1
|
Hu X, Huang X, Yin T, Chen J, Zhao W, Yu M, Liu L, Du M. CX3CL1 (Fractalkine): An important cytokine in physiological and pathological pregnancies. J Reprod Immunol 2024; 166:104392. [PMID: 39577056 DOI: 10.1016/j.jri.2024.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
C-X3-C motif chemokine ligand 1 (CX3CL1), commonly known as Fractalkine, is an important chemokine with dual functions of chemotaxis and adhesion. It plays a pivotal role in a variety of physiological processes and pathological conditions, particularly in conjunction with its receptor, C-X3-C motif chemokine receptor 1 (CX3CR1). This review focuses on the expression and intricate regulatory mechanisms of CX3CL1 at the maternal-fetal interface, emphasizing its multifaceted role during pregnancy. CX3CL1 was detected in the trophoblast and decidua tissues, playing a crucial role in recruitment of immune cells, enhancing endometrial receptivity, and modulating trophoblast cell activities. Abnormal expression of CX3CL1 has been correlated with adverse pregnancy outcomes such as spontaneous abortion, gestational diabetes, preeclampsia, and preterm births. By elucidating the complex interplay of CX3CL1 at the maternal-fetal interface, this review aims to shed light on its potential roles in pregnancy-related complications.
Collapse
Affiliation(s)
- Xianyang Hu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Xixi Huang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Tingxuan Yin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Min Yu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China.
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China.
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China; Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Liu H, Wang P, Yin J, Yang P, Shi J, Li A, Wang X, Meng J. High expression of CX3CL1/CX3CR1 at the mother-fetus interface of preeclampsia inhibits trophoblast invasion and migration. Placenta 2024; 156:30-37. [PMID: 39236525 DOI: 10.1016/j.placenta.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION Preeclampsia is associated with maternal inflammatory overreaction and imbalanced immunity at the mother-fetus interface. The pro-inflammatory chemokine fractalkine (CX3CL1) is recently recognized apart from imbalanced immunity. In this study, CX3CL1- CX3C chemokine receptor 1(CX3CR1) regulation of decidual macrophage function and trophoblast invasion ability in preeclampsia was initially explored. METHODS The study comprised 60 women allocated to NP group (normotensive pregnant woman, n = 30) and sPE group (woman with severe preeclampsia, n = 30). After the delivery, the expression of CX3CL1 in placental tissues of the two groups was detected by immunohistochemical analysis. The protein level of CX3CL1 in placental tissue and CX3CR1 in decidua tissue was detected by Western Blot and the localization of CX3CR1 expression in decidua was detected by immunofluorescence. Macrophages were polarized into classically activated (M1) macrophages. M1 were treat with PBS (control group), recombinant human CX3CL1 (CX3CL1 group), recombinant human CX3CL1+ selective CX3CR1 antagonist-JMS-17-2 (CX3CL1+anti-CX3CR1 group) and recombinant human CX3CL1 + selective CX3CR1 antagonist-JMS-17-2 + VS-6063 (CX3CL1+anti-CX3CR1+ FAK inhibitor group). M1 and HTR8/SVneo cells were co-cultured as described previously to assess invasion and migration capacity by transwell assays and Wound-healing assay. RESULTS In this study, CX3CL1 expression is high in the placental tissues of severe preeclampsia (sPE) patients than in normotensive pregnancies (NP). CX3CR1 expression is high in the decidual tissues of severe preeclampsia patients and mainly expressed in macrophages of decidual tissues. CX3CL1/CX3CR1 decreased VEGF expression in M1 macrophages and reduced the invasion and migration function of HTR-8/SVneo through the FAK signaling pathway. DISCUSSION These findings revealed that CX3CL1-CX3CR1 regulate the trophoblast function by FAK and provided new insights into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China; Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong, China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junbin Yin
- Department of Neurology, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingjing Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liao Cheng People's Hospital, Liaocheng, Shandong, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Deng F, Lei J, Chen J, Zhao M, Zhao C, Fu M, Sun M, Zhang M, Qiu J, Gao Q. DNA methylation-mediated 11βHSD2 downregulation drives the increases in angiotensin-converting enzyme and angiotensin II within preeclamptic placentas. FASEB J 2024; 38:e23714. [PMID: 38814727 DOI: 10.1096/fj.202400199r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11β-hydroxysteroid dehydrogenases (11βHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11βHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11βHSD2 gene promoter and its expression, meanwhile, 11βHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11βHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11βHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.
Collapse
Affiliation(s)
- Fengying Deng
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jiahui Lei
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Jie Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Meng Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Department of Obstetrics and Gynecology, the Third People's Hospital of Bengbu Affiliated to Bengbu Medical College, Bengbu, Anhui, China
| | - Chenxuan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Mengyu Fu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, P.R. China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
4
|
Kahouadji S, Giguère Y, Lambert S, Forest JC, Bernard N, Blanchon L, Marceau G, Durif J, Pereira B, Gallot D, Sapin V, Bouvier D. CX3CL1/Fractalkine as a biomarker for early pregnancy prediction of preterm premature rupture of membranes. Clin Chem Lab Med 2024; 62:1101-1108. [PMID: 38278625 PMCID: PMC11056942 DOI: 10.1515/cclm-2023-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES The objective of our study was to evaluate serum CX3CL1/Fractalkine, a monocyte/macrophage chemoattractant expressed in cytotrophoblasts and decidual cells, as a predictive biomarker for the occurrence of preterm premature rupture of membranes (PPROM). METHODS A case-control study of 438 pregnancies including 82 PPROM cases and 64 preterm labor with intact membranes cases with blood samples collected at first trimester, second trimester and delivery was conducted. The predictive ability of CX3CL1 and maternal risk factors for the occurrence of PPROM was assessed by receiver operating characteristic curve analysis. A second, independent cohort was prospectively constituted to confirm the case-control study results. RESULTS First trimester CX3CL1 was significantly increased in PPROM cases when compared to matched controls. Multivariate regression analysis highlighted a significant difference for CX3CL1 measured during the first trimester (p<0.001). Alone, CX3CL1 predicts PPROM with a 90 % sensitivity and a specificity around 40 %. The area under the receiver operating characteristic curve for PPROM prediction were 0.64 (95% confidence interval: 0.57-0.71) for first trimester CX3CL1, and 0.61 (95% confidence interval: 0.54-0.68) for maternal risk factors (body mass index<18.5 kg/m2, nulliparity, tobacco use and the absence of high school diploma). The combination of CX3CL1 and maternal risk factors significantly improved the area under the curve: 0.72 (95% confidence interval: 0.66-0.79) (p<0.001). The results were confirmed on a second independent cohort. CONCLUSIONS CX3CL1 is a promising blood biomarker in the early (first trimester) prediction of PPROM.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Yves Giguère
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Salomé Lambert
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Claude Forest
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Nathalie Bernard
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
| | - Loïc Blanchon
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Gallot
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
- Department of Obstetrics and Gynecology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
5
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
7
|
Forstner D, Guettler J, Brugger BA, Lyssy F, Neuper L, Daxboeck C, Cvirn G, Fuchs J, Kraeker K, Frolova A, Valdes DS, Stern C, Hirschmugl B, Fluhr H, Wadsack C, Huppertz B, Nonn O, Herse F, Gauster M. CD39 abrogates platelet-derived factors induced IL-1β expression in the human placenta. Front Cell Dev Biol 2023; 11:1183793. [PMID: 37325567 PMCID: PMC10264854 DOI: 10.3389/fcell.2023.1183793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Tissue insults in response to inflammation, hypoxia and ischemia are accompanied by the release of ATP into the extracellular space. There, ATP modulates several pathological processes, including chemotaxis, inflammasome induction and platelet activation. ATP hydrolysis is significantly enhanced in human pregnancy, suggesting that increased conversion of extracellular ATP is an important anti-inflammatory process in preventing exaggerated inflammation, platelet activation and hemostasis in gestation. Extracellular ATP is converted into AMP, and subsequently into adenosine by the two major nucleotide-metabolizing enzymes CD39 and CD73. Here, we aimed to elucidate developmental changes of placental CD39 and CD73 over gestation, compared their expression in placental tissue from patients with preeclampsia and healthy controls, and analyzed their regulation in response to platelet-derived factors and different oxygen conditions in placental explants as well as the trophoblast cell line BeWo. Linear regression analysis showed a significant increase in placental CD39 expression, while at the same time CD73 levels declined at term of pregnancy. Neither maternal smoking during first trimester, fetal sex, maternal age, nor maternal BMI revealed any effects on placental CD39 and CD73 expression. Immunohistochemistry detected both, CD39 and CD73, predominantly in the syncytiotrophoblast layer. Placental CD39 and CD73 expression were significantly increased in pregnancies complicated with preeclampsia, when compared to controls. Cultivation of placental explants under different oxygen conditions had no effect on the ectonucleotidases, whereas presence of platelet releasate from pregnant women led to deregulated CD39 expression. Overexpression of recombinant human CD39 in BeWo cells decreased extracellular ATP levels after culture in presence of platelet-derived factors. Moreover, platelet-derived factors-induced upregulation of the pro-inflammatory cytokine, interleukin-1β, was abolished by CD39 overexpression. Our study shows that placental CD39 is upregulated in preeclampsia, suggesting an increasing demand for extracellular ATP hydrolysis at the utero-placental interface. Increased placental CD39 in response to platelet-derived factors may lead to enhanced conversion of extracellular ATP levels, which in turn could represent an important anti-coagulant defense mechanism of the placenta.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Beatrice A. Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Fuchs
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Kristin Kraeker
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Alina Frolova
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Molecular Biology and Genetic of NASU, Kyiv, Ukraine
| | - Daniela S. Valdes
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christina Stern
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Cooperation Between the Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, Berlin, Germany
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Álvarez D, Morales-Prieto DM, Cadavid ÁP. Interaction between endothelial cell-derived extracellular vesicles and monocytes: A potential link between vascular thrombosis and pregnancy-related morbidity in antiphospholipid syndrome. Autoimmun Rev 2023; 22:103274. [PMID: 36649876 DOI: 10.1016/j.autrev.2023.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease driven by a wide group of autoantibodies primarily directed against phospholipid-binding proteins (antiphospholipid antibodies). APS is defined by two main kinds of clinical manifestations: vascular thrombosis and pregnancy-related morbidity. In recent years, in vitro and in vivo assays, as well as the study of large groups of patients with APS, have led some authors to suggest that obstetric and vascular manifestations of the disease are probably the result of different pathogenic mechanisms. According to this hypothesis, the disease could be differentiated into two parallel entities: Vascular APS and obstetric APS. Thus, vascular APS is understood as an acquired thrombophilia in which a generalised phenomenon of endothelial activation and dysfunction (coupled with a triggering factor) causes thrombosis at any location. In contrast, obstetric APS seems to be due to an inflammatory phenomenon accompanied by trophoblast cell dysfunction. The recent approach to APS raises new issues; for instance, the mechanisms by which a single set of autoantibodies can lead to two different clinical entities are unclear. This review will address the monocyte, a cell with well-known roles in haemostasis and pregnancy, as a potential participant in vascular thrombosis and pregnancy-related morbidity in APS. We will discuss how in a steady state the monocyte-endothelial interaction occurs via extracellular vesicles (EVs), and how antiphospholipid antibodies, by inducing endothelial activation and dysfunction, may disturb this interaction to promote the release of monocyte-targeted procoagulant and inflammatory messages.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ángela P Cadavid
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
9
|
Wang Y, Li B, Tong F. Global trends in research of immune cells associated with hypertensive disorders of pregnancy: A 20-year bibliometric analyses (from 2001 to 2021). Front Immunol 2023; 13:1036461. [PMID: 36700203 PMCID: PMC9868159 DOI: 10.3389/fimmu.2022.1036461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background A growing evidence suggests that immune cells play a significant role in the pathogenesis of hypertensive disorders of pregnancy (HDP).Over the past 20 years, several studies have been conducted on the role of immune cells in hypertensive disorders of pregnancy. This study used bibliometric analysis to assess research hotspots and future trends in studies on immune cells in hypertensive disorders of pregnancy. Methods We extracted all relevant literature on immune cells and hypertensive disorders of pregnancy from the Web of Science core collection for the period of 2001 to 2021. We used VOS Viewer, CiteSpace, R-bibliometrix and Python for bibliometric analysis. Results We identified 2,388 records published in 593 journals by 9,886 authors from 2,174 universities/institutions in 91 countries/regions. The number of publications tended to increase over time, with the highest number of publications in 2021, up to 205. The USA was the country with the most publications. UNIVERSITY OF MISSISSIPPI was the most influential institution. Lamarca B, Romero R, and Saito S were the most prolific authors. Finally, three research hotspot clusters were identified based on keywords, which reflected the role of immune cells in the development of hypertensive disorders of pregnancy, the current research status,and predicted hot spots for future research. Conclusions Our study systematically analyzed the role of immune cells in the pathogenesis of hypertensive disorders of pregnancy in the last 20 years. Our results indicated that immune cells, such as T cells, natural killer (NK) cells,and macrophages, and the cytokines released such as TNF-α, IFN-γ in the maternal circulation and at the maternal-fetal interface would influence the development of hypertensive disorders of pregnancy and we need further investigate the role of individual immune cells and translational studies to provide new therapeutic perspectives to mitigate adverse perinatal outcomes due to hypertensive disorders of pregnancy. In conclusion, bibliometric studies provide a general overview of immune cells in the study of hypertensive disorders of pregnancy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baoxuan Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Tong
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Fei Tong,
| |
Collapse
|
10
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
11
|
Neuper L, Kummer D, Forstner D, Guettler J, Ghaffari-Tabrizi-Wizsy N, Fischer C, Juch H, Nonn O, Gauster M. Candesartan Does Not Activate PPARγ and Its Target Genes in Early Gestation Trophoblasts. Int J Mol Sci 2022; 23:ijms232012326. [PMID: 36293183 PMCID: PMC9603971 DOI: 10.3390/ijms232012326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Angiotensin II receptor 1 blockers are commonly used to treat hypertension in women of childbearing age. While the fetotoxic effects of these drugs in the second and third trimesters of pregnancy are well documented, their possible impacts on placenta development in early gestation are unknown. Candesartan, a member of this group, also acts as a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, a key regulator shown to be important for placental development. We have previously shown that trophoblasts do not express the candesartan target-receptor angiotensin II type 1 receptor AGTR1. This study investigated the possible role of candesartan on trophoblastic PPARγ and its hallmark target genes in early gestation. Candesartan did not affect the PPARγ protein expression or nuclear translocation of PPARγ. To mimic extravillous trophoblasts (EVTs) and cytotrophoblast/syncytiotrophoblast (CTB/SCT) responses to candesartan, we used trophoblast cell models BeWo (for CTB/SCT) and SGHPL-4 (EVT) cells as well as placental explants. In vitro, the RT-qPCR analysis showed no effect of candesartan treatment on PPARγ target genes in BeWo or SGHPL-4 cells. Treatment with positive control rosiglitazone, another PPARγ agonist, led to decreased expressions of LEP and PPARG1 in BeWo cells and an increased expression of PPARG1 in SGHPL-4 cells. Our previous data showed early gestation-placental AGTR1 expression in fetal myofibroblasts only. In a CAM assay, AGTR1 was stimulated with angiotensin II and showed increased on-plant vessel outgrowth. These results suggest candesartan does not negatively affect PPARγ or its target genes in human trophoblasts. More likely, candesartan from maternal serum may first act on fetal-placental AGTR1 and influence angiogenesis in the placenta, warranting further research.
Collapse
Affiliation(s)
- Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Cornelius Fischer
- Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Herbert Juch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Diagnostic and Research Institute for Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence:
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
da Silva Castro A, Angeloni MB, de Freitas Barbosa B, de Miranda RL, Teixeira SC, Guirelli PM, de Oliveira FC, José da Silva R, Franco PS, Ribeiro M, Milian ICB, de Oliveira Gomes A, Ietta F, Júnior SF, Mineo TWP, Mineo JR, de Oliveira Simões Alves CM, Ferro EAV. BEWO trophoblast cells and Toxoplasma gondii infection modulate cell death mechanisms in THP-1 monocyte cells by interference in the expression of death receptor and intracellular proteins. Tissue Cell 2021; 73:101658. [PMID: 34597888 DOI: 10.1016/j.tice.2021.101658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-β1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.
Collapse
Affiliation(s)
- Andressa da Silva Castro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Mariana Bodini Angeloni
- School of Medicine, Healthy Sciences Special Academic Unit, University of Goiás-Jataí, Jataí, GO, Brazil
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Renata Lima de Miranda
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Fernanda Chaves de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Iliana Claudia Balga Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil
| | - Angélica de Oliveira Gomes
- Laboratory of Cell Biology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Francesca Ietta
- Department of Life Science, University of Siena, Siena, Italy
| | | | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021; 9:biomedicines9101332. [PMID: 34680449 PMCID: PMC8533592 DOI: 10.3390/biomedicines9101332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Placental development and function implicate important morphological and physiological adaptations to thereby ensure efficient maternal–fetal exchanges, as well as pregnancy-specific hormone secretion and immune modulation. Incorrect placental development can lead to severe pregnancy disorders, such as preeclampsia (PE), which endangers both the mother and the infant. The implication of the systemic renin–angiotensin system (RAS) in the pregnancy-related physiological changes is now well established. However, despite the fact that the local uteroplacental RAS has been described for several decades, its role in placental development and function seems to have been underestimated. In this review, we provide an overview of the multiple roles of the uteroplacental RAS in several cellular processes of placental development, its implication in the regulation of placental function during pregnancy, and the consequences of its dysregulation in PE pathogenesis.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
- Correspondence:
| |
Collapse
|
14
|
Nonn O, Fischer C, Geisberger S, El-Heliebi A, Kroneis T, Forstner D, Desoye G, Staff AC, Sugulle M, Dechend R, Pecks U, Kollmann M, Stern C, Cartwright JE, Whitley GS, Thilaganathan B, Wadsack C, Huppertz B, Herse F, Gauster M. Maternal Angiotensin Increases Placental Leptin in Early Gestation via an Alternative Renin-Angiotensin System Pathway: Suggesting a Link to Preeclampsia. Hypertension 2021; 77:1723-1736. [PMID: 33775117 DOI: 10.1161/hypertensionaha.120.16425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Olivia Nonn
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Cornelius Fischer
- Berlin Institute of Systems Biology, Max Delbrueck Centre for Molecular Medicine in the Helmholtz Association, Germany (C.F., S.G.)
| | - Sabrina Geisberger
- Berlin Institute of Systems Biology, Max Delbrueck Centre for Molecular Medicine in the Helmholtz Association, Germany (C.F., S.G.)
- Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.)
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (S.G.)
- Berlin Institute of Health (BIH), Berlin, Germany (S.G.)
| | - Amin El-Heliebi
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Thomas Kroneis
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Désirée Forstner
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Gernot Desoye
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.C.S., M.S.)
- Division of Obstetrics and Gynecology, Oslo University Hospital, Norway (A.C.S., M.S.)
| | - Meryam Sugulle
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway (A.C.S., M.S.)
- Division of Obstetrics and Gynecology, Oslo University Hospital, Norway (A.C.S., M.S.)
| | - Ralf Dechend
- Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.)
| | - Ulrich Pecks
- Division of Obstetrics and Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany (U.P.)
| | - Martina Kollmann
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Christina Stern
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Judith E Cartwright
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (J.E.C., G.S.W.)
| | - Guy S Whitley
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom (J.E.C., G.S.W.)
| | - Basky Thilaganathan
- Fetal Medicine Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.T.)
| | - Christian Wadsack
- Gottfried Schatz Research Centre and Department of Obstetrics and Gynecology (G.D., M.K., C.S., C.W.), Medical University of Graz, Austria
| | - Berthold Huppertz
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| | - Florian Herse
- Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany (S.G., R.D., F.H.)
| | - Martin Gauster
- From the Division of Cell Biology, Histology and Embryology (O.N., A.E.-H., T.K., D.F., B.H., M.G.), Medical University of Graz, Austria
| |
Collapse
|
15
|
Pankiewicz K, Fijałkowska A, Issat T, Maciejewski TM. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int J Mol Sci 2021; 22:3132. [PMID: 33808559 PMCID: PMC8003365 DOI: 10.3390/ijms22063132] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia affects about 3-8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2-the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.
Collapse
Affiliation(s)
- Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Anna Fijałkowska
- Department of Cardiology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Tomasz M. Maciejewski
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| |
Collapse
|
16
|
Szewczyk G, Pyzlak M, Pankiewicz K, Szczerba E, Stangret A, Szukiewicz D, Skoda M, Bierła J, Cukrowska B, Fijałkowska A. The potential association between a new angiogenic marker fractalkine and a placental vascularization in preeclampsia. Arch Gynecol Obstet 2021; 304:365-376. [PMID: 33496844 PMCID: PMC8277623 DOI: 10.1007/s00404-021-05966-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/15/2020] [Indexed: 01/17/2023]
Abstract
Purpose Impaired angiogenesis is one of the most common findings in preeclamptic placentas. A new angiogenetic role of fractalkine (CX3CL1) is recently recognized apart from inflammatory activity. In this study, a link between CX3CL1 and the development of placental vasculature in preeclampsia was examined. Methods The study comprised 52 women allocated to Group 1 (normotensive, n = 23) and Group 2 (preeclampsia, n = 29). In each group Doppler parameters, serum levels of CX3CL1, soluble fms-like tyrosine kinase-1 (sFlt-1), and placental growth factor (PlGF) were assessed between 30 and 32 week of pregnancy. After the delivery, placental samples were taken and the vascularization and expression of CX3CR1 receptor were assessed after immunostaining. Results CX3CL1 and sFlt-1 serum levels were significantly higher levels in Group 2 vs Group 1, while PlGF serum levels was significantly lower in Group 2. Lower cerebroplacental ratio (CPR) was observed in Group 2. The vascular/extravascular tissue index (V/EVTI) was significantly lower in Group 2, while compared to Group 1, with the lowest value in the fetus growth restriction (FGR) subgroup (0.18 ± 0.02; 0.24 ± 0.03; 0.16 ± 0.02, respectively). The expression of examined CX3CR1 was higher in Group 2, while compared to Group 1, reaching the highest values in FGR subgroup. There was a moderate negative correlation between birth weight, V/EVTI and CX3CL1 serum level and CX3CR1 placental expression in the group of pregnancies complicated with preeclampsia. Conclusion The significant underdevelopment of placental vascular network in preeclampsia is associated with the change in the CX3CL1/CX3CR1 system, especially in FGR complicated pregnancies.
Collapse
Affiliation(s)
- Grzegorz Szewczyk
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland. .,Department of Obstetrics and Gynecology, Institute of Mother and Child, Warsaw, Poland.
| | - Michał Pyzlak
- Department of Pathology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child, Warsaw, Poland
| | - Ewa Szczerba
- Department of Cardiology, Institute of Mother and Child, Warsaw, Poland
| | - Aleksandra Stangret
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skoda
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Bierła
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Fijałkowska
- Department of Cardiology, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
17
|
Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediators Inflamm 2020; 2020:3864941. [PMID: 33082708 PMCID: PMC7556088 DOI: 10.1155/2020/3864941] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE) affects 5-8% of pregnant women, and it is the major cause of perinatal morbidity and mortality. It is defined as arterial hypertension in women after 20 weeks of gestation which cooccurs with proteinuria (300 mg/d) or as arterial hypertension which is accompanied by one of the following: renal failure, liver dysfunction, hematological or neurological abnormalities, intrauterine growth restriction, or uteroplacental insufficiency. Currently, pathophysiology of preeclampsia poses a considerable challenge for perinatology. Preeclampsia is characterized by excessive and progressive activation of the immune system along with an increase in proinflammatory cytokines and antiangiogenic factors in fetoplacental unit as well as in vascular endothelium in pregnant women. A single, major underlying mechanism of preeclampsia is yet to be identified. This paper discusses the current understanding of the mechanisms which underlie the development of the condition. Some significant factors responsible for PE development include oxidative stress, abnormal concentration and activity in mononuclear phagocytic system, altered levels of angiogenic and antiangiogenic factors, and impaired inflammatory response triggered by inflammasomes. Detailed understanding of pathophysiology of inflammatory process in PE can largely contribute to new, targeted anti-inflammatory therapies that may improve perinatal outcomes in PE patients.
Collapse
Affiliation(s)
- Michał Michalczyk
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Aleksander Celewicz
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Marta Celewicz
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Szczecin, Poland
| | - Paula Woźniakowska-Gondek
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Rafał Rzepka
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
18
|
Cowell W, Colicino E, Lee AG, Enlow MB, Flom JD, Berin C, Wright RO, Wright RJ. Data-driven discovery of mid-pregnancy immune markers associated with maternal lifetime stress: results from an urban pre-birth cohort. Stress 2020; 23:349-358. [PMID: 31664889 PMCID: PMC7210067 DOI: 10.1080/10253890.2019.1686612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Changes to the maternal inflammatory milieu may be a mechanism through which maternal psychosocial stress is transmitted to the fetus. Research investigating a limited number of immune markers may miss important signals. We take a proteomics approach to investigate maternal lifetime stress and 92 biomarkers of immune system status. Participants were enrolled in an urban, dual-site (Boston, n = 301 and New York City, n = 110) pregnancy cohort. We measured maternal lifetime history of stress and trauma using the validated Life Stressor Checklist-Revised (LSC-R). We measured a panel of 92 immune-related proteins in mid-pregnancy serum using proximity extension assay technology. We leveraged the dual-site study design to perform variable selection and inference within the cohort. First, we used LASSO to select immune markers related to maternal stress among Boston mothers. Then, we performed OLS regression to examine associations between maternal stress and LASSO-selected proteins among New York City mothers. LASSO regression selected 19 immune proteins with non-null coefficients (CCL11, CCL23, CD244, CST5, CXCL1, CXCL5, CXCL10, CX3CL1, FGF-23, IL-5, IL-7, IL-10, IL-17C, MCP-2, MMP-1, SLAMF1, ST1A1, TNF-β, and TWEAK). Of these, only the chemotactic cytokine CX3CL1 (i.e. fractalkine) was significantly associated with maternal stress among the validation sample (percent change in LSC-R score per 1% increase in relative fractalkine expression: 0.74, 95% confidence interval: 0.19, 1.28). Expanding research suggests fractalkine plays an important role in many aspects of pregnancy and fetal development and is stress-sensitive. We found that maternal lifetime history of stress and trauma was significantly associated with elevated serum fractalkine levels during pregnancy.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julie D. Flom
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia Berin
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Moser G, Guettler J, Forstner D, Gauster M. Maternal Platelets—Friend or Foe of the Human Placenta? Int J Mol Sci 2019; 20:ijms20225639. [PMID: 31718032 PMCID: PMC6888633 DOI: 10.3390/ijms20225639] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human pregnancy relies on hemochorial placentation, including implantation of the blastocyst and deep invasion of fetal trophoblast cells into maternal uterine blood vessels, enabling direct contact of maternal blood with placental villi. Hemochorial placentation requires fast and reliable hemostasis to guarantee survival of the mother, but also for the neonates. During human pregnancy, maternal platelet count decreases gradually from first, to second, and third trimester. In addition to hemodilution, accelerated platelet sequestration and consumption in the placental circulation may contribute to a decline of platelet count throughout gestation. Local stasis, turbulences, or damage of the syncytiotrophoblast layer can activate maternal platelets within the placental intervillous space and result in formation of fibrin-type fibrinoid. Perivillous fibrinoid is a regular constituent of the normal placenta which is considered to be an important regulator of intervillous hemodynamics, as well as having a role in shaping the developing villous trees. However, exaggerated activation of platelets at the maternal-fetal interface can provoke inflammasome activation in the placental trophoblast, and enhance formation of circulating platelet-monocyte aggregates, resulting in sterile inflammation of the placenta and a systemic inflammatory response in the mother. Hence, the degree of activation determines whether maternal platelets are a friend or foe of the human placenta. Exaggerated activation of maternal platelets can either directly cause or propagate the disease process in placenta-associated pregnancy pathologies, such as preeclampsia.
Collapse
|
20
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Role of the Monocyte-Macrophage System in Normal Pregnancy and Preeclampsia. Int J Mol Sci 2019; 20:ijms20153695. [PMID: 31357698 PMCID: PMC6696152 DOI: 10.3390/ijms20153695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the monocyte-macrophage system, an important unit of innate immunity, ensures the normal course of pregnancy. In this review, we present the current data on the origin of the monocyte-macrophage system and its functioning in the female reproductive system during the ovarian cycle, and over the course of both normal and complicated pregnancy. Preeclampsia is a crucial gestation disorder characterized by pronounced inflammation in the maternal body that affects the work of the monocyte-macrophage system. The effects of inflammation at preeclampsia manifest in changes in monocyte counts and their subset composition, and changes in placental macrophage counts and their polarization. Here we summarize the recent data on this issue for both the maternal organism and the fetus. The influence of estrogen on macrophages and their altered levels in preeclampsia are also discussed.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia.
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, 117418 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|