1
|
Guo S, Yang J. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.06.23292336. [PMID: 37503151 PMCID: PMC10370241 DOI: 10.1101/2023.07.06.23292336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Transcriptome-wide association study (TWAS) is an influential tool for identifying novel genes associated with complex diseases, where their genetic effects may be mediated through transcriptome. TWAS utilizes reference genetic and transcriptomic data to estimate genetic effect sizes on expression quantitative traits of target genes (i.e., effect sizes of a broad sense of expression quantitative trait loci, eQTL). These estimated effect sizes are then employed as variant weights in burden gene-based association test statistics, facilitating the mapping of risk genes for complex diseases with genome-wide association study (GWAS) data. However, most existing TWAS of Alzheimer's disease (AD) dementia have primarily focused on cis -eQTL, disregarding potential trans -eQTL. To overcome this limitation, we applied the Bayesian Genome-wide TWAS (BGW-TWAS) method which incorporated both cis - and trans -eQTL of brain and blood tissues to enhance mapping risk genes for AD dementia. Methods We first applied BGW-TWAS to the Genotype-Tissue Expression (GTEx) V8 dataset to estimate cis - and trans -eQTL effect sizes of the prefrontal cortex, cortex, and whole blood tissues. Subsequently, estimated eQTL effect sizes were integrated with the summary data of the most recent GWAS of AD dementia to obtain BGW-TWAS (i.e., gene-based association test) p-values of AD dementia per tissue type. Finally, we used the aggregated Cauchy association test to combine TWAS p-values across three tissues to obtain omnibus TWAS p-values per gene. Results We identified 37 genes in prefrontal cortex, 55 in cortex, and 51 in whole blood that were significantly associated with AD dementia. By combining BGW-TWAS p-values across these three tissues, we obtained 93 significant risk genes including 29 genes primarily due to trans -eQTL and 50 novel genes. Utilizing protein-protein interaction network and phenotype enrichment analyses with these 93 significant risk genes, we detected 5 functional clusters comprised of both known and novel AD risk genes and 7 enriched phenotypes. Conclusion We applied BGW-TWAS and aggregated Cauchy test methods to integrate both cis - and trans -eQTL data of brain and blood tissues with GWAS summary data to identify risk genes of AD dementia. The risk genes we identified provide novel insights into the underlying biological pathways implicated in AD dementia.
Collapse
|
2
|
Zhang X, Tong T, Chang A, Ang TFA, Tao Q, Auerbach S, Devine S, Qiu WQ, Mez J, Massaro J, Lunetta KL, Au R, Farrer LA. Midlife lipid and glucose levels are associated with Alzheimer's disease. Alzheimers Dement 2023; 19:181-193. [PMID: 35319157 PMCID: PMC10078665 DOI: 10.1002/alz.12641] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION It is unknown whether vascular and metabolic diseases assessed in early adulthood are associated with Alzheimer's disease (AD) later in life. METHODS Association of AD with lipid fractions, glucose, blood pressure, body mass index (BMI), and smoking obtained prospectively from 4932 Framingham Heart Study (FHS) participants across nine quadrennial examinations was evaluated using Cox proportional hazard and Kaplan-Meier models. Age-, sex-, and education-adjusted models were tested for each factor measured at each exam and within three adult age groups (early = 35-50, middle = 51-60, and late = 61-70). RESULTS A 15 mg/dL increase in high density lipoprotein (HDL) cholesterol was associated with decreased AD risk during early (15.4%, P = 0.041) and middle (17.9%, P = 0.014) adulthood. A 15 mg/dL increase in glucose measured during middle adulthood was associated with 14.5% increased AD risk (P = 0.00029). These findings remained significant after adjusting for treatment. DISCUSSION Our findings suggest that careful management of cholesterol and glucose beginning in early adulthood can lower AD risk.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Tong Tong
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
| | - Andrew Chang
- Department of Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Qiushan Tao
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Sanford Auerbach
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sherral Devine
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Wei Qiao Qiu
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
| | - Joseph Massaro
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Rhoda Au
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics)Boston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease Research CenterBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
3
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
4
|
Xu X, Ruan X, Ju R, Wang Z, Yang Y, Cheng J, Gu M, Mueck AO. Progesterone Receptor Membrane Component-1 May Promote Survival of Human Brain Microvascular Endothelial Cells in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221109749. [PMID: 35730360 PMCID: PMC10581101 DOI: 10.1177/15333175221109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebrovascular changes occur in Alzheimer's disease (AD). The progesterone receptor membrane component-1 (PGRMC1) is a well identified hormone receptor with multiple functions in AD. This study aims to explore the involvement of PGRMC1 in the regulation of vascular endothelial function, providing new therapy options for AD. Single-cell sequencing revealed that the expression of PGRMC1 is lower in AD. By bioinformatics analysis, we found PGRMC1 was associated with regulation of cell proliferation, angiogenesis and etc. To understand the functional significance of PGRMC1, knockdown and overexpression were performed using human brain microvascular endothelial cells (HBMVECs), respectively. Cell proliferation assay, migration assay, tube formation assay were performed in experiments. We demonstrated that the overexpression of PGRMC1 promoted the cellular processes associated with endothelia cell proliferation, migration, and angiogenesis, significantly. In conclusion, PGRMC1 may contribute to the modulation of HBMVECs function in AD. This finding may offer novel targets for AD treatment.
Collapse
Affiliation(s)
- Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhikun Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Beijing Maternal and Child Health Care Hospital, Beijing, China
- Research Centre for Women’s Health and University Women’s Hospital of Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
5
|
Julve J, Escolà-Gil JC. High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future. Int J Mol Sci 2021; 22:ijms22147488. [PMID: 34299108 PMCID: PMC8307852 DOI: 10.3390/ijms22147488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Josep Julve
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| |
Collapse
|
6
|
Robert J, Weilinger NL, Cao LP, Cataldi S, Button EB, Stukas S, Martin EM, Seibler P, Gilmour M, Caffrey TM, Rowe EM, Fan J, MacVicar B, Farrer MJ, Wellington CL. An in vitro bioengineered model of the human arterial neurovascular unit to study neurodegenerative diseases. Mol Neurodegener 2020; 15:70. [PMID: 33213497 PMCID: PMC7678181 DOI: 10.1186/s13024-020-00418-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The neurovascular unit (NVU) - the interaction between the neurons and the cerebrovasculature - is increasingly important to interrogate through human-based experimental models. Although advanced models of cerebral capillaries have been developed in the last decade, there is currently no in vitro 3-dimensional (3D) perfusible model of the human cortical arterial NVU. METHOD We used a tissue-engineering technique to develop a scaffold-directed, perfusible, 3D human NVU that is cultured in native-like flow conditions that mimics the anatomy and physiology of cortical penetrating arteries. RESULTS This system, composed of primary human vascular cells (endothelial cells, smooth muscle cells and astrocytes) and induced pluripotent stem cell (iPSC) derived neurons, demonstrates a physiological multilayer organization of the involved cell types. It reproduces key characteristics of cortical neurons and astrocytes and enables formation of a selective and functional endothelial barrier. We provide proof-of-principle data showing that this in vitro human arterial NVU may be suitable to study neurovascular components of neurodegenerative diseases such as Alzheimer's disease (AD), as endogenously produced phosphorylated tau and beta-amyloid accumulate in the model over time. Finally, neuronal and glial fluid biomarkers relevant to neurodegenerative diseases are measurable in our arterial NVU model. CONCLUSION This model is a suitable research tool to investigate arterial NVU functions in healthy and disease states. Further, the design of the platform allows culture under native-like flow conditions for extended periods of time and yields sufficient tissue and media for downstream immunohistochemistry and biochemistry analyses.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Institute of Clinical Chemistry, University hospital Zurich, 8000 Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland
| | - Nicholas L. Weilinger
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Li-Ping Cao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Stefano Cataldi
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emily B. Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Emma M. Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Philip Seibler
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Matthew J. Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Laboratory for Neurogenetics & Neuroscience, McKnight and Fixel Institutes, University of Florida, Gainesville, 32610 USA
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia V5Z 1M9 Canada
| |
Collapse
|
7
|
Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020; 34:11883-11899. [PMID: 32681583 DOI: 10.1096/fj.201903128rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.
Collapse
Affiliation(s)
- Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
8
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW We review current knowledge regarding HDL and Alzheimer's disease, focusing on HDL's vasoprotective functions and potential as a biomarker and therapeutic target for the vascular contributions of Alzheimer's disease. RECENT FINDINGS Many epidemiological studies have observed that circulating HDL levels associate with decreased Alzheimer's disease risk. However, it is now understood that the functions of HDL may be more informative than levels of HDL cholesterol (HDL-C). Animal model studies demonstrate that HDL protects against memory deficits, neuroinflammation, and cerebral amyloid angiopathy (CAA). In-vitro studies using state-of-the-art 3D models of the human blood-brain barrier (BBB) confirm that HDL reduces vascular Aβ accumulation and attenuates Aβ-induced endothelial inflammation. Although HDL-based therapeutics have not been tested in clinical trials for Alzheimer's disease , several HDL formulations are in advanced phase clinical trials for coronary artery disease and atherosclerosis and could be leveraged toward Alzheimer's disease . SUMMARY Evidence from human studies, animal models, and bioengineered arteries supports the hypothesis that HDL protects against cerebrovascular dysfunction in Alzheimer's disease. Assays of HDL functions relevant to Alzheimer's disease may be desirable biomarkers of cerebrovascular health. HDL-based therapeutics may also be of interest for Alzheimer's disease, using stand-alone or combination therapy approaches.
Collapse
Affiliation(s)
- Emily B. Button
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jérôme Robert
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tara M. Caffrey
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|