepG2, and K562 carcinoma cell lines than healthy HEK-293T cell lines.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Narayan Murmu
- School of Chemistry, Sambalpur University, Sambalpur, India
| | | | - Iswar Baitharu
- Department of Environmental Sciences, Sambalpur University, Sambalpur, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Sambalpur, India
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Patil S, Randive V, Mahadik I, Asgaonkar K. Design, In Silico Molecular Docking, and ADMET Prediction of Amide Derivatives of Chalcone Nucleus as EGFR Inhibitors for the Treatment of Cancer. Curr Drug Discov Technol 2024; 21:9-19. [PMID: 37921215 DOI: 10.2174/0115701638263890231027071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Cancer is a devastating disease. Many studies have shown that the primary causes of the aggressive and resistant types of cancer are the overexpression of receptors and growth factors, activation of oncogenes, and the inactivation of tumour suppressor genes. One such receptor is the epidermal growth factor receptor (EGFR), which is used as a drug target for the treatment of cancer. OBJECTIVE This study aimed to develop the new chemical entities of amide derivatives of chalcone as EGFR inhibitors using structure-activity relationship (SAR) studies, molecular docking, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) studies. METHOD New chemical entities (NCE) were designed based on literature findings. The Schrodinger 13.4 software was used for the molecular docking study. While Quickprop and Pro Tox-II online tools were used for ADME and toxicity prediction, respectively. . RESULT In this work, all compounds were subjected to an in-silico ADMET analysis. After pharmacokinetic and toxicity profile predictions, the molecules were further analysed by molecular docking. As a result of molecular docking, molecules AC9 and AC19 showed comparable docking scores compared to standard Afatinib. CONCLUSION Molecules AC9 and AC19 showed good docking scores and a promising ADMET profile. In the future, these derivatives can be further evaluated for wet lab studies and determination of their biological activity.
Collapse
Affiliation(s)
- Shital Patil
- Department of Chemistry, AISSMS College of Pharmacy, Kennedy Road, Pune 01, India
| | - Vrushali Randive
- Department of Chemistry, AISSMS College of Pharmacy, Kennedy Road, Pune 01, India
| | - Indrani Mahadik
- Department of Chemistry, AISSMS College of Pharmacy, Kennedy Road, Pune 01, India
| | - Kalyani Asgaonkar
- Department of Chemistry, AISSMS College of Pharmacy, Kennedy Road, Pune 01, India
| |
Collapse
|
5
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Souza JADCR, Souza T, Quintans ILADCR, Farias D. Network Toxicology and Molecular Docking to Investigate the Non-AChE Mechanisms of Organophosphate-Induced Neurodevelopmental Toxicity. TOXICS 2023; 11:710. [PMID: 37624215 PMCID: PMC10458981 DOI: 10.3390/toxics11080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic environments, interfere with the development of the nervous system, and induce Neurodevelopmental Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not fully understood. We used network toxicology and molecular docking to identify molecular targets and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets related to NDT were compiled from GeneCards and OMIM databases. In order to construct the protein-protein interaction (PPI) network, the common targets between OPs and NDT were imported into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling activation play key roles in OP-induced NDT.
Collapse
Affiliation(s)
- Juliana Alves da Costa Ribeiro Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | | | - Davi Farias
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
7
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
8
|
BTEAC Catalyzed Ultrasonic-Assisted Synthesis of Bromobenzofuran-Oxadiazoles: Unravelling Anti-HepG-2 Cancer Therapeutic Potential through In Vitro and In Silico Studies. Int J Mol Sci 2023; 24:ijms24033008. [PMID: 36769327 PMCID: PMC9917671 DOI: 10.3390/ijms24033008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase transfer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3β, AKT, and Tubulin polymerization enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), respectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecular docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further confirmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic therapeutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches, such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus, in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further investigation for anti-HepG2 liver cancer therapy.
Collapse
|
9
|
Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study. J Mol Graph Model 2022; 117:108307. [PMID: 36096064 DOI: 10.1016/j.jmgm.2022.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
A Laplacian scoring algorithm for gene selection and the Gini coefficient to identify the genes whose expression varied least across a large set of samples were the state-of-the-art methods used here. These methods have not been trialed for their feasibility in cheminformatics. This was a maiden attempt to investigate a complete comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. This computational "proof-of-concept" study illustrated the combinatorial approach used to explain how the structure of the selected natural products (NPs) undergoes molecular diversity analysis. A virtual combinatorial library (1.6 M) based on 20 anthraquinones and 24 chalcones was enumerated. The resulting compounds were optimized to the near drug-likeness properties, and the physicochemical descriptors were calculated for all datasets including FDA, Non-FDA, and NPs from ZINC 15. UMAP and PCA were applied to compare and represent the chemical space coverage of each dataset. Subsequently, the Laplacian score and Gini coefficient were applied to delineate feature selection and selectivity among properties, respectively. Finally, we demonstrated the diversity between the datasets by employing Murcko's and the central scaffolds systems, calculating three fingerprint descriptors and analyzing their diversity by PCA and SOM. The optimized enumeration resulted in 1,610,268 compounds with NP-Likeness, and synthetic feasibility mean scores close to FDA, Non-FDA, and NPs datasets. The overlap between the chemical space of the 1.6 M database was more prominent than with the NPs dataset. A Laplacian score prioritized NP-likeness and hydrogen bond acceptor properties (1.0 and 0.923), respectively, while the Gini coefficient showed that all properties have selective effects on datasets (0.81-0.93). Scaffold and fingerprint diversity indicated that the descending order for the tested datasets was FDA, Non-FDA, NPs and 1.6 M. Virtual combinatorial libraries based on NPs can be considered as a source of the combinatorial compound with NP-likeness properties. Furthermore, measuring molecular diversity is supposed to be performed by different methods to allow for comparison and better judgment.
Collapse
|
10
|
Rajendran G, Bhanu D, Aruchamy B, Ramani P, Pandurangan N, Bobba KN, Oh EJ, Chung HY, Gangadaran P, Ahn BC. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15101250. [PMID: 36297362 PMCID: PMC9607481 DOI: 10.3390/ph15101250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chalcones are a class of privileged scaffolds with high medicinal significance due to the presence of an α,β-unsaturated ketone functionality. Numerous functional modifications of chalcones have been reported, along with their pharmacological behavior. The present review aims to summarize the structures from natural sources, synthesis methods, biological characteristics against infectious and non-infectious diseases, and uses of chalcones over the past decade, and their structure–activity relationship studies are detailed in depth. This critical review provides guidelines for the future design and synthesis of various chalcones. In addition, this could be highly supportive for medicinal chemists to develop more promising candidates for various infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Gayathri Rajendran
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Deepu Bhanu
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (P.R.); (B.-C.A.)
| | - Nanjan Pandurangan
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California (San Francisco), San Francisco, CA 94143, USA
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea
- Correspondence: (P.R.); (B.-C.A.)
| |
Collapse
|
11
|
Elkanzi NAA, Hrichi H, Alolayan RA, Derafa W, Zahou FM, Bakr RB. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS OMEGA 2022; 7:27769-27786. [PMID: 35990442 PMCID: PMC9386807 DOI: 10.1021/acsomega.2c01779] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Chalcone derivatives are considered valuable species because they possess a ketoethylenic moiety, CO-CH=CH-. Due to the presence of a reactive α,β-unsaturated carbonyl group, chalcones and their derivatives possess a wide spectrum of antiproliferative, antifungal, antibacterial, antiviral, antileishmanial, and antimalarial pharmacological properties. Recent developments in heterocyclic chemistry have led to the synthesis of chalcone derivatives, which had been biologically investigated toward certain disease targets. The major aspect of this review is to present the most recent synthesis of chalcones bearing N, O, and/or S heterocycles, revealing their biological potential during the past decade (2010-2021). Based on a review of the literature, many chalcone-heterocycle hybrids appear to exhibit promise as future drug candidates owing to their similar or superior activities compared to those of the standards. Thus, this review may prove to be beneficial for the development and design of new potent therapeutic drugs based on previously developed strategies.
Collapse
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Hajer Hrichi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ruba A. Alolayan
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Wassila Derafa
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Fatin M. Zahou
- Biology
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
12
|
Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z, Shuai W, Wang G, Chen J, Wang C, Ouyang L, Li W. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J Med Chem 2022; 65:5149-5183. [PMID: 35311289 DOI: 10.1021/acs.jmedchem.1c01714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) is of great significance in mediating cell signaling transduction and tumor behaviors. Currently, third-generation inhibitors of EGFR, especially osimertinib, are at the clinical frontier for the treatment of EGFR-mutant non-small-cell lung cancer (NSCLC). Regrettably, the rapidly developing drug resistance caused by EGFR mutations and the compensatory mechanism have largely limited their clinical efficacy. Given the synergistic effect between EGFR and other compensatory targets during tumorigenesis and tumor development, EGFR dual-target inhibitors are promising for their reduced risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events than those of single-target inhibitors. Hence, we present the synergistic mechanism underlying the role of EGFR dual-target inhibitors against drug resistance, their structure-activity relationships, and their therapeutic potential. Most importantly, we emphasize the optimal target combinations and design strategies for EGFR dual-target inhibitors and provide some perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Lun Tan
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiye Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yanyan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Zhixiong Zhang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wen Shuai
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Juncheng Chen
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
13
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
15
|
Fareed MR, Shoman ME, Hamed MIA, Badr M, Bogari HA, Elhady SS, Ibrahim TS, Abuo-Rahma GEDA, Ali TFS. New Multi-Targeted Antiproliferative Agents: Design and Synthesis of IC261-Based Oxindoles as Potential Tubulin, CK1 and EGFR Inhibitors. Pharmaceuticals (Basel) 2021; 14:1114. [PMID: 34832895 PMCID: PMC8620390 DOI: 10.3390/ph14111114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound IC261, a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 μM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, 4b, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, 4e, showed potent activity against the colon cancer COLO-205 cell line with an IC50 value of 0.2 and 0.3 μM. A mechanistic study demonstrated 4b's efficacy in inhibiting microtubule assembly (IC50 = 1.66 ± 0.08 μM) with potential binding to the colchicine binding site (docking study). With an IC50 of 1.92 ± 0.09 μg/mL, 4b inhibited CK1 almost as well as IC261. Additionally, 4b and 4e were effective inhibitors of EGFR-TK with IC50s of 0.19 μg/mL and 0.40 μg/mL compared to Gifitinib (IC50 = 0.05 μg/mL). Apoptosis was induced in COLO-205 cells treated with 4b, with apoptotic markers dysregulated. Caspase 3 levels were elevated to more than three-fold, while Cytochrome C levels were doubled. The cell cycle was arrested in the pre-G1 phase with extensive cellular accumulation in the pre-G1 phase, confirming apoptosis induction. Levels of cell cycle regulating proteins BAX and Bcl-2 were also defective. The binding interaction patterns of these compounds at the colchicine binding site of tubulin and the Gifitinib binding site of EGFR were verified by molecular docking, which adequately matched the reported experimental result. Hence, 4b and 4e are considered promising potent multitarget agents against colon cancer that require optimization.
Collapse
Affiliation(s)
- Momen R. Fareed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| | - Mai E. Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| | - Mohammed I. A. Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Shibin el Kom 32511, Egypt;
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Gamal El-Din A. Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (M.R.F.); (T.F.S.A.); (G.E.-D.A.A.-R.)
| |
Collapse
|
16
|
Khamto N, Chaichuang L, Rithchumpon P, Phupong W, Bhoopong P, Tateing S, Pompimon W, Semakul N, Chomsri NO, Meepowpan P. Synthesis, cytotoxicity evaluation and molecular docking studies on 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone derivatives. RSC Adv 2021; 11:31433-31447. [PMID: 35496846 PMCID: PMC9041536 DOI: 10.1039/d1ra05445g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC, 1) was isolated from seeds of Syzygium nervosum A.Cunn. ex DC. exhibiting intriguing biological activities. Herein, thirty three DMC derivatives including 4′-O-monosubstituted-DMC (2), 7-O-acylated-4-hydroxycoumarin derivatives (3), stilbene–coumarin derivatives (4), 2′,4′-disubstituted-DMC (5), and flavanone derivatives (6), were synthesised through acylation, alkylations, and sulfonylation. These semi-synthetic DMC derivatives were evaluated for in vitro cytotoxicity against six carcinoma cell lines. It was found that most derivatives exhibited higher cytotoxicity than DMC. In particular, 4′-O-caproylated-DMC (2b) and 4′-O-methylated-DMC (2g) displayed the strongest cytotoxicity against SH-SY5Y with IC50 values of 5.20 and 7.52 μM, respectively. Additionally, 4′-O-benzylated-DMC (2h) demonstrated the strongest cytotoxicity against A-549 and FaDu with IC50 values of 9.99 and 13.98 μM, respectively. Our structure–activity relationship (SAR) highlights the importance of 2′-OH and the derivatisation pattern of 4′-OH. Furthermore, molecular docking simulation studies shed further light on how these bioactive compounds interact with cyclin-dependent kinase 2 (CDK2). Semi-synthetic DMC derivatives were synthesised and displayed biological potency against various cancer cell lines. ![]()
Collapse
Affiliation(s)
- Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Lada Chaichuang
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Worrapong Phupong
- School of Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Phuangthip Bhoopong
- School of Allied Health Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Wilart Pompimon
- Laboratory of Natural Products, Centre for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University Lampang 52100 Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Ni-Orn Chomsri
- Agricultural Technology Research Institute (ATRI), Rajamangala University of Technology Lanna 202 Pichai District Lampang 52100 Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| |
Collapse
|
17
|
Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg Chem 2021; 116:105315. [PMID: 34496319 DOI: 10.1016/j.bioorg.2021.105315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
Chalcones and their derivatives have been described as promising compounds with antiproliferative activity against leukemic cells. This study aimed to investigate the cytotoxic effect of three synthetic chalcones derived from 1-naphthylacetophenone (F07, F09, and F10) in acute leukemia cell lines (K562 and Jurkat) and examine the mechanisms of cell death induced by these compounds. The three compounds were cytotoxic to K562 and Jurkat cells, with IC50 values ranging from 1.03 to 31.66 µM. Chalcones induced intrinsic and extrinsic apoptosis, resulting in activation of caspase-3 and DNA fragmentation. F07, F09, and F10 were not cytotoxic to human peripheral blood mononuclear cells, did not produce any significant hemolytic activity, and did not affect platelet aggregation after ADP stimulation. These results, combined with calculations of molecular properties, suggest that chalcones F07, F09, and F10 are promising molecules for the development of novel antileukemic drugs.
Collapse
|
18
|
Patil S, Bhandari S. A Review: Discovering 1,3,4-oxadiazole and chalcone nucleus for cytotoxicity/EGFR inhibitory anticancer activity. Mini Rev Med Chem 2021; 22:805-820. [PMID: 34477516 DOI: 10.2174/1389557521666210902160644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cancer is reported to be one of the most life-threatening diseases. Major limitations of currently used anticancer agents are drug resistance, very small therapeutic index, and severe, multiple side effects. OBJECTIVE The current scenario necessitates developing new anticancer agents, acting on novel targets for effectively controlling cancer. The epidermal growth factor receptor is one such target, which is being explored for 1,3,4-oxadiazole and chalcone nuclei. METHOD Findings of different researchers working on these scaffolds have been reviewed and analyzed, and the outcomes were summarized. This review focuses on Structure-Activity Relationship studies (SARs) and computational studies of various 1,3,4-oxadiazole and chalcone hybrids/derivatives reported as cytotoxic/EGFR-TK inhibitory anticancer activity. RESULT AND CONCLUSION 1,3,4-oxadiazole and chalcone hybrids/derivatives with varied substitutions are found to be effective pharmacophores in obtaining potent anticancer activity. Having done a thorough literature survey, we conclude that this review will surely provide firm and better insights to the researchers to design and develop potent hybrids/derivatives that inhibit EGFR.
Collapse
Affiliation(s)
- Shital Patil
- All India Shri Shivaji Memorial Society's College of Pharmacy, Kennedy Road, Near RTO, Pune-411001, India
| | - Shashikant Bhandari
- All India Shri Shivaji Memorial Society's College of Pharmacy, Kennedy Road, Near RTO, Pune-411001, India
| |
Collapse
|
19
|
Chen KC, Wu CR, Lien JC. Molecular interaction of cytotoxic anticancer analogues as inhibitors of β-tubulin protein against UACC-62 melanoma cell. J Biochem 2021; 169:621-627. [PMID: 33475142 DOI: 10.1093/jb/mvaa149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/19/2020] [Indexed: 11/13/2022] Open
Abstract
In previous research, a series of cytotoxic anticancer analogues related to 2-acylamino-1,4-naphthoquinone derivatives has been demonstrated. As microtubule plays an important role in many essential cellular processes such as mitosis, tubulin is an important target of anticancer drug. This study performed molecular docking simulation, pharmacophore model, comparative force field analysis model and comparative similarity indices analysis model to investigate the relationship between inhibitory activities and the properties of compounds, in order to further progress the development of cytotoxic anticancer analogues. These compounds have common H-bond interactions with key residues Lys254 and Lys352, but compounds with large R2 substituent have different docking poses than compounds with small R2 substituent. Some of derivatives such as compound 18 formed the H-bonds with residue Lys254 using the oxygen atoms in R1 substituent and formed π-cation interactions with residue Lys352 using phenyl moiety of 1,4-naphthoquinone. The R1 substituent of these compounds preferred to have disfavoured hydrophobic fields and favourable space towards the direction of residue Asn258, while the R2 substituent of these compounds preferred to have about 2-3 carbon chain length hydrophobic substituent towards the direction of residues Ala316 and Lys352. These results offer some beneficial advices for further study in anticancer drug development process.
Collapse
Affiliation(s)
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
| | - Jin-Cherng Lien
- School of Pharmacy.,Master Program of Pharmaceutical Manufacture, China Medical University, Taichung 40402, Taiwan.,Department of Medical Research, Hospital of China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
20
|
Fares S, Selim KB, Goda FE, El-Sayed MAA, AlSaif NA, Hefnawy MM, Abdel-Aziz AAM, El-Azab AS. Design, synthesis, and analysis of antiproliferative and apoptosis-inducing activities of nitrile derivatives containing a benzofuran scaffold: EGFR inhibition assay and molecular modelling study. J Enzyme Inhib Med Chem 2021; 36:1488-1499. [PMID: 34227457 PMCID: PMC8266232 DOI: 10.1080/14756366.2021.1946044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New cyanobenzofurans derivatives 2-12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17-8.87 and 5.5-11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08-23.67 µM), HCT-116 (IC50 = 8.81-13.85 µM), and MCF-7 (IC50 = 8.36-17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81-1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.
Collapse
Affiliation(s)
- Salma Fares
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Delta University for Science and Technology, Gamasa City, Egypt
| | - Khalid B Selim
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Fatma E Goda
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Magda A A El-Sayed
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Horus University, New Dammeitta, Egypt
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
22
|
Rioux B, Pinon A, Gamond A, Martin F, Laurent A, Champavier Y, Barette C, Liagre B, Fagnère C, Sol V, Pouget C. Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. Eur J Med Chem 2021; 222:113586. [PMID: 34116328 DOI: 10.1016/j.ejmech.2021.113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
The aim of this study was to synthesize chalcone-polyamine conjugates in order to enhance bioavailability and selectivity of chalcone core towards cancer cells, using polyamine-based vectors. Indeed, it is well-known that polyamine transport system is upregulated in tumor cells. 3',4,4',5'-tetramethoxychalcone was selected as parent chalcone since it was found to be an efficient anti-proliferative agent on various cancer cells. A series of five chalcone-polyamine conjugates was obtained using the 4-bromopropyloxy-3',4',5'-trimethoxychalcone as a key intermediate. Chalcone core and polyamine tails were fused through an amine bond. These conjugates were found to possess a marked in vitro antiproliferative effect against colorectal (HT-29 and HCT-116) and prostate cancer (PC-3 and DU-145) cell lines. The most active conjugate (compound 8b) was then chosen for further biological evaluations to elucidate mechanisms responsible for its antiproliferative activity. Investigations on cell cycle distribution revealed that this conjugate can prevent the proliferation of human colorectal and prostate cancer cells by blocking the cell cycle at the G1 and G2 phase, respectively. Flow cytometry analysis revealed a sub-G1 peak, characteristic of apoptotic cell population and our inquiries highlighted apoptosis induction at early and later stages through several pro-apoptotic markers. Therefore, this chalcone-N1-spermidine conjugate could be considered as a promising agent for colon and prostatic cancer adjuvant therapy.
Collapse
Affiliation(s)
- Benjamin Rioux
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aline Pinon
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Gamond
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Frédérique Martin
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Aurélie Laurent
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Yves Champavier
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France; Université de Limoges, BISCEm NMR Platform, GEIST, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Caroline Barette
- Université Grenoble Alpes, CEA, INSERM, IRIG, BGE U1038, Genetics & Chemogenomics, 17 Avenue des Martyrs, Grenoble, 38054, France
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Catherine Fagnère
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France
| | - Christelle Pouget
- Université de Limoges, Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, 2 Rue Du Dr Marcland, 87025, Limoges Cedex, France.
| |
Collapse
|
23
|
Qhobosheane MA, Legoabe LJ, Josselin B, Bach S, Ruchaud S, Beteck RM. Synthesis and evaluation of C3 substituted chalcone‐based derivatives of 7‐azaindole as protein kinase inhibitors. Chem Biol Drug Des 2020; 96:1395-1407. [DOI: 10.1111/cbdd.13748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Malikotsi A. Qhobosheane
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| | - Béatrice Josselin
- Sorbonne Université CNRS UMR 8227 Integrative Biology of Marine Models Laboratory (LBI2M) Station Biologique de Roscoff Roscoff Cedex France
- Sorbonne Université CNRS FR2424 Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility) Station Biologique de Roscoff Roscoff France
| | - Stéphane Bach
- Sorbonne Université CNRS UMR 8227 Integrative Biology of Marine Models Laboratory (LBI2M) Station Biologique de Roscoff Roscoff Cedex France
- Sorbonne Université CNRS FR2424 Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility) Station Biologique de Roscoff Roscoff France
| | - Sandrine Ruchaud
- Sorbonne Université CNRS UMR 8227 Integrative Biology of Marine Models Laboratory (LBI2M) Station Biologique de Roscoff Roscoff Cedex France
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| |
Collapse
|
24
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
25
|
Romagnoli R, Prencipe F, Oliva P, Baraldi S, Baraldi PG, Schiaffino Ortega S, Chayah M, Kimatrai Salvador M, Lopez-Cara LC, Brancale A, Ferla S, Hamel E, Ronca R, Bortolozzi R, Mariotto E, Mattiuzzo E, Viola G. Design, Synthesis, and Biological Evaluation of 6-Substituted Thieno[3,2- d]pyrimidine Analogues as Dual Epidermal Growth Factor Receptor Kinase and Microtubule Inhibitors. J Med Chem 2019; 62:1274-1290. [PMID: 30633509 DOI: 10.1021/acs.jmedchem.8b01391] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The clinical evidence for the success of tyrosine kinase inhibitors in combination with microtubule-targeting agents prompted us to design and develop single agents that possess both epidermal growth factor receptor (EGFR) kinase and tubulin polymerization inhibitory properties. A series of 6-aryl/heteroaryl-4-(3',4',5'-trimethoxyanilino)thieno[3,2- d]pyrimidine derivatives were discovered as novel dual tubulin polymerization and EGFR kinase inhibitors. The 4-(3',4',5'-trimethoxyanilino)-6-( p-tolyl)thieno[3,2- d]pyrimidine derivative 6g was the most potent compound of the series as an antiproliferative agent, with half-maximal inhibitory concentration (IC50) values in the single- or double-digit nanomolar range. Compound 6g bound to tubulin in the colchicine site and inhibited tubulin assembly with an IC50 value of 0.71 μM, and 6g inhibited EGFR activity with an IC50 value of 30 nM. Our data suggested that the excellent in vitro and in vivo profile of 6g may be derived from its dual inhibition of tubulin polymerization and EGFR kinase.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università degli Studi di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Santiago Schiaffino Ortega
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Mariem Chayah
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Maria Kimatrai Salvador
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmacéutica y Orgánica , Facultad de Farmacia , Campus de Cartuja s/n , 18071 Granada , Spain
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , King Edward VII Avenue , Cardiff CF10 3NB , U.K
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences , Cardiff University , King Edward VII Avenue , Cardiff CF10 3NB , U.K
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia , Università di Brescia , 25123 Brescia , Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Elena Mariotto
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Elena Mattiuzzo
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia , Università di Padova , 35131 Padova , Italy.,Istituto di Ricerca Pediatrica (IRP) , Corso Stati Uniti 4 , 35128 Padova , Italy
| |
Collapse
|
26
|
Fathi MAA, Abd El-Hafeez AA, Abdelhamid D, Abbas SH, Montano MM, Abdel-Aziz M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg Chem 2018; 84:150-163. [PMID: 30502626 DOI: 10.1016/j.bioorg.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023]
Abstract
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.
Collapse
Affiliation(s)
- Marwa Ali A Fathi
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; Pharmacotherapy Department, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Monica M Montano
- Pharmacology Department, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|