1
|
Bhise K, Gavande NS, Iyer AK. Leveraging hypoxia in triple-negative breast cancer as a promising treatment strategy. Drug Discov Today 2023; 28:103761. [PMID: 37660983 DOI: 10.1016/j.drudis.2023.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Current treatment strategies for triple-negative breast cancer (TNBC) are based upon conventional chemotherapy, immunotherapy, or a combination of both. The treatment regimen for chemotherapy is often a combination of two or more drugs, either dose dense or low dose for synergy. Anthracyclines, alkylating agents, antimicrotubule agents, and antimetabolites for early-stage TNBC; and antimetabolites, non-taxane microtubule inhibitors, and cross-linker platinums for late-stage TNBC are usually administered in the clinical setting. Newer options for patients with advanced TNBC, such as poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, have recently emerged for cases where surgery is not a viable option and the disease has metastasized. This review outlines the current trends in hypoxia-inspired treatment strategies for TNBC with a focus on clinical trials.
Collapse
Affiliation(s)
- Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
2
|
Lennartz M, Csomós H, Chirico V, Weidemann S, Gorbokon N, Menz A, Büscheck F, Hube-Magg C, Höflmayer D, Bernreuther C, Blessin NC, Lebok P, Sauter G, Steurer S, Burandt E, Dum D, Krech T, Simon R, Minner S, Jacobsen F, Clauditz TS, Luebke AM, Siraj AK, Al-Dayel F, Al-Kuraya KS, Hinsch A. Cadherin-16 (CDH16) immunohistochemistry: a useful diagnostic tool for renal cell carcinoma and papillary carcinomas of the thyroid. Sci Rep 2023; 13:12917. [PMID: 37558687 PMCID: PMC10412623 DOI: 10.1038/s41598-023-39945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Cadherin-16 (CDH16) plays a role in the embryonal development in kidney and thyroid. Downregulation of CDH16 RNA was found in papillary carcinomas of the thyroid. To determine the expression of CDH16 in tumors and to assess the diagnostic utility a tissue microarray containing 15,584 samples from 152 different tumor types as well as 608 samples of 76 different normal tissue types was analyzed. A membranous CDH16 immunostaining was predominantly seen in thyroid, kidney, cauda epididymis, and mesonephric remnants. In the thyroid, CDH16 staining was seen in 100% of normal samples, 86% of follicular adenomas, 60% of follicular carcinomas, but only 7% of papillary carcinomas (p < 0.0001). CDH16 positivity was frequent in nephrogenic adenomas (100%), oncocytomas (98%), chromophobe (97%), clear cell (85%), and papillary (76%) renal cell carcinomas (RCCs), various subtypes of carcinoma of the ovary (16-56%), various subtyped of carcinomas of the uterus (18-40%), as well as in various subtypes of neuroendocrine neoplasms (4-26%). Nineteen further tumor entities showed a weak to moderate CDH16 staining in up to 8% of cases. Our data suggest CDH16 as a potential diagnostic marker-as a part of a panel-for the identification of papillary carcinomas of the thyroid, nephrogenic adenomas, and the distinction of renal cell tumors from other neoplasms.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Henrietta Csomós
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Abdul Khalid Siraj
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Venturella M, Falsini A, Coppola F, Giuntini G, Carraro F, Zocco D, Chiesi A, Naldini A. CA-IX-Expressing Small Extracellular Vesicles (sEVs) Are Released by Melanoma Cells under Hypoxia and in the Blood of Advanced Melanoma Patients. Int J Mol Sci 2023; 24:ijms24076122. [PMID: 37047096 PMCID: PMC10094632 DOI: 10.3390/ijms24076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.
Collapse
Affiliation(s)
- Marta Venturella
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Alessandro Falsini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Coppola
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Gaia Giuntini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabio Carraro
- Cellular and Molecular Physiology Unit, Department of Medical Biotechnologies, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Davide Zocco
- Lonza Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonio Chiesi
- Exosomics SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Priego-Hernández VD, Arizmendi-Izazaga A, Soto-Flores DG, Santiago-Ramón N, Feria-Valadez MD, Navarro-Tito N, Jiménez-Wences H, Martínez-Carrillo DN, Salmerón-Bárcenas EG, Leyva-Vázquez MA, Illades-Aguiar B, Alarcón-Romero LDC, Ortiz-Ortiz J. Expression of HIF-1α and Genes Involved in Glucose Metabolism Is Increased in Cervical Cancer and HPV-16-Positive Cell Lines. Pathogens 2022; 12:pathogens12010033. [PMID: 36678382 PMCID: PMC9865746 DOI: 10.3390/pathogens12010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer (CC) is the most common cancer in women in the lower genital tract. The main risk factor for developing CC is persistent infection with HPV 16. The E6 and E7 oncoproteins of HPV 16 have been related to metabolic reprogramming in cancer through the regulation of the expression and stability of HIF-1α and consequently of the expression of its target genes, such as HIF1A (HIF-1α), SLC2A1 (GLUT1), LDHA, CA9 (CAIX), SLC16A3 (MCT4), and BSG (Basigin or CD147), which are involved in glucose metabolism. This work aimed to evaluate the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and Basigin in patient samples and CC cell lines. To evaluate the expression level of HIF1A, SLC2A1, LDHA, CA9, SLC16A3, and BSG genes in tissue from patients with CC and normal tissue, the TCGA dataset was used. To evaluate the expression level of these genes by RT-qPCR in CC cell lines, HPV-negative (C-33A) and HPV-16-positive (SiHa and Ca Ski) cell lines were used. Increased expression of HIF1A, SLC2A1, LDHA, SLC16A3, and BSG was found in Ca Ski and CA9 in SiHa compared to C-33A. Similar results were observed in CC tissues compared to normal tissue obtained by bioinformatics analysis. In conclusion, the expression of HIF-1α, GLUT1, LDHA, CAIX, MCT4, and BSG genes is increased in CC and HPV-16-positive cell lines.
Collapse
Affiliation(s)
- Víctor D. Priego-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Diana G. Soto-Flores
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Norma Santiago-Ramón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Milagros D. Feria-Valadez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Dinorah N. Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Eric G. Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Marco A. Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Luz del C. Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica de la Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
- Correspondence: ; Tel.: +52-747-471-0901
| |
Collapse
|
5
|
Yamali C, Sakagami H, Satoh K, Bandow K, Uesawa Y, Bua S, Angeli A, Supuran CT, Inci Gul H. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone linker and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem 2022; 127:105969. [DOI: 10.1016/j.bioorg.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
|
6
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
7
|
Yamali C, Sakagami H, Uesawa Y, Kurosaki K, Satoh K, Masuda Y, Yokose S, Ece A, Bua S, Angeli A, Supuran CT, Gul HI. Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021; 217:113351. [PMID: 33744685 DOI: 10.1016/j.ejmech.2021.113351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.6 nM) was 47 times more selective inhibitor of hCA XI over hCA II compared to the acetazolamide. Compounds 11 (CC50 = 5.2 μM) and 20 (CC50 = 1.6 μM) showed comparative tumor-specificity (TS= > 38.5; >128.2) with doxorubicin (TS > 43.0) towards HSC-2 cancer cell line. Western blot analysis demonstrated that 11 induced slightly apoptosis whereas 20 did not induce detectable apoptosis. A preliminary analysis showed that some correlation of tumor-specificity of 1-20 with the chemical descriptors that reflect hydrophobic volume, dipole moment, lowest hydrophilic energy, and topological structure. Molecular docking simulations were applied to the synthesized ligands to elucidate the predicted binding mode and selectivity profiles towards hCA I, hCA II, and hCA IX.
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, Saitama, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kota Kurosaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
8
|
GP88/PGRN Serum Levels Are Associated with Prognosis for Oral Squamous Cell Carcinoma Patients. BIOLOGY 2021; 10:biology10050400. [PMID: 34064411 PMCID: PMC8147813 DOI: 10.3390/biology10050400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary An oral squamous cell carcinoma (OSCC) is a tumor of the oral cavity that has a five-year survival rate of only around 50%. As this rate has not increased in recent decades, despite improvements in diagnosis and therapy, novel, easily accessible biomarkers for prognosis assessment are still needed. In our study, we measured the growth factor protein progranulin/GP88 in the serum of OSCC patients and demonstrated that an increased serum GP88 level is associated with a better prognosis for the OSCC patients in our study group. Furthermore, serum GP88 levels were not significantly associated with age, sex, or the tumor’s histological features, indicating that serum GP88 levels may be an independent predictor of an individual OSCC patient’s prognosis. These findings may help to improve therapy management of an OSCC in personalized medicine. Abstract Progranulin (PGRN)/GP88 is a growth factor that is expressed in a wide range of tumor tissues. The secreted form is involved in various biological processes including proliferation and inflammation. In several tumor types, the serum GP88 level is associated with a patient’s prognosis; however, data for oral squamous cell carcinomas (OSCCs) have not yet been reported. We measured the serum GP88 levels in 96 OSCC patients by an enzyme immunosorbent assay (EIA) and correlated these data with clinicopathological parameters and patient outcomes. The GP88 levels in the serum of OSCC patients and healthy volunteers were comparable. In OSCC patients, the levels did not correlate with age, sex, or TNM status. In a Kaplan–Meier survival analysis, a serum GP88 level < 68 ng/mL was significantly associated with worsened survival (p = 0.0005, log-rank-test) as well as in uni- and multivariate Cox regression analyses (RR = 4.6 [1.6–12.9], p = 0.004 and RR = 4.2 [1.2–12.0], p = 0.008). This effect was predominant in OSCC patients older than 60.5 years (p = 0.027), while in younger patients no significant association between serum GP88 levels and prognosis could be observed. Altogether, lower serum GP88 levels are significantly associated with a worsened outcome for an OSCC and may be an interesting candidate for risk stratification during OSCC therapy.
Collapse
|
9
|
Huang ZD, Yao YY, Chen TY, Zhao YF, Zhang C, Niu YM. Construction of Prognostic Risk Prediction Model of Oral Squamous Cell Carcinoma Based on Nine Survival-Associated Metabolic Genes. Front Physiol 2021; 12:609770. [PMID: 33815132 PMCID: PMC8011568 DOI: 10.3389/fphys.2021.609770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
The aim was to investigate the independent prognostic factors and construct a prognostic risk prediction model to facilitate the formulation of oral squamous cell carcinoma (OSCC) clinical treatment plan. We constructed a prognostic model using univariate COX, Lasso, and multivariate COX regression analysis and conducted statistical analysis. In this study, 195 randomly obtained sample sets were defined as training set, while 390 samples constituted validation set for testing. A prognostic model was constructed using regression analysis based on nine survival-associated metabolic genes, among which PIP5K1B, NAGK, and HADHB significantly down-regulated, while MINPP1, PYGL, AGPAT4, ENTPD1, CA12, and CA9 significantly up-regulated. Statistical analysis used to evaluate the prognostic model showed a significant different between the high and low risk groups and a poor prognosis in the high risk group (P < 0.05) based on the training set. To further clarify, validation sets showed a significant difference between the high-risk group with a worse prognosis and the low-risk group (P < 0.05). Independent prognostic analysis based on the training set and validation set indicated that the risk score was superior as an independent prognostic factor compared to other clinical characteristics. We conducted Gene Set Enrichment Analysis (GSEA) among high-risk and low-risk patients to identify metabolism-related biological pathways. Finally, nomogram incorporating some clinical characteristics and risk score was constructed to predict 1-, 2-, and 3-year survival rates (C-index = 0.7). The proposed nine metabolic gene prognostic model may contribute to a more accurate and individualized prediction for the prognosis of newly diagnosed OSCC patients, and provide advice for clinical treatment and follow-up observations.
Collapse
Affiliation(s)
- Zhen-Dong Huang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Yang-Yang Yao
- The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi-Fan Zhao
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Oral and Maxillofacial Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
10
|
Lorenzo-Pouso AI, Gallas-Torreira M, Pérez-Sayáns M, Chamorro-Petronacci CM, Alvarez-Calderon O, Takkouche B, Supuran CT, García-García A. Prognostic value of CAIX expression in oral squamous cell carcinoma: a systematic review and meta-analysis. J Enzyme Inhib Med Chem 2021; 35:1258-1266. [PMID: 32466707 PMCID: PMC7337009 DOI: 10.1080/14756366.2020.1772250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein considered as a predictor for oral squamous cell carcinoma (OSCC) biological behaviour. Nevertheless, this prognostic value is still yet to be validated. We aim to quantify prognostic significance of CAIX overexpression in OSCC by meta-analysis. We performed searches in MEDLINE, EMBASE, SCOPUS, WOS, WHO’S databases, CPCI, and OATD from inception to August 2019. Overall survival (OS), disease-free survival (DFS), locoregional control (LC), and disease-specific survival (DSS) were considered as outcomes of interest. Overall 18 studies were included. CAIX overexpression was associated with worse OS (hazard ratio [HR] = 1.45 95% confidence interval [CI] 1.17–1.80) and DFS (HR = 1.98 95% CI 1.18–3.32). To the contrary, it was neither associated with LC (HR = 1.01 95% CI 0.50–2.02) nor with DSS (HR = 1.35 95% CI 0.78–2.33). Heterogeneity was negligible in all analyses except for DSS. Small studies effect was not significant for OS and DFS. This study shows that immunohistochemical CAIX assessment is a useful OSCC prognostic biomarker.
Collapse
Affiliation(s)
- Alejandro I Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Gallas-Torreira
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cintia M Chamorro-Petronacci
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Bahi Takkouche
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
The hypoxia-sensor carbonic anhydrase IX affects macrophage metabolism, but is not a suitable biomarker for human cardiovascular disease. Sci Rep 2021; 11:425. [PMID: 33432108 PMCID: PMC7801702 DOI: 10.1038/s41598-020-79978-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
Hypoxia is prevalent in atherosclerotic plaques, promoting plaque aggravation and subsequent cardiovascular disease (CVD). Transmembrane protein carbonic anhydrase IX (CAIX) is hypoxia-induced and can be shed into the circulation as soluble CAIX (sCAIX). As plaque macrophages are hypoxic, we hypothesized a role for CAIX in macrophage function, and as biomarker of hypoxic plaque burden and CVD. As tumor patients with probable CVD are treated with CAIX inhibitors, this study will shed light on their safety profile. CAIX co-localized with macrophages (CD68) and hypoxia (pimonidazole), and correlated with lipid core size and pro-inflammatory iNOS+ macrophages in unstable human carotid artery plaques. Although elevated pH and reduced lactate levels in culture medium of CAIX knock-out (CAIXko) macrophages confirmed its role as pH-regulator, only spare respiratory capacity of CAIXko macrophages was reduced. Proliferation, apoptosis, lipid uptake and expression of pro- and anti-inflammatory genes were not altered. Plasma sCAIX levels and plaque-resident CAIX were below the detection threshold in 50 and 90% of asymptomatic and symptomatic cases, respectively, while detectable levels did not associate with primary or secondary events, or intraplaque hemorrhage. Initial findings show that CAIX deficiency interferes with macrophage metabolism. Despite a correlation with inflammatory macrophages, plaque-resident and sCAIX expression levels are too low to serve as biomarkers of future CVD.
Collapse
|
12
|
A Metabolic Gene Signature to Predict Overall Survival in Head and Neck Squamous Cell Carcinoma. Mediators Inflamm 2020; 2020:6716908. [PMID: 33456371 PMCID: PMC7787728 DOI: 10.1155/2020/6716908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a common malignancy that emanates from the lips, mouth, paranasal sinuses, oropharynx, larynx, nasopharynx, and from other pharyngeal cancers. The availability of high-throughput expression data has made it possible to use global gene expression data to analyze the relationship between metabolic-related gene expression and clinical outcomes in HNSCC patients. Method In this study, we used RNA sequencing (RNA-seq) data from the cancer genome atlas (TCGA), with validation in the GEO dataset to profile the metabolic microenvironment and define potential biomarkers for metabolic therapy. Results We extracted data for 529 patients and 327 metabolic genes (198 upregulated and 129 downregulated genes) in the TCGA database. Carbonic anhydrase 9 (CA9) and CA6 had the largest logFCs in the upregulated and downregulated genes, respectively. Our Cox regression model data showed 51 prognostic-related genes with lysocardiolipin acyltransferase 1 (LCLAT1) and choline dehydrogenase (CHDH) being associated with the highest risk (HR = 1.144, 95% CI = 1.044 ~ 1.251) and the lowest risk (HR = 0.580, 95% CI = 0.400 ~ 0.839) in HNSCC, respectively. We next used the ROC curve to evaluate whether the differentially expressed metabolic-related genes could serve as early predictors of HNSCC. The findings showed an AUC of 0.745 and 0.618 in the TCGA and GEO analysis, respectively. Besides, the ability for the genes to predict clinicopathological HNSCC status was analyzed and the data showed that the AUC for age, gender, grade, stage, T, M, and N was 0.520, 0.495, 0.568, 0.606, 0.577, 0.476, and 0.673, respectively, in the TCGA dataset. On the other hand, the AUC for age, gender, stage, T, M, N, smoking, and HPV16-pos was 0.599, 0.531, 0.622, 0.606, 0.616, 0.550, 0.614, 0.519, and 0.397, respectively, in the GEO dataset. Conclusion Taken together, our study unearths a novel metabolic gene signature for the prediction of HNSCC prognosis based on the TCGA dataset. Our signature might point out the metabolic microenvironment disorders and provides potential treatment targets and prognostic biomarkers.
Collapse
|
13
|
Yashiro M, Kinoshita H, Tsujio G, Fukuoka T, Yamamoto Y, Sera T, Sugimoto A, Nishimura S, Kushiyama S, Togano S, Kuroda K, Toyokawa T, Ohira M. SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncol Lett 2020; 21:38. [PMID: 33262830 PMCID: PMC7693388 DOI: 10.3892/ol.2020.12299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor 1α (SDF1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) have been reported to form an important chemokine signaling pathway. Our previous study reported that SDF1α from tumor stromal cells may stimulate the proliferation of gastric cancer (GC) cells through the CXCR4 axis in a hypoxic microenvironment. However, a limited number of studies have addressed the clinicopathological significance of the expression of SDF1α and CXCR4 in GC, particularly at hypoxic regions. Immunohistochemistry was used to investigate the expression levels of SDF1α, CXCR4 and the hypoxic marker carbonic anhydrase 9 (CA9) in 185 patients with stage II and III GC. The results demonstrated that CA9 was expressed on cancer and stromal cells in hypoxic lesions, CXCR4 was mainly expressed in cancer cells, and SDFα was mainly expressed in stromal cells. CXCR4 expression in cancer cells and SDFα expression in stromal cells were associated with the hypoxic regions with CA9 expression. The CA9 and CXCR4 expression in the cancer cells, and the SDF1α expression in the stromal cells (CA9/CXCR4/SDF1α) was significantly associated with macroscopic type 4 tumor (P=0.012) and the pattern of tumor infiltration into the surrounding tissue (P<0.001). The prognosis of the all CA9/CXCR4/SDF1α-positive patients was significantly poorer compared with that of patients with CA9-, CXCR4- or SDF1α-negative GC at Stage III (P=0.041). These results indicated that hypoxia may upregulate SDFα production in stromal cells and CXCR4 expression in cancer cells. The SDF1α/CXCR4 axis may serve an important role in the progression of GC.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Haruhito Kinoshita
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shingo Togano
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kenji Kuroda
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
14
|
Eckert AW, Kappler M, Große I, Wickenhauser C, Seliger B. Current Understanding of the HIF-1-Dependent Metabolism in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6083. [PMID: 32846951 PMCID: PMC7504563 DOI: 10.3390/ijms21176083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the 10th most frequent human malignancy and is thus a global burden. Despite some progress in diagnosis and therapy, patients' overall survival rate, between 40 and 55%, has stagnated over the last four decades. Since the tumor node metastasis (TNM) system is not precise enough to predict the disease outcome, additive factors for diagnosis, prognosis, prediction and therapy resistance are urgently needed for OSCC. One promising candidate is the hypoxia inducible factor-1 (HIF-1), which functions as an early regulator of tumor aggressiveness and is a key promoter of energy adaptation. Other parameters comprise the composition of the tumor microenvironment, which determines the availability of nutrients and oxygen. In our opinion, these general processes are linked in the pathogenesis of OSCC. Based on this assumption, the review will summarize the major features of the HIF system-induced activities, its target proteins and related pathways of nutrient utilization and metabolism that are essential for the initiation, progression and therapeutic stratification of OSCC.
Collapse
Affiliation(s)
- Alexander W. Eckert
- Klinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Universitätsklinik der Paracelsus Medizinischen Privatuniversität, Breslauer Str. 201, 90471 Nurnberg, Germany
- Universitätsklinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Martin-Luther-Universität Halle-Wittenebrg, Ernst- Grube-Straße 40, 06120 Halle, Germany;
| | - Matthias Kappler
- Universitätsklinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie, Martin-Luther-Universität Halle-Wittenebrg, Ernst- Grube-Straße 40, 06120 Halle, Germany;
| | - Ivo Große
- Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany;
| | - Claudia Wickenhauser
- Institut für Pathologie, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany;
| | - Barbara Seliger
- Institut für Medizinische Immunologie, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany
| |
Collapse
|
15
|
Anduran E, Aspatwar A, Parvathaneni NK, Suylen D, Bua S, Nocentini A, Parkkila S, Supuran CT, Dubois L, Lambin P, Winum JY. Hypoxia-Activated Prodrug Derivatives of Carbonic Anhydrase Inhibitors in Benzenesulfonamide Series: Synthesis and Biological Evaluation. Molecules 2020; 25:E2347. [PMID: 32443462 PMCID: PMC7287649 DOI: 10.3390/molecules25102347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia, a common feature of solid tumours' microenvironment, is associated with an aggressive phenotype and is known to cause resistance to anticancer chemo- and radiotherapies. Tumour-associated carbonic anhydrases isoform IX (hCA IX), which is upregulated under hypoxia in many malignancies participating to the microenvironment acidosis, represents a valuable target for drug strategy against advanced solid tumours. To overcome cancer cell resistance and improve the efficacy of therapeutics, the use of bio-reducible prodrugs also known as Hypoxia-activated prodrugs (HAPs), represents an interesting strategy to be applied to target hCA IX isozyme through the design of selective carbonic anhydrase IX inhibitors (CAIs). Here, we report the design, synthesis and biological evaluations including CA inhibition assays, toxicity assays on zebrafish and viability assays on human cell lines (HT29 and HCT116) of new HAP-CAIs, harboring different bio-reducible moieties in nitroaromatic series and a benzenesulfonamide warhead to target hCA IX. The CA inhibition assays of this compound series showed a slight selectivity against hCA IX versus the cytosolic off-target hCA II and hCA I isozymes. Toxicity and viability assays have highlighted that the compound bearing the 2-nitroimidazole moiety possesses the lowest toxicity (LC50 of 1400 µM) and shows interesting results on viability assays.
Collapse
Affiliation(s)
- Emilie Anduran
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Nanda-Kumar Parvathaneni
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands;
| | - Silvia Bua
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology and Fimlab Ltd., University of Tampere and Tampere University Hospital, 33520 Tampere, Finland; (A.A.); (S.P.)
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Florence), Italy; (S.B.); (A.N.); (C.T.S.)
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France; (E.A.); (N.-K.P.)
| |
Collapse
|
16
|
Guan C, Ouyang D, Qiao Y, Li K, Zheng G, Lao X, Zhang S, Liao G, Liang Y. CA9 transcriptional expression determines prognosis and tumour grade in tongue squamous cell carcinoma patients. J Cell Mol Med 2020; 24:5832-5841. [PMID: 32299152 PMCID: PMC7214172 DOI: 10.1111/jcmm.15252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
CA9 is a member of the carbonic anhydrases’ family, that is often expressed in cancer cells under hypoxic condition. However, the role of CA9 in the molecular mechanisms of tongue squamous cell carcinoma (TSCC) pathogenesis remains unclear. CA9 expression was analysed using the TCGA database, and its influence on survival was performed using Kaplan‐Meier, LASSO and COX regression analyses. The correlation between CA9 and immune infiltration was investigated by CIBERSORT and ESTIMATE. Moreover, the relationship between CA9 expression and downstream molecular regulation pathways was analysed by GSEA, GO and WGCNA. CA9 expression correlated with clinical prognosis and tumour grade in TSCC. Moreover, CA9 expression potentially contributes to the regulation of cancer cell differentiation and mediates tumour‐associated genes and signalling pathways, including apoptosis, hypoxia, G2M checkpoint, PI3K/AKR/mTOR signalling and TGF‐beta signalling pathways. However, the follicular helper T cells, regulatory T cells, immune and stromal scores showed no significance between high and low CA9 expression groups. These findings suggested that CA9 plays a critical role of TSCC prognosis and tumour grade. CA9 expression significantly correlated with the regulation of cell differentiation, various oncogenes and cancer‐associated pathways.
Collapse
Affiliation(s)
- Chenyu Guan
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Daiqiao Ouyang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yongjie Qiao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Guangsen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaomei Lao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
17
|
Yamali C, Gul HI, Ece A, Bua S, Angeli A, Sakagami H, Sahin E, Supuran CT. Synthesis, biological evaluation and in silico modelling studies of 1,3,5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorg Chem 2019; 92:103222. [PMID: 31499260 DOI: 10.1016/j.bioorg.2019.103222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama 350-0283, Japan
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
18
|
Lorenzo-Pouso AI, Pérez-Sayáns M, Rodríguez-Zorrilla S, Chamorro-Petronacci C, García-García A. Dissecting the Proton Transport Pathway in Oral Squamous Cell Carcinoma: State of the Art and Theranostics Implications. Int J Mol Sci 2019; 20:ijms20174222. [PMID: 31470498 PMCID: PMC6747091 DOI: 10.3390/ijms20174222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells overexpress proton exchangers at the plasma membrane in order acidify the extracellular matrix and maintain the optimal pH for sustaining cancer growth. Among the families of proton exchangers implicated in carcinogenesis, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs), Na+/H+ exchangers (NHEs), sodium bicarbonate cotransporters (NBCs), and vacuolar ATPases (V-ATPases) are highlighted. Considerable research has been carried out into the utility of the understanding of these machineries in the diagnosis and prognosis of several solid tumors. In addition, as therapeutic targets, the interference of their functions has contributed to the discovery or optimization of cancer therapies. According to recent reports, the study of these mechanisms seems promising in the particular case of oral squamous cell carcinoma (OSCC). In the present review, the latest advances in these fields are summarized, in particular, the usefulness of proton exchangers as potential prognostic biomarkers and therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Alejandro I Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain.
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain.
| | - Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| | - Cintia Chamorro-Petronacci
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| |
Collapse
|