1
|
Lavie O, Williams LE. Using Callus as an Ex Vivo System for Chromatin Analysis. Methods Mol Biol 2025; 2873:333-347. [PMID: 39576610 DOI: 10.1007/978-1-0716-4228-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Next-generation sequencing has revolutionized epigenetics research, enabling a comprehensive analysis of DNA methylation and histone modification profiles to explore complex biological systems at unprecedented depth. Deciphering the intricate epigenetic mechanisms that regulate gene activity presents significant challenges, including the issue of analyzing heterogeneous cell populations in bulk. Bulk analysis introduces bias and can obscure crucial information by averaging readouts from distinct cells. Various approaches have been developed to address this issue, such as cell-type-specific enrichment or single-cell sequencing techniques. However, the need for transgenic lines with fluorescent markers, along with technical challenges such as efficient protoplast isolation and low yield, limits their widespread adoption and use in multi-omic studies. This review discusses the pros and cons of these approaches, providing a valuable basis for selecting the most suitable strategy to minimize heterogeneity. We will also highlight the use of cotyledon-derived callus as an ex vivo system as a simple, accessible, and robust platform for enabling high-throughput multi-omic analyses.
Collapse
Affiliation(s)
- Orly Lavie
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
2
|
Hesami M, Pepe M, Spitzer-Rimon B, Eskandari M, Jones AMP. Epigenetic factors related to recalcitrance in plant biotechnology. Genome 2025; 68:1-11. [PMID: 39471459 DOI: 10.1139/gen-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ben Spitzer-Rimon
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
3
|
Li M, Ning P, Bai R, Tian Z, Liu S, Li L. DNA Methylation Negatively Regulates Gene Expression of Key Cytokines Secreted by BMMCs Recognizing FMDV-VLPs. Int J Mol Sci 2024; 25:10849. [PMID: 39409178 PMCID: PMC11477203 DOI: 10.3390/ijms251910849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Virus-like particles (VLPs) have been studied and used as vaccines to control foot-and-mouth disease (FMD). Mast cells (MCs) express various pattern recognition receptors that recognize pathogens and secrete numerous cytokines to initiate and modulate immune responses. Our previous study showed that bone marrow-derived mast cells (BMMCs) can recognize foot-and-mouth disease virus-like particles (FMDV-VLPs) to differentially express various cytokines and that histone acetylation can regulate the cytokines secreted during BMMC recognition of FMDV-VLPs. To demonstrate the role of DNA methylation in this response process, BMMCs that recognize FMDV-VLPs were treated with azacytidine (5-AZA), an inhibitor of DNA methylation transferase. We prepared FMDV-VLPs as described previously and cultured the BMMCs. The transcription and expression of key cytokines and transcription factors were determined using real-time quantitative PCR (RT-qPCR) and Western blotting. Results showed that pre-treatment with AZA resulted in the increased transcription and expression of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-13, and IL-10, while the changes in IL-13 transcription and IL-6 expression were irrelevant to mannose receptors (MRs). Furthermore, analysis of the transcription factors indicated that both the transcription and expression of nuclear factor-kappa B (NF-κB) increased significantly in the AZA pre-treated group, indicating that DNA methylation may also regulate NF-κB expression to modulate TNF-α, IL-13, and IL-6. However, pre-treatment with AZA did not alter the expression of microphthalmia-associated transcription factor (MITF) or GATA-2. All the data demonstrate that DNA methylation negatively regulates the transcription and expression of TNF-α, IL-13, IL-10, and IL-6 secreted by recognizing FMDV-VLPs. These results provide new ideas for the mast cell-based design of more effective vaccine adjuvants and targeted therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.L.); (P.N.); (R.B.); (Z.T.); (S.L.)
| |
Collapse
|
4
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|
5
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
6
|
Xavier LR, Corrêa CCG, da Paschoa RP, Vieira KDS, Pacheco DDR, Gomes LDES, Duncan BC, da Conceição LDS, Pinto VB, Santa-Catarina C, Silveira V. Time-Dependent Proteomic Signatures Associated with Embryogenic Callus Induction in Carica papaya L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3891. [PMID: 38005788 PMCID: PMC10675192 DOI: 10.3390/plants12223891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Sex segregation increases the cost of Carica papaya production through seed-based propagation. Therefore, in vitro techniques are an attractive option for clonal propagation, especially of hermaphroditic plants. Here, we performed a temporal analysis of the proteome of C. papaya calli aiming to identify the key players involved in embryogenic callus formation. Mature zygotic embryos used as explants were treated with 20 μM 2,4-dichlorophenoxyacetic acid to induce embryogenic callus. Total proteins were extracted from explants at 0 (zygotic embryo) and after 7, 14, and 21 days of induction. A total of 1407 proteins were identified using a bottom-up proteomic approach. The clustering analysis revealed four distinct patterns of protein accumulation throughout callus induction. Proteins related to seed maturation and storage are abundant in the explant before induction, decreasing as callus formation progresses. Carbohydrate and amino acid metabolisms, aerobic respiration, and protein catabolic processes were enriched throughout days of callus induction. Protein kinases associated with auxin responses, such as SKP1-like proteins 1B, accumulated in response to callus induction. Additionally, regulatory proteins, including histone deacetylase (HD2C) and argonaute 1 (AGO1), were more abundant at 7 days, suggesting their role in the acquisition of embryogenic competence. Predicted protein-protein networks revealed the regulatory role of proteins 14-3-3 accumulated during callus induction and the association of proteins involved in oxidative phosphorylation and hormone response. Our findings emphasize the modulation of the proteome during embryogenic callus initiation and identify regulatory proteins that might be involved in the activation of this process.
Collapse
Affiliation(s)
- Lucas Rodrigues Xavier
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Caio Cezar Guedes Corrêa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Roberta Pena da Paschoa
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Karina da Silva Vieira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Daniel Dastan Rezabala Pacheco
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Lucas do Espirito Santo Gomes
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Bárbara Cardoso Duncan
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Laís dos Santos da Conceição
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (V.B.P.); (C.S.-C.)
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil; (L.R.X.); (C.C.G.C.); (R.P.d.P.); (K.d.S.V.); (D.D.R.P.); (L.d.E.S.G.); (B.C.D.); (L.d.S.d.C.)
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| |
Collapse
|
7
|
Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:381-398. [PMID: 36223083 DOI: 10.1111/jipb.13384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Both phytohormone signaling and epigenetic mechanisms have long been known to play crucial roles in plant development and plasticity in response to ambient stimuli. Indeed, diverse signaling pathways mediated by phytohormones and epigenetic processes integrate multiple upstream signals to regulate various plant traits. Emerging evidence indicates that phytohormones and epigenetic processes interact at multiple levels. In this review, we summarize the current knowledge of the interplay between phytohormones and epigenetic processes from the perspective of phytohormone biology. We also review chemical regulators used in epigenetic studies and propose strategies for developing novel regulators using multidisciplinary approaches.
Collapse
Affiliation(s)
- Kai Jiang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
8
|
Lee K, Wang K. Strategies for genotype-flexible plant transformation. Curr Opin Biotechnol 2023; 79:102848. [PMID: 36463838 DOI: 10.1016/j.copbio.2022.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
Recent advances in the genome-editing tools have demonstrated a great potential for accelerating functional genomics and crop trait improvements, but the low efficiency and genotype dependence in plant transformation hinder practical applications of such revolutionary tools. Morphogenic transcription factors (MTFs) such as Baby boom, Wuschel2, GROWTH-REGULATING FACTOR5, GROWTH-REGULATING FACTOR4 and its cofactor GRF-INTERACTING FACTOR1, and Wuschel-homeobox 5 related have been shown to greatly enhance plant transformation efficiency and expand the range of amenable species and genotypes. This review will summarize recent advancements in plant transformation technologies with an emphasis on the strategies developed for genotype-flexible transformation methods utilizing MTFs for both monocots and dicot plant species. We highlight several breakthrough studies that demonstrated a wide range of applicability.
Collapse
Affiliation(s)
- Keunsub Lee
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; Crop Bioengineering Center, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Kang D, Khan MA, Song P, Liu Y, Wu Y, Ai P, Li Z, Wang Z. Comparative analysis of the chrysanthemum transcriptome with DNA methylation inhibitors treatment and silencing MET1 lines. BMC PLANT BIOLOGY 2023; 23:47. [PMID: 36670371 PMCID: PMC9862865 DOI: 10.1186/s12870-023-04036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As one of the ten most famous flowers in China, the chrysanthemum has rich germplasm with a variety of flowering induction pathways, most of which are photoperiod-induced. After treatment with DNA methylation inhibitors, it was found that DNA methylation plays an important role in flowering regulation, but the mechanism of action remains unclear. Therefore, in this study, curcumin, 5-azaC, their mixed treatment, and MET1-RNAi lines were used for transcriptome sequencing to find out how different treatments affected gene expression in chrysanthemums at different stages of flowering. RESULTS Genomic DNA methylation levels were measured using HPLC technology. The methylation level of the whole genome in the vegetative growth stage was higher than that in the flowering stage. The methylation level of DNA in the vegetative growth stage was the lowest in the curcumin and mixed treatment, and the methylation level of DNA in the transgenic line, mixed treatment, and curcumin treatment was the lowest in the flowering stage. The flowering rate of mixed treatment and curcumin treatment was the lowest. Analysis of differentially expressed genes in transcriptomes showed that 5-azaC treatment had the most differentially expressed genes, followed by curcumin and transgenic lines, and mixed treatment had the fewest. In addition, 5-azaC treatment resulted in the differential expression of multiple DNA methylation transferases, which led to the differential expression of many genes. Analysis of differentially expressed genes in different treatments revealed that different treatments had gene specificity. However, the down-regulated GO pathway in all 4 treatments was involved in the negative regulation of the reproductive process, and post-embryonic development, and regulation of flower development. Several genes associated with DNA methylation and flowering regulation showed differential expression in response to various treatments. CONCLUSIONS Both DNA methylase reagent treatment and targeted silencing of the MET1 gene can cause differential expression of the genes. The operation of the exogenous application is simple, but the affected genes are exceedingly diverse and untargeted. Therefore, it is possible to construct populations with DNA methylation phenotypic diversity and to screen genes for DNA methylation regulation.
Collapse
Affiliation(s)
- Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Pan Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Yvru Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Yifei Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| |
Collapse
|
10
|
Guo L, Yao H, Chen W, Wang X, Ye P, Xu Z, Zhang S, Wu H. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. HORTICULTURE RESEARCH 2022; 9:uhac223. [PMID: 36479585 PMCID: PMC9720450 DOI: 10.1093/hr/uhac223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Globally, medicinal plant natural products (PNPs) are a major source of substances used in traditional and modern medicine. As we human race face the tremendous public health challenge posed by emerging infectious diseases, antibiotic resistance and surging drug prices etc., harnessing the healing power of medicinal plants gifted from mother nature is more urgent than ever in helping us survive future challenge in a sustainable way. PNP research efforts in the pre-genomic era focus on discovering bioactive molecules with pharmaceutical activities, and identifying individual genes responsible for biosynthesis. Critically, systemic biological, multi- and inter-disciplinary approaches integrating and interrogating all accessible data from genomics, metabolomics, structural biology, and chemical informatics are necessary to accelerate the full characterization of biosynthetic and regulatory circuitry for producing PNPs in medicinal plants. In this review, we attempt to provide a brief update on the current research of PNPs in medicinal plants by focusing on how different state-of-the-art biotechnologies facilitate their discovery, the molecular basis of their biosynthesis, as well as synthetic biology. Finally, we humbly provide a foresight of the research trend for understanding the biology of medicinal plants in the coming decades.
Collapse
Affiliation(s)
- Li Guo
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weikai Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Ye
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sisheng Zhang
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii ‘Fengdan’. Int J Mol Sci 2022; 23:ijms231810595. [PMID: 36142512 PMCID: PMC9505998 DOI: 10.3390/ijms231810595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Low propagation rate is the primary problem that limits industry development of tree peony. In this study, a highly efficient regeneration system for tree peony using somatic embryogenesis (SE) was established. The transcriptomes of zygotic embryo explants (S0), non-embryonic callus (S1), embryonic callus (S2), somatic embryos (S3), and regenerated shoots (S4) were analyzed to determine the regulatory mechanisms that underlie SE in tree peony. The differentially expressed genes (DEGs) were identified in the pairwise comparisons of S1-vs-S2 and S1-vs-S3, respectively. The enriched DEGs were primarily involved in hormone signal transduction, stress response and the nucleus (epigenetic modifications). The results indicated that cell division, particularly asymmetric cell division, was enhanced in S3. Moreover, the genes implicated in cell fate determination played central roles in S3. Hormone signal pathways work in concert with epigenetic modifications and stress responses to regulate SE. SERK, WOX9, BBM, FUS3, CUC, and WUS were characterized as the molecular markers for tree peony SE. To our knowledge, this is the first study of the SE of tree peony using transcriptome sequencing. These results will improve our understanding of the molecular mechanisms that underly SE in tree peony and will benefit the propagation and genetic engineering of this plant.
Collapse
|
12
|
de Araújo Silva-Cardoso IM, Gomes ACMM, Scherwinski-Pereira JE. Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells, DNA demethylation, and auxin accumulation. PLANT CELL REPORTS 2022; 41:1875-1893. [PMID: 35776139 DOI: 10.1007/s00299-022-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Cell markers of somatic embryogenesis initiation from leaf tissues in oil palm involve the participation of procambial cells, DNA demethylation, and auxin accumulation. Low callogenesis and genotype-dependent response have been mentioned in the development of somatic embryogenesis protocols of Elaeis oleifera × E. guineensis elite hybrids, which requires more detailed investigations of the process. Thus, the initial cellular responses of immature leaves of adult genotypes of this hybrid were investigated for the first time, emphasizing histological, epigenetic, and endogenous auxin changes. Leaf segments from two genotypes, one responsive to somatic embryogenesis (B351733) and another non-responsive (B352933), were inoculated in Murashige and Skoog medium with 450 µM of 4-amino-3, 5, 6-trichloropicolinic acid. For anatomical analysis, samples of both genotypes were collected at 0, 20, 90, and 105 days of cultivation. Samples of both genotypes were also taken at different cultivation periods to analyze DNA methylation status (% 5-mC-5 methylcytosine) via ELISA test. Immunolocalization assays were performed with anti-indole-3-acetic acid and anti-5-methyl-deoxycytosine antibodies from samples of hybrid B351733. We distinguished two groups of cells reactive to the induction of embryogenic callogenesis, parenchymatous sheath cells, and procambial cells; however, only the latter are directly involved with the formation of calluses. The data obtained indicate that the formation of calluses in hybrid B351733 is related to DNA hypomethylation, while the non-responsiveness of leaf explants in hybrid B352932 is related to DNA hypermethylation. The in situ immunolocalization enabled the identification of initial markers of the callogenic process, such as IAA accumulation and hypomethylation. Identifying these events brings the possibility of establishing strategies for efficient manipulation of somatic embryogenesis protocols in palm trees.
Collapse
Affiliation(s)
| | | | - Jonny Everson Scherwinski-Pereira
- Laboratório de Microscopia, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
- Laboratório de Cultura de Tecidos e Genética Vegetal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
13
|
Yue J, Dong Y, Liu S, Jia Y, Li C, Wang Z, Gong S. Integrated Proteomic and Metabolomic Analyses Provide Insights Into Acquisition of Embryogenic Ability in Agapanthus praecox. FRONTIERS IN PLANT SCIENCE 2022; 13:858065. [PMID: 35665191 PMCID: PMC9158531 DOI: 10.3389/fpls.2022.858065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Somatic embryogenesis (SE) is an ideal model for plant cell totipotency. Transition from somatic cells to embryogenic cells is the key to SE. The poor frequency of embryogenic callus (EC) induction has limited the application of SE in many plants, such as Agapanthus praecox. We performed large-scale, quantitative proteomic and metabolomic analyses with different callus differentiation directions (SE and organogenesis) and stages (initial SE and repetitive SE) to better understand the morphological, physiological, and molecular characteristics of the acquisition of embryogenic ability in A. praecox. Integrated proteomic and metabolomic analyses suggested that callus differentiation direction was potentially regulated by pathways related to carbohydrate and energy metabolism (fatty acid metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, pentose and glucuronate interconversions, starch and sucrose metabolism, galactose metabolism, carbon fixation pathways in prokaryotes, carbohydrate digestion and absorption, and fructose and mannose metabolism), chromatin accessibility and DNA methylation, reactive oxygen species responses and resistance (ascorbate and aldarate metabolism), and plant hormonal signaling. As a validation, we found that carbon source combination and plant hormone regulation in the culture medium significantly affected the acquisition of embryogenic ability, thereby inducing EC. Interestingly, plant hormonal signaling-related genes showed different expression patterns significantly when callus cultured with different carbon sources. Thus, our results suggested that energy supply and hormone signal transduction seemed to cooperatively contribute to the activation of embryogenic ability. Altogether, this study revealed valuable information regarding the molecular and biochemical changes that occurred during EC induction and provided valuable foundation for comprehensive understanding of the mechanisms associated with SE and organogenesis in A. praecox.
Collapse
Affiliation(s)
- Jianhua Yue
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Yan Dong
- School of Forestry, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Songhu Liu
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Yanan Jia
- College of Plant Science, Tarim University, Alar, China
| | - Chaoxin Li
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhiyong Wang
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Shoufu Gong
- School of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
14
|
Morończyk J, Brąszewska A, Wójcikowska B, Chwiałkowska K, Nowak K, Wójcik AM, Kwaśniewski M, Gaj MD. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022; 11:863. [PMID: 35269485 PMCID: PMC8909028 DOI: 10.3390/cells11050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.
Collapse
Affiliation(s)
- Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Barbara Wójcikowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Anna M. Wójcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| |
Collapse
|
15
|
Krzewska M, Dubas E, Gołębiowska G, Nowicka A, Janas A, Zieliński K, Surówka E, Kopeć P, Mielczarek P, Żur I. Comparative proteomic analysis provides new insights into regulation of microspore embryogenesis induction in winter triticale (× Triticosecale Wittm.) after 5-azacytidine treatment. Sci Rep 2021; 11:22215. [PMID: 34782682 PMCID: PMC8593058 DOI: 10.1038/s41598-021-01671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
Effective microspore embryogenesis (ME) requires substantial modifications in gene expression pattern, followed by changes in the cell proteome and its metabolism. Recent studies have awakened also interest in the role of epigenetic factors in microspore de-differentiation and reprogramming. Therefore, demethylating agent (2.5-10 μM 5-azacytidine, AC) together with low temperature (3 weeks at 4 °C) were used as ME-inducing tiller treatment in two doubled haploid (DH) lines of triticale and its effect was analyzed in respect of anther protein profiles, expression of selected genes (TAPETUM DETERMINANT1 (TaTPD1-like), SOMATIC EMBRYOGENESIS RECEPTOR KINASE 2 (SERK2) and GLUTATHIONE S-TRANSFERASE (GSTF2)) and ME efficiency. Tiller treatment with 5.0 µM AC was the most effective in ME induction; it was associated with (1) suppression of intensive anabolic processes-mainly photosynthesis and light-dependent reactions, (2) transition to effective catabolism and mobilization of carbohydrate reserve to meet the high energy demand of cells during microspore reprograming and (3) effective defense against stress-inducing treatment, i.e. protection of proper folding during protein biosynthesis and effective degradation of dysfunctional or damaged proteins. Additionally, 5.0 µM AC enhanced the expression of all genes previously identified as being associated with embryogenic potential of microspores (TaTPD1-like, SERK and GSTF2).
Collapse
Affiliation(s)
- Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-084, Kraków, Poland
| | - Anna Nowicka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Agnieszka Janas
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamil Zieliński
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059, Kraków, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
16
|
Current Proteomic and Metabolomic Knowledge of Zygotic and Somatic Embryogenesis in Plants. Int J Mol Sci 2021; 22:ijms222111807. [PMID: 34769239 PMCID: PMC8583726 DOI: 10.3390/ijms222111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Embryogenesis is the primary developmental program in plants. The mechanisms that underlie the regulation of embryogenesis are an essential research subject given its potential contribution to mass in vitro propagation of profitable plant species. Somatic embryogenesis (SE) refers to the use of in vitro techniques to mimic the sexual reproduction program known as zygotic embryogenesis (ZE). In this review, we synthesize the current state of research on proteomic and metabolomic studies of SE and ZE in angiosperms (monocots and dicots) and gymnosperms. The most striking finding was the small number of studies addressing ZE. Meanwhile, the research effort focused on SE has been substantial but disjointed. Together, these research gaps may explain why the embryogenic induction stage and the maturation of the somatic embryo continue to be bottlenecks for efficient and large-scale regeneration of plants. Comprehensive and integrative studies of both SE and ZE are needed to provide the molecular foundation of plant embryogenesis, information which is needed to rationally guide experimental strategies to solve SE drawbacks in each species.
Collapse
|
17
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
18
|
Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021; 12:702360. [PMID: 34603017 PMCID: PMC8484527 DOI: 10.3389/fphar.2021.702360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is a significant challenge for the global health system, although various pharmacological and therapeutic discoveries have been made. It has been widely established that cancer is associated with epigenetic modification, which is reversible and becomes an attractive target for drug development. Adding chemical groups to the DNA backbone and modifying histone proteins impart distinct characteristics on chromatin architecture. This process is mediated by various enzymes modifying chromatin structures to achieve the diversity of epigenetic space and the intricacy in gene expression files. After decades of effort, epigenetic modification has represented the hallmarks of different cancer types, and the enzymes involved in this process have provided novel targets for antitumor therapy development. Epigenetic drugs show significant effects on both preclinical and clinical studies in which the target development and research offer a promising direction for cancer therapy. Here, we summarize the different types of epigenetic enzymes which target corresponding protein domains, emphasize DNA methylation, histone modifications, and microRNA-mediated cooperation with epigenetic modification, and highlight recent achievements in developing targets for epigenetic inhibitor therapy. This article reviews current anticancer small-molecule inhibitors targeting epigenetic modified enzymes and displays their performances in different stages of clinical trials. Future studies are further needed to address their off-target effects and cytotoxicity to improve their clinical translation.
Collapse
Affiliation(s)
- Wenjing Xiao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, China
| | - Rui Wang
- Information Department of Medical Security Center, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Ruijie Liu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tingting Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghe Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Jun Hou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| |
Collapse
|
19
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
20
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
21
|
Mladenov V, Fotopoulos V, Kaiserli E, Karalija E, Maury S, Baranek M, Segal N, Testillano PS, Vassileva V, Pinto G, Nagel M, Hoenicka H, Miladinović D, Gallusci P, Vergata C, Kapazoglou A, Abraham E, Tani E, Gerakari M, Sarri E, Avramidou E, Gašparović M, Martinelli F. Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. Int J Mol Sci 2021; 22:7118. [PMID: 34281171 PMCID: PMC8268041 DOI: 10.3390/ijms22137118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Collapse
Affiliation(s)
- Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus;
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department for Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Stephane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France;
| | - Miroslav Baranek
- Mendeleum—Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Naama Segal
- Israel Oceanographic and Limnological Research, The National Center for Mariculture (NCM), P.O.B. 1212, Eilat 88112, Israel;
| | - Pilar S. Testillano
- Center of Biological Research Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Biology Department, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany;
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany;
| | - Dragana Miladinović
- Laboratory for Biotechnology, Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—CS5000833882 Villenave d’Ornon, 33076 Bordeaux, France;
| | - Chiara Vergata
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (HAO-Dimitra), Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece;
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Evaggelia Avramidou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.T.); (M.G.); (E.S.); (E.A.)
| | - Mateo Gašparović
- Chair of Photogrammetry and Remote Sensing, Faculty of Geodesy, University of Zagreb, 10000 Zagreb, Croatia;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
22
|
Markulin L, Škiljaica A, Tokić M, Jagić M, Vuk T, Bauer N, Leljak Levanić D. Taking the Wheel - de novo DNA Methylation as a Driving Force of Plant Embryonic Development. FRONTIERS IN PLANT SCIENCE 2021; 12:764999. [PMID: 34777448 PMCID: PMC8585777 DOI: 10.3389/fpls.2021.764999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/13/2021] [Indexed: 05/16/2023]
Abstract
During plant embryogenesis, regardless of whether it begins with a fertilized egg cell (zygotic embryogenesis) or an induced somatic cell (somatic embryogenesis), significant epigenetic reprogramming occurs with the purpose of parental or vegetative transcript silencing and establishment of a next-generation epigenetic patterning. To ensure genome stability of a developing embryo, large-scale transposon silencing occurs by an RNA-directed DNA methylation (RdDM) pathway, which introduces methylation patterns de novo and as such potentially serves as a global mechanism of transcription control during developmental transitions. RdDM is controlled by a two-armed mechanism based around the activity of two RNA polymerases. While PolIV produces siRNAs accompanied by protein complexes comprising the methylation machinery, PolV produces lncRNA which guides the methylation machinery toward specific genomic locations. Recently, RdDM has been proposed as a dominant methylation mechanism during gamete formation and early embryo development in Arabidopsis thaliana, overshadowing all other methylation mechanisms. Here, we bring an overview of current knowledge about different roles of DNA methylation with emphasis on RdDM during plant zygotic and somatic embryogenesis. Based on published chromatin immunoprecipitation data on PolV binding sites within the A. thaliana genome, we uncover groups of auxin metabolism, reproductive development and embryogenesis-related genes, and discuss possible roles of RdDM at the onset of early embryonic development via targeted methylation at sites involved in different embryogenesis-related developmental mechanisms.
Collapse
|
23
|
Application of the MSAP Technique to Evaluate Epigenetic Changes in Plant Conservation. Int J Mol Sci 2020; 21:ijms21207459. [PMID: 33050382 PMCID: PMC7589462 DOI: 10.3390/ijms21207459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.
Collapse
|
24
|
Genitoni J, Vassaux D, Delaunay A, Citerne S, Portillo Lemus L, Etienne MP, Renault D, Stoeckel S, Barloy D, Maury S. Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype. PHYSIOLOGIA PLANTARUM 2020; 170:280-298. [PMID: 32623739 DOI: 10.1111/ppl.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Ongoing global changes affect ecosystems and open up new opportunities for biological invasion. The ability of invasive species to rapidly adapt to new environments represents a relevant model for studying short-term adaptation mechanisms. The aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala, is classified as harmful in European rivers. In French wet meadows, this species has shown a rapid transition from aquatic to terrestrial environments with emergence of two distinct morphotypes in 5 years. To understand the heritable mechanisms involved in adjustment to such a new environment, we investigate both genetic and epigenetic as possible sources of flexibility involved in this fast terrestrial transition. We found a low overall genetic differentiation between the two morphotypes arguing against the possibility that terrestrial morphotype emerged from a new adaptive genetic capacity. Artificial hypomethylation was induced on both morphotypes to assess the epigenetic hypothesis. We analyzed global DNA methylation, morphological changes, phytohormones and metabolite profiles of both morphotype responses in both aquatic and terrestrial conditions in shoot and root tissues. Hypomethylation significantly affected morphological variables, phytohormone levels and the amount of some metabolites. The effects of hypomethylation depended on morphotypes, conditions and plant tissues, which highlighted differences among the morphotypes and their plasticity. Using a correlative integrative approach, we showed that hypomethylation of the aquatic morphotype mimicked the characteristics of the terrestrial morphotype. Our data suggest that DNA methylation rather than a new adaptive genetic capacity is playing a key role in L. grandiflora subsp. hexapetala plasticity during its rapid aquatic to terrestrial transition.
Collapse
Affiliation(s)
- Julien Genitoni
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Danièle Vassaux
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Luis Portillo Lemus
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Marie-Pierre Etienne
- Institut Agro, CNRS, Université Rennes, IRMAR (Institut de Recherche Mathématique de Rennes) - UMR 6625, Rennes, F-35000, France
| | - David Renault
- UMR CNRS 6553 EcoBio, University of Rennes 1, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université Rennes, Le Rheu, 35653, France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| |
Collapse
|
25
|
Osorio-Montalvo P, De-la-Peña C, Oropeza C, Nic-Can G, Córdova-Lara I, Castillo-Castro E, Sáenz-Carbonell L. A peak in global DNA methylation is a key step to initiate the somatic embryogenesis of coconut palm (Cocos nucifera L). PLANT CELL REPORTS 2020; 39:1345-1357. [PMID: 32789543 DOI: 10.1007/s00299-020-02568-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 05/08/2023]
Abstract
DNA methylation, morphogenesis and gene expression during the somatic embryogenesis of Coconut are affected by 5-Azacytidine pretreatments, indicating that DNA methylation is an important factor throughout this process. Somatic embryogenesis (SE) is a process that can aid in the production of elite Cocos nucifera palms. It has been well established that epigenetic mechanisms are regulators of cell differentiation programs; however, their role in the coconut somatic embryogenesis has not yet been addressed. To this end, the morphogenetic changes, the global DNA methylation and the expression profiles of the SE-related genes and DNA methyltransferases genes were evaluated during the SE process, with and without the presence of 5-Azacytidine (AzaC). The results show that three days of pretreatments with 15 µM and 20 µM of AzaC significantly increased early somatic embryo formation (four- and tenfold, respectively). A clear peak of the global percentage of DNA methylation (approximately 13%) was determined at the beginning of the culture, followed by a re-establishing stage and a steady increase thereafter; in all cases, the levels of DNA methylation were lower after the pretreatments with AzaC. Additionally, the expression profiles of the SERK, WUS, BBM and LEC genes are modulated during the SE process and the pretreatments with AzaC affect the expression profiles of these genes, even at early stages. Furthermore, increased levels of expression were observed for the genes encoding for DNA methyltransferases (MET, CMT and DRM) at early and late stages of SE, indicating that DNA methylation is an important factor throughout the SE.
Collapse
Affiliation(s)
- Pedro Osorio-Montalvo
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Carlos Oropeza
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Geovanny Nic-Can
- CONACYT-Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Iván Córdova-Lara
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Eduardo Castillo-Castro
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Luis Sáenz-Carbonell
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130, entre 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México.
| |
Collapse
|
26
|
Grzybkowska D, Nowak K, Gaj MD. Hypermethylation of Auxin-Responsive Motifs in the Promoters of the Transcription Factor Genes Accompanies the Somatic Embryogenesis Induction in Arabidopsis. Int J Mol Sci 2020; 21:E6849. [PMID: 32961931 PMCID: PMC7555384 DOI: 10.3390/ijms21186849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The auxin-induced embryogenic reprogramming of plant somatic cells is associated with extensive modulation of the gene expression in which epigenetic modifications, including DNA methylation, seem to play a crucial role. However, the function of DNA methylation, including the role of auxin in epigenetic regulation of the SE-controlling genes, remains poorly understood. Hence, in the present study, we analysed the expression and methylation of the TF genes that play a critical regulatory role during SE induction (LEC1, LEC2, BBM, WUS and AGL15) in auxin-treated explants of Arabidopsis. The results showed that auxin treatment substantially affected both the expression and methylation patterns of the SE-involved TF genes in a concentration-dependent manner. The auxin treatment differentially modulated the methylation of the promoter (P) and gene body (GB) sequences of the SE-involved genes. Relevantly, the SE-effective auxin treatment (5.0 µM of 2,4-D) was associated with the stable hypermethylation of the P regions of the SE-involved genes and a significantly higher methylation of the P than the GB fragments was a characteristic feature of the embryogenic culture. The presence of auxin-responsive (AuxRE) motifs in the hypermethylated P regions suggests that auxin might substantially contribute to the DNA methylation-mediated control of the SE-involved genes.
Collapse
Affiliation(s)
| | | | - Małgorzata D. Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.G.); (K.N.)
| |
Collapse
|
27
|
Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM. Advances in Plant Regeneration: Shake, Rattle and Roll. PLANTS (BASEL, SWITZERLAND) 2020; 9:E897. [PMID: 32708602 PMCID: PMC7412315 DOI: 10.3390/plants9070897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/23/2023]
Abstract
Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.
Collapse
Grants
- BIO2015-64255-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTI2018-096505-B-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2017-82447-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- IDIFEDER 2018/016 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- PROMETEO/2019/117 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- ACIF/2018/220 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | | |
Collapse
|
28
|
Effects of Hormones and Epigenetic Regulation on the Callus and Adventitious Bud Induction of Fraxinus mandshurica Rupr. FORESTS 2020. [DOI: 10.3390/f11050590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fraxinus mandshurica Rupr. (hereafter “F. mandshurica”) is known as one of northeast China′s important, valuable hardwood timber species. However, tissue culture and micropropagation of the species are difficult and have low efficiency, limiting asexual propagation. In this manuscript, stem explants were utilized to establish an effective regeneration system through adventitious bud organogenesis. The factors influencing callus regeneration in vitro were determined, and callus regeneration technology was established. The mechanism of adventitious bud formation was analyzed. Thidiazuron (TDZ) played a crucial role in the formation of adventitious buds. Elevated concentrations of TDZ were beneficial to callus induction and low concentrations of 6-benzyladenine (BA) led to loose state callus formation. The order of callus induction rates for different explants was stem cotyledon (100%) > segment (98.54%) > hypocotyl (92.56%) > root (50.71%). The effects of exogenous addition of 6-BA and TDZ on the endogenous hormone content of plants during the regeneration of adventitious buds were also assessed, as well as the expression characteristics of genes related to the regeneration pathway. The comprehensive analysis results showed that the suitable medium for callus induction and adventitious bud differentiation was c12 medium (MSB5 + 30 g/L sucrose + 7 g/L Agar + 5 mg/L 6-BA + 8 mg/L TDZ + 2 mg/L glycine + 0.1 mg/L IBA + 5% coconut water). The induction rates of callus and adventitious buds were 99.15% and 33.33%. The addition of 2.4 mg/L of the DNA demethylation reagent 5-azacytidine (5-aza) and 0.15 mg/L of the histone deacetylase inhibitor trichostatin A (TSA) increased the rates of adventitious bud induction by 17.78% over the control. This further laid the foundation for large-scale cultivation of excellent varieties and genetic transformation techniques.
Collapse
|
29
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
30
|
Zhu T, Li L, Feng L, Mo H, Ren M. Target of Rapamycin Regulates Genome Methylation Reprogramming to Control Plant Growth in Arabidopsis. Front Genet 2020; 11:186. [PMID: 32194640 PMCID: PMC7062917 DOI: 10.3389/fgene.2020.00186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an indispensable epigenetic modification that dynamically regulates gene expression and genome stability during cell growth and development processes. The target of rapamycin (TOR) has emerged as a central regulator to regulate many fundamental cellular metabolic processes from protein synthesis to autophagy in all eukaryotic species. However, little is known about the functions of TOR in DNA methylation. In this study, the synergistic growth inhibition of Arabidopsis seedlings can be observed when DNA methylation inhibitor azacitidine was combined with TOR inhibitors. Global DNA methylation level was evaluated using whole-genome bisulfite sequencing (WGBS) under TOR inhibition. Hypomethylation level of whole genome DNA was observed in AZD-8055 (AZD), rapamycin (RAP) and AZD + RAP treated Arabidopsis seedlings. Based on functional annotation and KEGG pathway analysis of differentially methylated genes (DMGs), most of DMGs were enriched in carbon metabolism, biosynthesis of amino acids and other metabolic processes. Importantly, the suppression of TOR caused the change in DNA methylation of the genes associated with plant hormone signal transduction, indicating that TOR played an important role in modulating phytohormone signals in Arabidopsis. These observations are expected to shed light on the novel functions of TOR in DNA methylation and provide some new insights into how TOR regulates genome DNA methylation to control plant growth.
Collapse
Affiliation(s)
- Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,School of Life Sciences, Chongqing University, Chongqing, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Zhu T, Li L, Feng L, Mo H, Ren M. Target of Rapamycin Regulates Genome Methylation Reprogramming to Control Plant Growth in Arabidopsis. Front Genet 2020. [PMID: 32194640 DOI: 10.3389/fgene.2020.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
DNA methylation is an indispensable epigenetic modification that dynamically regulates gene expression and genome stability during cell growth and development processes. The target of rapamycin (TOR) has emerged as a central regulator to regulate many fundamental cellular metabolic processes from protein synthesis to autophagy in all eukaryotic species. However, little is known about the functions of TOR in DNA methylation. In this study, the synergistic growth inhibition of Arabidopsis seedlings can be observed when DNA methylation inhibitor azacitidine was combined with TOR inhibitors. Global DNA methylation level was evaluated using whole-genome bisulfite sequencing (WGBS) under TOR inhibition. Hypomethylation level of whole genome DNA was observed in AZD-8055 (AZD), rapamycin (RAP) and AZD + RAP treated Arabidopsis seedlings. Based on functional annotation and KEGG pathway analysis of differentially methylated genes (DMGs), most of DMGs were enriched in carbon metabolism, biosynthesis of amino acids and other metabolic processes. Importantly, the suppression of TOR caused the change in DNA methylation of the genes associated with plant hormone signal transduction, indicating that TOR played an important role in modulating phytohormone signals in Arabidopsis. These observations are expected to shed light on the novel functions of TOR in DNA methylation and provide some new insights into how TOR regulates genome DNA methylation to control plant growth.
Collapse
Affiliation(s)
- Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Nowicka A, Juzoń K, Krzewska M, Dziurka M, Dubas E, Kopeć P, Zieliński K, Żur I. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110189. [PMID: 31481211 DOI: 10.1016/j.plantsci.2019.110189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Microspores exposed to some stress factors may display cell totipotency and could be reprogrammed towards embryogenic development. Plant breeding and genetic engineering widely use haploids/doubled haploids (DHs) derived from in vitro-cultured microspores, but the mechanism of this process remains poorly understood. Recently published data suggest that microspore embryogenesis (ME) is accompanied by changes in DNA methylation and chromatin reorganization. Here, we used two triticale DH lines (DH19 and DH28), significantly different with respect to embryogenic potential. To change DNA methylation levels, we applied two cytosine-analogs: 5-azacytidine (AC) and 2'-deoxy-5-azacytidine (DAC) treatments. We found that chemically-induced DNA demethylation caused chromatin relaxation and dysregulation of marker genes (TaTPD1-like, GSTF2, GSTA2, CHI3, Tad1, TaNF-YA7, SERK2, TaME1) related to ME. Both drugs showed significant cytotoxicity in a dose-dependent manner. We noticed that lines varied in terms of overall DNA methylation levels and responded in a different way to hypomethylation caused by the drugs. DH19 (low embryogenic) after inhibitors treatment, showed higher microspore viability, but its recalcitrancy was not overcome. For highly embryogenic DH28, we noted significantly higher effectiveness of embryo-like structure production and plant regeneration. In summary, our study provides new insight into the role of DNA methylation in ME initiation. They suggest potential benefits resulting from the utilization of epigenetic inhibitors to improve the process of DHs production.
Collapse
Affiliation(s)
- Anna Nowicka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland; Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Katarzyna Juzoń
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Monika Krzewska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Ewa Dubas
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Przemysław Kopeć
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Kamil Zieliński
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland
| | - Iwona Żur
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Cracow, Poland.
| |
Collapse
|
33
|
Pasternak T, Dudits D. Epigenetic Clues to Better Understanding of the Asexual Embryogenesis in planta and in vitro. FRONTIERS IN PLANT SCIENCE 2019; 10:778. [PMID: 31275336 PMCID: PMC6592144 DOI: 10.3389/fpls.2019.00778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Affiliation(s)
- Taras Pasternak
- Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- *Correspondence: Taras Pasternak ;
| | - Denes Dudits
- Biological Research Centre, Institute of Plant Biology, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|