1
|
Huntenburg K, Puértolas J, de Ollas C, Dodd IC. Bi-directional, long-distance hormonal signalling between roots and shoots of soil water availability. PHYSIOLOGIA PLANTARUM 2022; 174:e13697. [PMID: 35526211 PMCID: PMC9320954 DOI: 10.1111/ppl.13697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 05/28/2023]
Abstract
While the importance of plant water relations in determining crop response to soil water availability is difficult to over-emphasise, under many circumstances, plants maintain their leaf water status as the soil dries yet shoot gas exchange and growth is restricted. Such observations lead to development of a paradigm that root-to-shoot signals regulate shoot physiology, and a conceptual framework to test the importance of different signals such as plant hormones in these physiological processes. Nevertheless, shoot-to-root (hormonal) signalling also plays an important role in regulating root growth and function and may dominate when larger quantities of a hormone are produced in the shoots than the roots. Here, we review the evidence for acropetal and basipetal transport of three different plant hormones (abscisic acid, jasmonates, strigolactones) that have antitranspirant effects, to indicate the origin and action of these signalling systems. The physiological importance of each transport pathway likely depends on the specific environmental conditions the plant is exposed to, specifically whether the roots or shoots are the first to lose turgor when exposed to drying soil or elevated atmospheric demand, respectively. All three hormones can interact to influence each other's synthesis, degradation and intracellular signalling to augment or attenuate their physiological impacts, highlighting the complexity of unravelling these signalling systems. Nevertheless, such complexity suggests crop improvement opportunities to select for allelic variation in the genes affecting hormonal regulation, and (in selected crops) to augment root-shoot communication by judicious selection of rootstock-scion combinations to ameliorate abiotic stresses.
Collapse
Affiliation(s)
- Katharina Huntenburg
- Lancaster Environment CentreLancaster UniversityLancasterUK
- NIAB AgronomyNIABCambridgeUK
| | - Jaime Puértolas
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Department of Botany and Plant Ecology and PhysiologyUniversity of La LagunaSan Cristóbal de La LagunaSpain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias del Medio NaturalUniversitat Jaume ICastellonSpain
| | - Ian C. Dodd
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
2
|
Gupta P, Hirschberg J. The Genetic Components of a Natural Color Palette: A Comprehensive List of Carotenoid Pathway Mutations in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:806184. [PMID: 35069664 PMCID: PMC8770946 DOI: 10.3389/fpls.2021.806184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.
Collapse
Affiliation(s)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Yoneyama K, Brewer PB. Strigolactones, how are they synthesized to regulate plant growth and development? CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102072. [PMID: 34198192 DOI: 10.1016/j.pbi.2021.102072] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 05/02/2023]
Abstract
Strigolactones (SLs) are multifunctional plant metabolites working not only as allelochemicals in the rhizosphere, but also as a novel class of hormones regulating growth and development in planta. To date, more than 30 SLs have been characterized, but the reason why plants produce structurally diverse SLs and the details of their biosynthetic pathway remain elusive. Recent studies using transcriptomics and reverse genetic techniques have paved the way to clarify the entire biosynthetic pathway of structurally diverse SLs. In this review, we discuss how various SLs are synthesized and what SL structural diversity means for plant growth and development.
Collapse
Affiliation(s)
- Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan; PRESTO, JST, Japan.
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond SA 5064, Australia.
| |
Collapse
|
4
|
Aly R, Matzrafi M, Bari VK. Using biotechnological approaches to develop crop resistance to root parasitic weeds. PLANTA 2021; 253:97. [PMID: 33844068 DOI: 10.1007/s00425-021-03616-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
New transgenic and biotechnological approaches may serve as a key component in achieving crop resistance to root parasitic weeds. Root parasitic weeds inflict severe damage to numerous crops, reducing yield quantity and quality. A lack of new sources of resistance limits our ability to manage newly developing, more virulent races. Having no effective means to control the parasites in most crops, innovative biotechnological solutions are needed. Several novel biotechnological strategies using regulatory RNA molecules, the CRISPR/Cas9 system, and T-DNA insertions have been acknowledged for engineering resistance against parasitic weeds. Significant breakthroughs have been made over the years in deciphering the plant genome and its functions, including the genomes of parasitic weeds. However, the basis of biotechnological strategies to generate host resistance to root parasitic weeds needs to be further developed. Gene-silencing and editing tools should be used to target key processes of host-parasite interactions, such as strigolactone biosynthesis and signaling, haustorium development, and degradation and penetration of the host cell wall. In this review, we summarize and discuss the main areas of research leading to the discovery and functional analysis of genes involved in host-induced gene silencing that target key parasite genes, transgenic host modification, and host gene editing to generate sustainable resistance to root parasitic weeds.
Collapse
Affiliation(s)
- Radi Aly
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, Israel.
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, Israel.
| | - Vinay Kumar Bari
- Department of Plant Pathology and Weed Research, Newe Ya'ar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, Israel
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
5
|
Shindo M, Yamamoto S, Shimomura K, Umehara M. Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:135. [PMID: 32158457 PMCID: PMC7052320 DOI: 10.3389/fpls.2020.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 05/24/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that are synthesized from β-carotene through sequential reactions catalyzed by DWARF (D) 27, D17, D10, and OsMORE AXILLARY GROWTH (MAX) 1 in rice (Oryza sativa L.). In rice, endogenous SL levels increase in response to deficiency of nitrogen, phosphate, or sulfate (-N, -P, or -S). Rice SL mutants show increased lamina joint (LJ) angle as well as dwarfism, delayed leaf senescence, and enhanced shoot branching. The LJ angle is an important trait that determines plant architecture. To evaluate the effect of endogenous SLs on LJ angle in rice, we measured LJ angle and analyzed the expression of SL-biosynthesis genes under macronutrient deficiencies. In the "Shiokari" background, LJ angle was significantly larger in SL mutants than in the wild-type (WT). In WT and SL-biosynthesis mutants, direct treatment with the SL synthetic analog GR24 decreased the LJ angle. In WT, deficiency of N, P, or S, but not of K, Ca, Mg, or Fe decreased LJ angle. In SL mutants, deficiency of N, P, or S had no such effect. We analyzed the time course of SL-related gene expression in the LJ of WT deficient in N, P, or S, and found that expression of SL-biosynthesis genes increased 2 or 3 days after the onset of deficiency. Expression levels of both the SL-biosynthesis and signaling genes was particularly strongly increased under -P. Rice cultivars "Nipponbare", "Norin 8", and "Kasalath" had larger LJ angle than "Shiokari", interestingly with no significant differences between WT and SL mutants. In "Nipponbare", endogenous SL levels increased and the LJ angle was decreased under -N and -P. These results indicate that SL levels increased in response to nutrient deficiencies, and that elevated endogenous SLs might negatively regulate leaf angle in rice.
Collapse
Affiliation(s)
- Masato Shindo
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
| | - Shu Yamamoto
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| | | | - Mikihisa Umehara
- Graduate School of Life Sciences, Toyo University, Ora-gun, Japan
- Department of Applied Biosciences, Toyo University, Ora-gun, Japan
| |
Collapse
|
6
|
Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. SCIENCE ADVANCES 2019; 5:eaax9067. [PMID: 32064317 PMCID: PMC6989309 DOI: 10.1126/sciadv.aax9067] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/01/2019] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are carotenoid-derived phytohormones and rhizosphere signaling molecules for arbuscular mycorrhizal fungi and root parasitic weeds. Why and how plants produce diverse SLs are unknown. Here, cytochrome P450 CYP722C is identified as a key enzyme that catalyzes the reaction of BC-ring closure leading to orobanchol, the most prevalent canonical SL. The direct conversion of carlactonoic acid to orobanchol without passing through 4-deoxyorobanchol is catalyzed by the recombinant enzyme. By knocking out the gene in tomato plants, orobanchol was undetectable in the root exudates, whereas the architecture of the knockout and wild-type plants was comparable. These findings add to our understanding of the function of the diverse SLs in plants and suggest the potential of these compounds to generate crops with greater resistance to infection by noxious root parasitic weeds.
Collapse
Affiliation(s)
- Takatoshi Wakabayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Misaki Hamana
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayami Mori
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kotomi Ueno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yuriko Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Corresponding author.
| |
Collapse
|
7
|
Zhou Q, Li Q, Li P, Zhang S, Liu C, Jin J, Cao P, Yang Y. Carotenoid Cleavage Dioxygenases: Identification, Expression, and Evolutionary Analysis of This Gene Family in Tobacco. Int J Mol Sci 2019; 20:E5796. [PMID: 31752180 PMCID: PMC6888377 DOI: 10.3390/ijms20225796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) selectively catalyze carotenoids, forming smaller apocarotenoids that are essential for the synthesis of apocarotenoid flavor, aroma volatiles, and phytohormone ABA/SLs, as well as responses to abiotic stresses. Here, 19, 11, and 10 CCD genes were identified in Nicotiana tabacum, Nicotiana tomentosiformis, and Nicotiana sylvestris, respectively. For this family, we systematically analyzed phylogeny, gene structure, conserved motifs, gene duplications, cis-elements, subcellular and chromosomal localization, miRNA-target sites, expression patterns with different treatments, and molecular evolution. CCD genes were classified into two subfamilies and nine groups. Gene structures, motifs, and tertiary structures showed similarities within the same groups. Subcellular localization analysis predicted that CCD family genes are cytoplasmic and plastid-localized, which was confirmed experimentally. Evolutionary analysis showed that purifying selection dominated the evolution of these genes. Meanwhile, seven positive sites were identified on the ancestor branch of the tobacco CCD subfamily. Cis-regulatory elements of the CCD promoters were mainly involved in light-responsiveness, hormone treatment, and physiological stress. Different CCD family genes were predominantly expressed separately in roots, flowers, seeds, and leaves and exhibited divergent expression patterns with different hormones (ABA, MeJA, IAA, SA) and abiotic (drought, cold, heat) stresses. This study provides a comprehensive overview of the NtCCD gene family and a foundation for future functional characterization of individual genes.
Collapse
Affiliation(s)
- Qianqian Zhou
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Qingchang Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Peng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Che Liu
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| | - Jingjing Jin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, China; (Q.L.); (J.J.); (P.C.)
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China; (Q.Z.); (P.L.); (S.Z.); (C.L.)
| |
Collapse
|