1
|
Pham AT, van Dijk BAC, van der Valk ES, van der Vegt B, van Rossum EFC, de Bock GH. Chronic Stress Related to Cancer Incidence, including the Role of Metabolic Syndrome Components. Cancers (Basel) 2024; 16:2044. [PMID: 38893162 PMCID: PMC11171137 DOI: 10.3390/cancers16112044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Epidemiological results on the link between chronic stress and cancer initiation have been inconsistent. This study examined the relation between chronic biological stress, indicated as hair cortisol (HairF) and hair cortisone (HairE), and cancer incidence, adjusting for metabolic syndrome (MetS) components. We analyzed HairF and HairE samples from 6341 participants from the population-based cohort Lifelines in 2014. A linkage with the Dutch Nationwide Pathology Databank (Palga) provided the cancer incidence from 2015 to 2021. The association between dichotomized HairF and log-transformed HairE (LogHairE) and cancer incidence was estimated using Cox regression. MetS components were evaluated as confounders or moderators. Of the 2776 participants with known HairF levels and no cancer history, 238 developed cancer. The HairF level did not predict cancer incidence (HR: 0.993, 95%CI: 0.740-1.333). No confounders or moderators were identified. Among the 4699 participants with known HairE levels and no cancer history, 408 developed cancer. There was no association between LogHairE and cancer incidence (HR: 1.113, 95%CI: 0.738-1.678). When including age as a confounder and gender as a moderator, LogHairE was statistically significantly associated with cancer incidence (HR: 6.403, 95%CI: 1.110-36.92). In a population-based cohort, chronic biological stress, measured by HairE, was associated with cancer incidence, after controlling for age and gender.
Collapse
Affiliation(s)
- An Thanh Pham
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.A.C.v.D.); (G.H.d.B.)
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Boukje A. C. van Dijk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.A.C.v.D.); (G.H.d.B.)
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), 3511 CV Utrecht, The Netherlands
| | - Eline S. van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (E.S.v.d.V.); (E.F.C.v.R.)
| | - Bert van der Vegt
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Elisabeth F. C. van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (E.S.v.d.V.); (E.F.C.v.R.)
| | - Geertruida H. de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (B.A.C.v.D.); (G.H.d.B.)
| |
Collapse
|
2
|
Chen X, Wang M, Yu K, Xu S, Qiu P, Lyu Z, Zhang X, Xu Y. Chronic stress-induced immune dysregulation in breast cancer: Implications of psychosocial factors. J Transl Int Med 2023; 11:226-233. [PMID: 37662890 PMCID: PMC10474889 DOI: 10.2478/jtim-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic stress refers to continuous emotional changes and psychological pressure that individuals experience when they are unable to adjust and stabilize the internal environment over an extended period. It can increase the pressure on endocrine mediators and cytokines in the circulation, as well as tissues throughout the hypothalamic-pituitary-adrenaline (HPA) axis and sympathetic nervous system (SNS); thus, evolving the internal environment of the tumor. This review assesses several key issues, involving psychosocial factors, and integrates clinical, cellular, and molecular studies-as well as the latest research progress-to provide a mechanistic understanding regarding breast oncopsychology. We propose that chronic stress contributes to large individual diferences in the prognosis of breast cancer survivors because they change the basic physiological processes of the endocrine and immune systems, which in turn regulate tumor growth. The study of psychological and physiological reactions of breast cancer patients suggests a new idea for psychological intervention and clinical treatment for breast cancer patients.
Collapse
Affiliation(s)
- Xiuyun Chen
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai200032, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin150081, Heilongjiang Province, China
| | - Pengfei Qiu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan250117, Shandong Province, China
| | - Zhidong Lyu
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao266005, Shandong Province, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang110122, Liaoning Province, China
| | - Yingying Xu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
3
|
Rennie C, Irvine DS, Huang E, Huang J. Music Therapy as a Form of Nonpharmacologic Pain Modulation in Patients with Cancer: A Systematic Review of the Current Literature. Cancers (Basel) 2022; 14:cancers14184416. [PMID: 36139576 PMCID: PMC9497161 DOI: 10.3390/cancers14184416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Cancer is a condition that affects millions of people worldwide each year. Treatments include pharmacologic and surgical interventions that can pose great risks to the physical and mental health of patients. The objective of this systematic review is to consolidate the literature surrounding the use of music therapy as a low-risk and effective pain management adjunct to traditional cancer therapy. This analysis reveals that the use of music therapy thus far has provided a nearly unanimous positive effect on cancer patients, with the potential to provide both physical and psychosocial benefits. The apparent adverse effects appear to be negligible, and music therapy should be considered when creating a cancer care plan. Abstract Aims and Objectives: To consolidate and summarize the current literature surrounding the use of music therapy as an effective noninvasive adjunct to conventional cancer therapy, especially as a low-risk alternative for pain management and anesthetic use in cancer patients. Background: Current studies have proposed that music therapy may be effective as a noninvasive adjunct to conventional cancer therapy in managing numerous outcomes in cancer patients. However, the findings of these investigations have not been consolidated and analyzed on a large scale. Therefore, focusing a systematic review on the effects of music therapy as an adjunct to conventional cancer therapy would give a better understanding of which intervention approaches are associated with better clinical outcomes for cancer patients. Design: A systematic review. Methods: A review of randomized controlled trials to evaluate the effectiveness of music therapy in physical, cognitive, and psychosocial outcomes for cancer patients alone or in conjunction with standard therapy was implemented. We conducted searches using the PubMed/MEDLINE, CINAHL, and Cochrane Library databases for all articles meeting the search criteria up until the time of article extraction in May, 2022. Only studies published in English were included. Two reviewers independently extracted data on participant and intervention characteristics. The main outcome variables included pain, anxiety, quality of life, mood, sleep disorders, fatigue, heart rate, blood pressure, respiratory rate, and oxygen saturation. Results: Of the 202 initially identified articles, 25 randomized controlled trials met the inclusion criteria for evaluation. Of the 25 studies, 23 (92.0%) reported statistically and clinically significant improvements across the outcome variables. Two of the studies (8.00%) found no significant positive effect from music therapy in any of the aforementioned outcomes variables. Conclusion: Music therapy, both as a standalone treatment and when used in conjunction with other pharmacologic and nonpharmacologic modalities, has a generally beneficial effect across several physiologic and psychosocial aspects of cancer.
Collapse
Affiliation(s)
- Christopher Rennie
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, FL 33759, USA
| | - Dylan S. Irvine
- Department of Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, FL 33314, USA
| | - Evan Huang
- Carrollwood Day School, Tampa, FL 33613, USA
| | - Jeffrey Huang
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-4673
| |
Collapse
|
4
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Feng Q, Xia W, Dai G, Lv J, Yang J, Liu D, Zhang G. The Aging Features of Thyrotoxicosis Mice: Malnutrition, Immunosenescence and Lipotoxicity. Front Immunol 2022; 13:864929. [PMID: 35720307 PMCID: PMC9201349 DOI: 10.3389/fimmu.2022.864929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The problem of aging is mainly the increase of age-related diseases, and elderly patients have longer hospitalization and worse prognosis. Poorer nutritional status and immunosenescence may be predisposing and severe factors. The mechanism of the high incidence of diseases and poor prognosis behind aging is complex. Finding suitable aging models is of great significance to find strategies to prevent aging related events. In this study, the relationship between thyrotoxicosis and aging was investigated in mice. The results of routine blood tests and flow cytometry showed that immunosenescence occurred in thyrotoxicosis mice, which was characterized by a significant decrease in neutrophils, lymphocytes, CD4+/CD8+ and CD4+IFN-γ+ lymphocytes. Biochemical examination results showed that there were hypocholesterolemia, hypolipoproteinemia, and hyperlipidemia in thyrotoxicosis mice. Serum proteomics analysis showed that the downregulation of complement and coagulation proteins was another manifestation of declined immunity. Moreover, proteomics analysis showed that many downregulated proteins were related to homeostasis, mainly transport proteins. Their downregulation led to the disturbance of osmotic pressure, ion homeostasis, vitamin utilization, lipid transport, hyaluronic acid processing, and pH maintenance. Serum metabolomics analysis provided more detailed evidence of homeostasis disturbance, especially lipid metabolism disorder, including the downregulation of cholesterol, vitamin D, bile acids, docosanoids, and the upregulation of glucocorticoids, triglycerides, sphingolipids, and free fatty acids. The upregulated lipid metabolites were related to lipotoxicity, which might be one cause of immunosenescence and many aging related syndromes. This study provides evidence for the aging model of thyrotoxicosis mice, which can be used for exploring anti-aging drugs and strategies.
Collapse
Affiliation(s)
- Qin Feng
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wenkai Xia
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guoxin Dai
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jingang Lv
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jian Yang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guimin Zhang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
6
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Glucocorticoid and PD-1 Cross-Talk: Does the Immune System Become Confused? Cells 2021; 10:cells10092333. [PMID: 34571982 PMCID: PMC8468592 DOI: 10.3390/cells10092333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.
Collapse
|
8
|
Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. A Body Shape Index (ABSI), hip index, and risk of cancer in the UK Biobank cohort. Cancer Med 2021; 10:5614-5628. [PMID: 34196490 PMCID: PMC8366087 DOI: 10.1002/cam4.4097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Abdominal size is associated positively with the risk of some cancers but the influence of body mass index (BMI) and gluteofemoral size is unclear because waist and hip circumference are strongly correlated with BMI. We examined associations of 33 cancers with A Body Shape Index (ABSI) and hip index (HI), which are independent of BMI by design, and compared these with waist and hip circumference, using multivariable Cox proportional hazards models in UK Biobank. During a mean follow-up of 7 years, 14,682 incident cancers were ascertained in 200,289 men and 12,965 cancers in 230,326 women. In men, ABSI was associated positively with cancers of the head and neck (hazard ratio HR = 1.14; 95% confidence interval 1.03-1.26 per one standard deviation increment), esophagus (adenocarcinoma, HR = 1.27; 1.12-1.44), gastric cardia (HR = 1.31; 1.07-1.61), colon (HR = 1.18; 1.10-1.26), rectum (HR = 1.13; 1.04-1.22), lung (adenocarcinoma, HR = 1.16; 1.03-1.30; squamous cell carcinoma [SCC], HR = 1.33; 1.17-1.52), and bladder (HR = 1.15; 1.04-1.27), while HI was associated inversely with cancers of the esophagus (adenocarcinoma, HR = 0.89; 0.79-1.00), gastric cardia (HR = 0.79; 0.65-0.96), colon (HR = 0.92; 0.86-0.98), liver (HR = 0.86; 0.75-0.98), and multiple myeloma (HR = 0.86; 0.75-1.00). In women, ABSI was associated positively with cancers of the head and neck (HR = 1.27; 1.10-1.48), esophagus (SCC, HR = 1.37; 1.07-1.76), colon (HR = 1.08; 1.01-1.16), lung (adenocarcinoma, HR = 1.17; 1.06-1.29; SCC, HR = 1.40; 1.20-1.63; small cell, HR = 1.39; 1.14-1.69), kidney (clear-cell, HR = 1.25; 1.03-1.50), and post-menopausal endometrium (HR = 1.11; 1.02-1.20), while HI was associated inversely with skin SCC (HR = 0.91; 0.83-0.99), post-menopausal kidney cancer (HR = 0.77; 0.67-0.88), and post-menopausal melanoma (HR = 0.90; 0.83-0.98). Unusually, ABSI was associated inversely with melanoma in men (HR = 0.89; 0.82-0.96) and pre-menopausal women (HR = 0.77; 0.65-0.91). Waist and hip circumference reflected associations with BMI, when examined individually, and provided biased risk estimates, when combined with BMI. In conclusion, preferential positive associations of ABSI or inverse of HI with several major cancers indicate an important role of factors determining body shape in cancer development.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- MRC Centre for TransplantationKing’s College LondonLondonUK
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
| | - Evangelos Evangelou
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
- Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece
| | - Elio Riboli
- Department of Epidemiology and BiostatisticsSchool of Public HealthImperial College LondonNorfolk Place, LondonUK
| |
Collapse
|
9
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
10
|
Cui B, Peng F, Lu J, He B, Su Q, Luo H, Deng Z, Jiang T, Su K, Huang Y, Ud Din Z, Lam EWF, Kelley KW, Liu Q. Cancer and stress: NextGen strategies. Brain Behav Immun 2021; 93:368-383. [PMID: 33160090 DOI: 10.1016/j.bbi.2020.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is well-known to cause physiological distress that leads to body balance perturbations by altering signaling pathways in the neuroendocrine and sympathetic nervous systems. This increases allostatic load, which is the cost of physiological fluctuations that are required to cope with psychological challenges as well as changes in the physical environment. Recent studies have enriched our knowledge about the role of chronic stress in disease development, especially carcinogenesis. Stress stimulates the hypothalamic-pituitaryadrenal (HPA) axis and the sympathetic nervous system (SNS), resulting in an abnormal release of hormones. These activate signaling pathways that elevate expression of downstream oncogenes. This occurs by activation of specific receptors that promote numerous cancer biological processes, including proliferation, genomic instability, angiogenesis, metastasis, immune evasion and metabolic disorders. Moreover, accumulating evidence has revealed that β-adrenergic receptor (ADRB) antagonists and downstream target inhibitors exhibit remarkable anti-tumor effects. Psychosomatic behavioral interventions (PBI) and traditional Chinese medicine (TCM) also effectively relieve the impact of stress in cancer patients. In this review, we discuss recent advances in the underlying mechanisms that are responsible for stress in promoting malignancies. Collectively, these data provide approaches for NextGen pharmacological therapies, PBI and TCM to reduce the burden of tumorigenesis.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Yanping Huang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il 61801, USA.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China.
| |
Collapse
|
11
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
12
|
Inokawa H, Umemura Y, Shimba A, Kawakami E, Koike N, Tsuchiya Y, Ohashi M, Minami Y, Cui G, Asahi T, Ono R, Sasawaki Y, Konishi E, Yoo SH, Chen Z, Teramukai S, Ikuta K, Yagita K. Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci Rep 2020; 10:2569. [PMID: 32054990 PMCID: PMC7018741 DOI: 10.1038/s41598-020-59541-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.
Collapse
Affiliation(s)
- Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Munehiro Ohashi
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryutaro Ono
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuh Sasawaki
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Satoshi Teramukai
- Department of Biostatistics, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| |
Collapse
|