1
|
Wu W, Sun Y, Niu S, Li X, Chen L, Xie S, Chang L, Wei S, Jing M, Li H, Zhao Y. Integrated Microbiome and Metabolomic to Explore the Mechanism of Coptisine in Alleviating Ulcerative Colitis. Phytother Res 2025; 39:676-697. [PMID: 39648789 PMCID: PMC11832363 DOI: 10.1002/ptr.8389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/20/2024] [Accepted: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Coptisine (COP), a naturally occurring alkaloid, is known for its diverse pharmacological effects and its supportive role in intestinal health. Despite this, the detailed mechanisms behind its therapeutic benefits are not yet fully understood. The objective of this study is to investigate the therapeutic potential of COP for the treatment of Ulcerative Colitis (UC) and to delineate the critical pathways by which it exerts its therapeutic effects. To assess COP's therapeutic effectiveness, mice were administered COP and monitored for clinical symptoms, activity, and disease activity index (DAI) changes. Intestinal histopathology, mucosal barrier function, and gut microbiota structure were evaluated, along with metabolic profiling, focusing on Prenol lipids in the colon to identify COP-induced metabolic shifts. Mice treated with COP exhibited significant relief from diarrhea and bleeding, along with increased activity and a marked reduction in DAI scores. Histopathological evaluation revealed a reduction in intestinal inflammation, and the intestinal mucosal barrier function was notably enhanced. The gut microbiota composition in COP-treated mice showed improvements. Additionally, the levels of Prenol lipids in the colon were elevated by COP treatment, which is crucial for the recovery of intestinal function. Our study demonstrates that COP effectively ameliorates colitis symptoms by modulating colon Prenol lipids metabolism, particularly under the influence of key bacterial species. The findings of this study provide novel insights into the therapeutic mechanisms of COP in the treatment of UC.
Collapse
Affiliation(s)
- Wenbin Wu
- Graduate School of Chinese PLA General HospitalChinese PLA Medical SchoolBeijingChina
- Health Care Office of the Service Bureau of AgencyOffices Administration of the Central Military CommissionBeijingChina
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanling Sun
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Shengqi Niu
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Xing Li
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Lisheng Chen
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Shuying Xie
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Lei Chang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Shizhang Wei
- National Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Manyi Jing
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Haotian Li
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanling Zhao
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Lin K, Wang Z, Wang E, Zhang X, Liu X, Feng F, Yu X, Yi G, Wang Y. Targeting TRPV1 signaling: Galangin improves ethanol-induced gastric mucosal injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118605. [PMID: 39047882 DOI: 10.1016/j.jep.2024.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Galangin, a bioactive compound extracted from Alpinia officinarum Hance (Zingiberaceae), a plant with significant ethnopharmacological importance, has been used for thousands of years as a spice, condiment, and medicinal agent for various conditions, including gastrointestinal disorders. Although there is evidence suggesting its potential to improve gastric ulcers, the molecular mechanisms underlying its anti-ulcer properties are not fully understood. OBJECTIVE of the Study: This study aimed to investigate the effects of galangin on ethanol-induced acute gastric mucosal injury (AGMI) in mice and elucidate its molecular mechanisms. MATERIALS AND METHODS Sixty BALB/c mice were randomly assigned into two main groups: a normal control group (n = 10) and an ethanol-induced group (n = 50). After establishing the AGMI model in mice using a combination of 40% ethanol and anhydrous ethanol, the ethanol-induced group was further subdivided into five subgroups (n = 10): an omeprazole control group (20 mg/kg), an untreated ethanol group, and three treatment groups receiving high-dose (50 mg/kg) or low-dose (25 mg/kg) galangin or capsazepine (CPZ, 2 mg/kg). The protective effects of galangin were evaluated through mucosal injury indices, hematoxylin and eosin staining, and quantification of inflammatory markers (IL-1β, IL-6, IL-8, and TNF-α). Oxidative stress levels and matrix metalloproteinase activity were measured using specific assay kits. Molecular docking was conducted to assess the binding affinity of galangin to key proteins within the transient receptor potential vanilloid 1 (TRPV1) pathway. Real-time fluorescence quantitative PCR (qPCR) was used to determine mRNA expression levels of TRPV1, calmodulin (CaM), substance P (SP), and CGRP in gastric tissues. Protein expression levels of TRPV1, nerve growth factor (NGF), tropomyosin receptor kinase A (TRKA), transforming growth factor beta (TGF-β), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) were assessed through Western blot analysis. In cellular experiments, Culture of Human Gastric Epithelial Cells (GES-1) were treated with various concentrations of galangin after 7% ethanol induction. Cell proliferation, apoptosis, and migration were evaluated using Hoechst 33258 staining and transwell migration assays. TRPV1 protein expression was detected using immunofluorescence, and the expression levels of Bcl-2, BCL2-Associated X (BAX), and Caspase-3 were quantified by qPCR. Additionally, specific probe kits were used to measure intracellular calcium ions (Ca2+) and mitochondrial membrane potential. RESULTS The findings indicate that galangin significantly improved mucosal pathology by reducing ulcer indices and inflammatory levels, while enhancing superoxide dismutase (SOD) activity and decreasing malondialdehyde (MDA) concentration. Galangin also reduced matrix metalloproteinase-2 (MMP-2), m metalloproteinase-9 (MMP-9) levels, promoting mucosal repair. At the cellular level, galangin decreased intracellular calcium ion concentration and mitigated the decline in mitochondrial membrane potential, enhance the restoration of mucosal cells, increased migration and proliferation, and reduced apoptosis. Molecularly, galangin demonstrated favorable binding to TRPV1, NGF, TRKA, TGF-β, COX-2, and NF-κB, and reversed the elevated expression of these proteins. Additionally, galangin downregulated the mRNA expression of TRPV1, CaM, SP, CGRP, BAX, and Caspase-3 in gastric tissues/cells, while upregulating Bcl-2 mRNA expression. CONCLUSION Galangin mitigates AGMI by inhibiting the overactivation of the TRPV1 pathway, thereby blocking aberrant signal transduction. This study suggests that galangin has therapeutic potential against ethanol-induced AGMI and may be a viable alternative for the treatment of alcohol-induced gastric mucosal injuries.
Collapse
Affiliation(s)
- Kaiwen Lin
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Zhongtao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Erhao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xueer Zhang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaofei Liu
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Faming Feng
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaodan Yu
- Public Research Center of Hainan Medical University, Haikou, 571199, China
| | - Guohui Yi
- Public Research Center of Hainan Medical University, Haikou, 571199, China.
| | - Yan Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China.
| |
Collapse
|
3
|
Wang X, Chang L, Chen L, He Y, He T, Wang R, Wei S, Jing M, Zhou X, Li H, Zhao Y. Integrated network pharmacology and metabolomics to investigate the effects and possible mechanisms of Dehydroevodiamine against ethanol-induced gastric ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117340. [PMID: 37879508 DOI: 10.1016/j.jep.2023.117340] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.
Collapse
Affiliation(s)
- Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- College of Pharmacy, Southern Medical University, Guangzhou, China
| | - Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting He
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruilin Wang
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Manyi Jing
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haotian Li
- Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy Department, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
4
|
Bonura A, Brunelli N, Marcosano M, Iaccarino G, Fofi L, Vernieri F, Altamura C. Calcitonin Gene-Related Peptide Systemic Effects: Embracing the Complexity of Its Biological Roles-A Narrative Review. Int J Mol Sci 2023; 24:13979. [PMID: 37762283 PMCID: PMC10530509 DOI: 10.3390/ijms241813979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed throughout the human body. While primarily recognized as a nociceptive mediator, CGRP antagonists are currently utilized for migraine treatment. However, its role extends far beyond this, acting as a regulator of numerous biological processes. Indeed, CGRP plays a crucial role in vasodilation, inflammation, intestinal motility, and apoptosis. In this review, we explore the non-nociceptive effects of CGRP in various body systems, revealing actions that can be contradictory at times. In the cardiovascular system, it functions as a potent vasodilator, yet its antagonists do not induce arterial hypertension, suggesting concurrent modulation by other molecules. As an immunomodulator, CGRP exhibits intriguing complexity, displaying both anti-inflammatory and pro-inflammatory effects. Furthermore, CGRP appears to be involved in obesity development while paradoxically reducing appetite. A thorough investigation of CGRP's biological effects is crucial for anticipating potential side effects associated with its antagonists' use and for developing novel therapies in other medical fields. In summary, CGRP represents a neuropeptide with a complex systemic impact, extending well beyond nociception, thus offering new perspectives in medical research and therapeutics.
Collapse
Affiliation(s)
- Adriano Bonura
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Nicoletta Brunelli
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Marilena Marcosano
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Gianmarco Iaccarino
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Luisa Fofi
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Fabrizio Vernieri
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Claudia Altamura
- Instituite of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (A.B.); (N.B.); (M.M.); (L.F.); (F.V.)
- Unit of Headache and Neurosonology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
5
|
Cai Y, Chen J, Sun H, Zhou T, Cai X, Fu Y. Crosstalk between TRPV1 and immune regulation in Fuchs endothelial corneal dystrophy. Clin Immunol 2023; 254:109701. [PMID: 37482117 DOI: 10.1016/j.clim.2023.109701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading indication for corneal transplantation worldwide. Our aim was to investigate the role of transient receptor potential vanilloid subtype 1 (TRPV1) and the associated immune regulation contributing to this pathological condition. Significant upregulation of TRPV1 was detected in the H2O2-induced in vitro FECD model. Based on gene expression microarray dataset GSE142538 and in vitro results, a comprehensive immune landscape was studied and a negative correlation was found between TRPV1 with different immune cells, especially regulatory T cells (Tregs). Functional analyses of the 313 TRPV1-related differentially expressed genes (DEGs) revealed the involvement of TRP-regulated calcium transport, as well as inflammatory and immune pathways. Four TRPV1-related core genes (MAPK14, GNB1, GNAQ, and ARRB2) were screened, validated by microarray dataset GSE112039 and the combined validation dataset E-GEAD-399 & 564, and verified by in vitro experiments. Our study suggested a potential crosstalk between TRPV1 and immune regulation contributing to FECD pathogenesis. The identified pivotal biomarkers and immune-related pathways provide a novel framework for future mechanistic and therapeutic studies of FECD.
Collapse
Affiliation(s)
- Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xueyao Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
6
|
Potential effects of carbon monoxide donor and its nanoparticles on experimentally induced gastric ulcer in rats. Inflammopharmacology 2023; 31:1495-1510. [PMID: 36882659 DOI: 10.1007/s10787-023-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.
Collapse
|
7
|
Xie L, Luo M, Li J, Huang W, Tian G, Chen X, Ai Y, Zhang Y, He H. Gastroprotective mechanism of modified lvdou gancao decoction on ethanol-induced gastric lesions in mice: Involvement of Nrf-2/HO-1/NF-κB signaling pathway. Front Pharmacol 2022; 13:953885. [PMID: 36120337 PMCID: PMC9475313 DOI: 10.3389/fphar.2022.953885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Modified Lvdou Gancao decoction (MLG), a traditional Chinese medicine formula, has been put into clinical use to treat the diseases of the digestive system for a long run, showing great faculty in gastric protection and anti-inflammatory, whereas its protective mechanisms have not been determined. The current study puts the focus on the protective effect and its possible mechanisms of MLG on ethanol-induced gastric lesions in mice. In addition to various gastric lesion parameters and histopathology analysis, the activities of a list of relevant indicators in gastric mucosa were explored including ALDH, ADH, MDA, T-SOD, GSH-Px, and MPO, and the mechanisms were clarified using RT-qPCR, ELISA Western Blot and immunofluorescence staining. The results showed that MLG treatment induced significant increment of ADH, ALDH, T-SOD, GSH-Px, NO, PGE2 and SS activities in gastric tissues, while MPO, MDA, TNF-α and IL-1β levels were on the decline, both in a dose-dependent manner. In contrast to the model group, the mRNA expression of Nrf-2 and HO-1 in the MLG treated groups showed an upward trend while the NF-κB, TNFα, IL-1β and COX2 in the MLG treated groups had a downward trend simultaneously. Furthermore, the protein levels of p65, p-p65, IκBα, p-IκBα, iNOS, COX2 and p38 were inhibited, while Nrf2, HO-1, SOD1, SOD2 and eNOS were ramped up in MLG treatment groups. Immunofluorescence intensities of Nrf2 and HO-1 in the MLG treated groups were considerably enhanced, with p65 and IκBα diminished simultaneously, exhibiting similar trends to that of qPCR and western blot. To sum up, MLG could significantly ameliorate ethanol-induced gastric mucosal lesions in mice, which might be put down to the activation of alcohol metabolizing enzymes, attenuation of the oxidative damage and inflammatory response to maintain the gastric mucosa. The gastroprotective effect of MLG might be achieved through the diminution of damage factors and the enhancement of defensive factors involving NF-κB/Nrf2/HO-1 signaling pathway. We further confirmed that MLG has strong potential in preventing and treating ethanol-induced gastric lesions.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minyi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guangjun Tian
- Liver Diseases Center, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, Guangdong, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Damasceno ROS, Soares PMG, Barbosa ALDR, Nicolau LAD, Medeiros JVR, Souza MHLP. Modulatory Role of Carbon Monoxide on the Inflammatory Response and Oxidative Stress Linked to Gastrointestinal Disorders. Antioxid Redox Signal 2022; 37:98-114. [PMID: 34806398 DOI: 10.1089/ars.2020.8223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Carbon monoxide (CO) is an endogenous gaseous mediator that plays an important role in maintaining gastrointestinal (GI) tract homeostasis, acting in mucosal defense, and providing negative modulation of pathophysiological markers of clinical conditions. Recent Advances: Preclinical studies using animal models and/or cell culture show that CO can modulate the inflammatory response and oxidative stress in GI mucosal injuries and pathological conditions, reducing proinflammatory cytokines and reactive oxygen species, while increasing antioxidant defense mechanisms. Critical Issues: CO has potent anti-inflammatory and antioxidant effects. The defense mechanisms of the GI tract are subject to aggression by different chemical agents (e.g., drugs and ethanol) as well as complex and multifactorial diseases, with inflammation and oxidative stress as strong triggers for the deleterious effects. Thus, it is possible that CO acts on a variety of molecules involved in the inflammatory and oxidative signaling cascades, as well as reinforcing several defense mechanisms that maintain GI homeostasis. Future Directions: CO-based therapies are promising tools for the treatment of GI disorders, such as gastric and intestinal injuries, inflammatory bowel disease, and pancreatitis. Therefore, it is necessary to develop safe and selective CO-releasing agents and/or donor drugs to facilitate effective treatments and methods for analysis of CO levels that are simple and inexpensive. Antioxid. Redox Signal. 37, 98-114.
Collapse
Affiliation(s)
| | | | | | | | - Jand-Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Federal University of the Parnaíba Delta, Parnaíba, Brazil
| | | |
Collapse
|
9
|
Network Pharmacology Integrated with Transcriptomics Deciphered the Potential Mechanism of Codonopsis pilosula against Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1340194. [PMID: 35388300 PMCID: PMC8977304 DOI: 10.1155/2022/1340194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fourth main reason of cancer-related death. Codonopsis pilosula is a commonly used traditional Chinese medicine (TCM) for patients with HCC. However, its potential mechanism for treatment of HCC remains unclear. Here, we used transcriptomics and network pharmacology to explore the potential molecular mechanisms of Codonopsis pilosula. In our study, twelve differentially expressed genes (DEGs) (5 upregulated and 7 downregulated) of Codonopsis pilosula treating HepG2 cells (a kind of HCC cell) were identified. Among the 12 DEGs, HMOX1 may play an essential role. Codonopsis pilosula mainly affects the mineral absorption pathway in HCC. We acquired 2957, 1877, and 255 targets from TCMID, SymMap, and TCMSP, respectively. Codonopsis pilosula could upregulate HMOX1 via luteolin, capsaicin, and sulforaphane. Our study provided new understanding of the potential pharmacological mechanisms of Codonopsis pilosula in treating HCC and pointed out a direction for further experimental research.
Collapse
|
10
|
Malvidin Protects against and Repairs Peptic Ulcers in Mice by Alleviating Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13103312. [PMID: 34684313 PMCID: PMC8537945 DOI: 10.3390/nu13103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Peptic ulcer episodes cause damage to the stomach and intestine, with inflammatory cell infiltration and oxidative stress as the main players. In this study, we investigated the potential of anthocyanidin malvidin for preventive and curative peptic ulcer treatment. The anthocyanidin effects were examined in gastric ulcer mouse models induced by ethanol, non-steroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion (IR), acetic acid and duodenal ulcer induced by polypharmacy. Expression levels of oxidative and inflammatory genes were measured to investigate the mechanism of anthocyanin activity. At a dose of 5 mg·kg−1, Malvidin prevented gastric ulcer induction by ethanol, NSAID and repaired the tissue after 6 days of IR. Moreover, the anthocyanidin accelerated the healing of acetic acid-induced ulcer, increased the gene expression of EGF and COX-1, and downregulated MMP-9. Anthocyanin treatment mitigated the effect of polypharmacy on inflammation and oxidative stress observed in the intestine. Additionally, the compound downregulated cytokine expression and TLR4 and upregulated HMOX-1 and IL-10, exhibiting protective activity in the mouse gut. Malvidin thus prevented gastric and duodenal ulcers due to prominent anti-inflammatory and antioxidative effects on the gastrointestinal tract that were related to gene expression modulation and an increase in endogenous defense mechanisms.
Collapse
|
11
|
Pacheco G, Oliveira AP, Noleto IRSG, Araújo AK, Lopes ALF, Sousa FBM, Chaves LS, Alves EHP, Vasconcelos DFP, Araujo AR, Nicolau LD, Magierowski M, Medeiros JVR. Activation of transient receptor potential vanilloid channel 4 contributes to the development of ethanol-induced gastric injury in mice. Eur J Pharmacol 2021; 902:174113. [PMID: 33901460 DOI: 10.1016/j.ejphar.2021.174113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The transient receptor potential vanilloid channel 4 (TRPV4) is associated with the development of several pathologies, particularly gastric disorders. However, there are no studies associating this receptor with the pathophysiology of gastric erosions. The aim of this study was to investigate the role of TRPV4 in the development of ethanol-induced gastric damage in vivo. Gastric lesions were induced by ethanol in Swiss mice pretreated with TRPV4 antagonists, GSK2193874 (0.1; 0.3 and 0.9 mg/kg) or Ruthenium red (0.03; 0.1 or 0.3 mg/kg) or its agonist, GSK1016790A (0.9 mg/kg). Gastric mucosal samples were taken for histopathology, immunohistochemistry, atomic force microscopy and evaluation of antioxidant parameters. The gastric mucus content and TRPV4 mRNA expression were analyzed. Ethanol exposure induced upregulation of gastric mRNA and protein expression of TRPV4. TRPV4 blockade promoted gastroprotection against ethanol-induced injury on macro- and microscopic levels, leading to reduced hemorrhage, cell loss and edema and enhanced gastric mucosal integrity. Moreover, an increase in superoxide dismutase (SOD) and glutathione (GSH) activity was observed, followed by a decrease in malondialdehyde (MDA) levels. TRPV4 blockade during alcohol challenge reestablished gastric mucus content. The combination of TRPV4 agonist and ethanol revealed macroscopic exacerbation of gastric damage area. Our results confirmed the association of TRPV4 with the development of gastric injury, showing the importance of this receptor for further investigations in the field of gastrointestinal pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Gabriella Pacheco
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Ana P Oliveira
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Isabela R S G Noleto
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Andreza K Araújo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - André L F Lopes
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Letícia S Chaves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Even H P Alves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Daniel F P Vasconcelos
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Alyne R Araujo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - LucasA D Nicolau
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Marcin Magierowski
- Gaseous Mediators and Experimental Gastroenterology Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jand Venes R Medeiros
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
12
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
13
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
14
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
15
|
Matah Marthe VM, Ateufack G, Mbiantcha M, Nana WY, Atsamo AD, Adjouzem FC, Djuichou Nguemnang FS, Tsafack GE, Tadjoua HT, Emakoua J. Cytoprotective and antisecretory properties of methanolic extract of Distemonanthus benthamianus (Caesalpiniaceae) stem bark on acute gastric ulcer in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:37-49. [PMID: 32706751 DOI: 10.1515/jcim-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/02/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES In African traditional medicine, Distemonanthus benthamianus (Caesalpiniaceae) is used to treat many diseases including gastric ulcers. We evaluated in this study, the cytoprotective and antisecretory properties of the methanolic extract of the stem bark of this plant using different technics of gastric lesion induction. METHODS Cytoprotective and antisecretory activity of the methanolic extract of D. benthamianus stem bark was evolved through six methods of gastric lesion induction in experimental Wistar male rats (150-200 g): (1) gastric lesions induced by HCl/ethanol, (2) gastric lesions induced by Indomethacin- HCl/ethanol, (3) gastric lesion induced by Indomethacin, (4) gastric lesions induced by Pylorus ligation, (5) gastric lesions induced by histamine-Pylorus ligation, (6) gastric lesions induced by carbachol-Pylorus ligation. Mucus and gastric mucosal ulceration were evaluated. pH, gastric volume, and acidity were quantified in all pylorus ligation induction technics. Nitric oxide (NO) level was determined in indomethacin induced gastric ulcers. RESULTS At different doses (125, 250 and 500 mg/kg), extract reduced significantly the ulcer index. In all models used, that is 100.00% with HCl/ethanol; 100.00% with HCl/ethanol/indomethacin; 95.70% with Indomethacin; 74.79% with pylorus ligation, 95.94% histamine-Pylorus ligation, 99.54% carbachol-Pylorus ligation at the highest dose of 500 mg/kg. The lesion formation reduces in all the methods used followed by a significant increase of mucus production. The pylorus ligation technic revealed that the extract has an antisecretory activity. CONCLUSIONS The methanolic extract of D. benthamianus stem bark has both cytoprotective and antisecretory effects. This extract exerts its antisecretory effect trough cholinergic and histaminergic pathways.
Collapse
Affiliation(s)
- Vanessa Mba Matah Marthe
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilbert Ateufack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Marius Mbiantcha
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - William Yousseu Nana
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Albert Donatien Atsamo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaounde I, Yaoundé, Cameroon
| | - Flore Carine Adjouzem
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Gonzal Eric Tsafack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Herve Tchoumbou Tadjoua
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Joseph Emakoua
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde I, Yaounde, Cameroon
| |
Collapse
|
16
|
Magierowska K, Bakalarz D, Wójcik D, Korbut E, Danielak A, Głowacka U, Pajdo R, Buszewicz G, Ginter G, Surmiak M, Kwiecień S, Chmura A, Magierowski M, Brzozowski T. Evidence for Cytoprotective Effect of Carbon Monoxide Donor in the Development of Acute Esophagitis Leading to Acute Esophageal Epithelium Lesions. Cells 2020; 9:cells9051203. [PMID: 32408627 PMCID: PMC7291282 DOI: 10.3390/cells9051203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development. RE induced in Wistar rats by the ligation of a junction between pylorus and forestomach were pretreated i.g. with vehicle CORM-2; RuCl3; zinc protoporphyrin IX, or hemin. CORM-2 was combined with NG-nitro-L-arginine (L-NNA), indomethacin, capsazepine, or capsaicin-induced sensory nerve ablation. Esophageal lesion score (ELS), esophageal blood flow (EBF), and mucus production were determined by planimetry, laser flowmetry, histology. Esophageal Nrf-2, HMOXs, COXs, NOSs, TNF-α and its receptor, IL-1 family and IL-1 receptor antagonist (RA), NF-κB, HIF-1α, annexin-A1, suppressor of cytokine signaling (SOCS3), TRPV1, c-Jun, c-Fos mRNA/protein expressions, PGE2, 8-hydroxy-deoxyguanozine (8-OHdG) and serum COHb, TGF-β1, TGF-β2, IL-1β, and IL-6 content were assessed by PCR, immunoblotting, immunohistochemistry, gas chromatography, ELISA or Luminex platform. Hemin or CORM-2 alone or combined with L-NNA or indomethacin decreased ELS. Capsazepine or capsaicin-induced denervation reversed CORM-2 effects. COHb blood content, esophageal HMOX-1, Nrf-2, TRPV1 protein, annexin-A1, HIF-1α, IL-1 family, NF-κB, c-Jun, c-Fos, SOCS3 mRNA expressions, and 8-OHdG levels were elevated while PGE2 concentration was decreased after RE. CO donor-maintained elevated mucosal TRPV1 protein, HIF-1 α, annexin-A1, IL-1RA, SOCS3 mRNA expression, or TGF-β serum content, decreasing 8-OHdG level, and particular inflammatory markers expression/concentration. CORM-2 and Nrf-2/HMOX-1/CO pathway prevent esophageal mucosa against RE-induced lesions, DNA oxidation, and inflammatory response involving HIF-1α, annexin-A1, SOCS3, IL-1RA, TGF-β-modulated pathways. Esophagoprotective and hyperemic CO effects are in part mediated by afferent sensory neurons and TRPV1 receptors activity with questionable COX/PGE2 or NO/NOS systems involvement.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Correspondence: (K.M.); (T.B.); Tel.: +48124211006 (T.B.)
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Forensic Toxicology, Institute of Forensic Research, 31-033 Cracow, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Correspondence: (K.M.); (T.B.); Tel.: +48124211006 (T.B.)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The gastroduodenal mucosal layer is a complex and dynamic system that functions in an interdependent manner to resist injury. We review and summarize the most updated knowledge about gastroduodenal defense mechanisms and specifically address (a) the mucous barrier, (b) membrane and cellular properties, and vascular, hormonal, and (c) gaseous mediators. RECENT FINDINGS Trefoil factor family peptides play a crucial role in cellular restitution by increasing cellular permeability and expression of aquaporin channels, aiding cellular migration and tissue repair. Additionally, evidence suggests that the symptoms of functional dyspepsia may be attributed to alterations in the duodenum, including low-grade inflammation and increased mucosal permeability. The interaction of the various mucosal protective components helps maintain structural and functional homeostasis. There is increasing evidence suggesting that the upper GI microbiota plays a crucial role in the defense mechanisms. However, this warrants further investigation.
Collapse
Affiliation(s)
- Gian M Galura
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Luis O Chavez
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Alejandro Robles
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Richard McCallum
- Department of Gastroenterology, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
18
|
Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. Int J Mol Sci 2019; 20:ijms20061477. [PMID: 30909623 PMCID: PMC6471759 DOI: 10.3390/ijms20061477] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric obtained from the rhizomes of Curcuma longa has been used in the prevention and treatment of many diseases since the ancient times. Curcumin is the principal polyphenol isolated from turmeric, which exhibits anti-inflammatory, antioxidant, antiapoptotic, antitumor, and antimetastatic activities. The existing evidence indicates that curcumin can exert a wide range of beneficial pleiotropic properties in the gastrointestinal tract, such as protection against reflux esophagitis, Barrett’s esophagus, and gastric mucosal damage induced by nonsteroidal anti-inflammatory drugs (NSAIDs) and necrotizing agents. The role of curcumin as an adjuvant in the treatment of a Helicobacter pylori infection in experimental animals and humans has recently been proposed. The evidence that this turmeric derivative inhibits the invasion and proliferation of gastric cancer cells is encouraging and warrants further experimental and clinical studies with newer formulations to support the inclusion of curcumin in cancer therapy regimens. This review was designed to analyze the existing data from in vitro and in vivo animal and human studies in order to highlight the mechanisms of therapeutic efficacy of curcumin in the protection and ulcer healing of the upper gastrointestinal tract, with a major focus on addressing the protection of the esophagus and stomach by this emerging compound.
Collapse
|
19
|
Li YR, Gupta P. Immune aspects of the bi-directional neuroimmune facilitator TRPV1. Mol Biol Rep 2018; 46:1499-1510. [PMID: 30554315 DOI: 10.1007/s11033-018-4560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
A rapidly growing area of interest in biomedical science involves the reciprocal crosstalk between the sensory nervous and immune systems. Both of these systems are highly integrated, detecting potential environmental harms and restoring homeostasis. Many different cytokines, receptors, neuropeptides, and other proteins are involved in this bidirectional communication that are common to both systems. One such family of proteins includes the transient receptor potential vanilloid (TRPV) proteins. Though much progress has been made in understanding TRPV proteins in the nervous system, their functions in the immune system are not well elucidated. Hence, further understanding their role in the peripheral immune system and as regulators of neuroimmunity is critical for evaluating their potential as therapeutic targets for numerous inflammatory disorders, cancers, and other disease states. Here, we focus on the latest advancements in understanding TRPV1 and TRPV2's roles in the immune system, TRPV1 in neuroimmunity, and TRPV1's potential involvement in anti-tumor therapy.
Collapse
Affiliation(s)
- Yan-Ruide Li
- College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China. .,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Puneet Gupta
- School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, New York, 14778, USA. .,School of Medicine and Health Sciences, The George Washington University, 2300 I Street NW, Washington, D.C., 20037, USA.
| |
Collapse
|