1
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Wei G, Zhang Z, Zhao F, Sang Y, Regenstein JM, Zhou P. Characteristic aroma compounds during the fermentation of Chinese steamed bread fermented with different starters. Food Chem 2024; 457:140151. [PMID: 38901353 DOI: 10.1016/j.foodchem.2024.140151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The characteristic aroma compounds of Chinese steamed bread (CSB) fermented with different starters were studied using HS-SPME-GC/MS, aroma recombination and omission experiments. The dynamic changes of the microbiota and their function and metabolites during fermentation were analyzed using metagenomics and non-targeted metabolomics. Forty-nine volatile flavor compounds were identified, while 5 characteristic aroma-active compounds were investigated in CSB fermented with commercial dry yeast (AQ-CSB), and 10 were investigated in CSB fermented with traditional starter (NY-CSB). Microbial structure and function analysis showed that Saccharomyces cerevisiae dominated during AQ-CSB fermentation and contributed >95% to its KEGG pathways, while Pediococcus pentosaceus, unclassified Pediococcus, Lactobacillus plantarum, Lactobacillus brevis and unclassified Lactobacillus were predominant in NY-CSB and together had an ~96% contribution to these pathways. NY-CSB showed higher metabolic activity during fermentation, and the characteristic metabolites were mainly involved in carbohydrate, amino acid and lipid metabolism. The characteristic aroma compounds were identified and increased the understanding of the contributions of the microbiota. This may be useful for designing starter cultures that produce CSB with desirable aroma properties.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Ziyi Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Feiran Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China.
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
3
|
Ding X, Yue M, Gu H, Li S, Chen S, Wang L, Sun L. Effects of Wickerhamomyces anomalus Co-Fermented with Saccharomyces cerevisiae on Volatile Flavor Profiles during Steamed Bread Making Using Electronic Nose and HS-SPME-GC-MS. Foods 2024; 13:2490. [PMID: 39200416 PMCID: PMC11354084 DOI: 10.3390/foods13162490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Steamed bread is a traditional staple food in China, and it has gradually become loved by people all over the world because of its healthy production methods. With the improvement in people's living standards, the light flavor of steamed bread fermented by single yeast cannot meet people's needs. Multi-strain co-fermentation is a feasible way to improve the flavor of steamed bread. Here, the dynamic change profiles of volatile substances in steamed bread co-fermented by Saccharomyces cerevisiae SQJ20 and Wickerhamomyces anomalus GZJ2 were analyzed using the electronic nose (E-nose) and headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The five detectors of the E-nose rapidly detected the changes in volatile substances in different dough or steamed bread with the highest response value in co-fermented dough. A total of 236 volatile substances were detected in all the samples using HS-SPME-GC-MS, and alcohols were the most variable component, especially Phenylethyl alcohol. Significantly, more alcohols and esters were upregulated in co-fermented dough, and the addition of W. anomalus GZJ2 improved the key volatile aroma compounds of steamed bread using the relative odor activity value method (ROAV), especially the aldehydes and alcohols. Moreover, these key volatile aroma compounds can be quickly distinguished using the W2S detector of the E-nose, which can be used for the rapid detection of aroma components in steamed bread.
Collapse
|
4
|
Mietton L, Mata-Orozco J, Guezenec S, Marlin T, Samson MF, Canaguier E, Godet T, Nolleau V, Segond D, Cassan D, Baylet M, Bedouelle P, Bonnel L, Bouquin H, Christin G, Courteau M, Doucoure M, Hazard V, Kober T, Montard A, Nodet M, Parent M, Dalmasso C, Gainon A, Jouve O, Pichard S, Puel J, Simon R, Nidelet T, Sicard D. Minimal influence of milling technique in contrast to sourdough on the nutritional and organoleptic quality of bread. Food Microbiol 2024; 118:104426. [PMID: 38049266 DOI: 10.1016/j.fm.2023.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023]
Abstract
A number of studies have shown the effect of cereals and sourdough on bread nutritional and organoleptic quality, but the impact of the milling technique remains little studied. There are two main types of milling technic depending on the bread-making food chain. Industrial bakeries mainly use roller mills while artisanal bakeries may also use stone mill. We set up a participatory experiment with six millers and four bakers to study the impact of these two milling techniques on the quality of flours, sourdough microbiota and the quality of breads. Millers made twenty-two different flours from four different wheat grain varieties using either roller or stone mills. Each baker initiated and maintained sourdoughs with three roller-milled and three stone-milled flours during at least 32 backsloppings and then made bread. The analysis of flours revealed a typical granulometry profile linked to wheat hardness with higher particle sizes for stone-milled flours. Stone-milled flours also had a higher maltose content. However, the milling technic did not drive the composition of the sourdough microbiota. Moreover, the analysis of bread revealed that variation in bread protein fractions and in bread aroma compounds were more related to the specific baker microbial community than to the milling technique. Carbohydrate contents were clearly linked to the main LAB species metabolism. These results revealed that the sourdough microbial community shapes the organoleptic and nutritional quality of bread more than milling techniques.
Collapse
Affiliation(s)
- Lauriane Mietton
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | | | - Thérèse Marlin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Elodie Canaguier
- IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Teddy Godet
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Valérie Nolleau
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Diego Segond
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Denis Cassan
- IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | | | | | | | | | | | | | | | - Tom Kober
- Le Pain des Cairns, Grenoble, France
| | | | | | | | | | | | | | | | - Johan Puel
- Moulin du Rey, Saint-Saturnin-de-Lenne, France
| | - Robin Simon
- Ferme Biodélices, Saint-Julien-sur-Veyle, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Delphine Sicard
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
5
|
Tan C, Tian Y, Tao L, Xie J, Wang M, Zhang F, Yu Z, Sheng J, Zhao C. Exploring the Effect of Milk Fat on Fermented Milk Flavor Based on Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) and Multivariate Statistical Analysis. Molecules 2024; 29:1099. [PMID: 38474610 DOI: 10.3390/molecules29051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk.
Collapse
Affiliation(s)
- Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- PuEr University, PuEr 665000, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Feng Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhijin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Cunchao Zhao
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China
| |
Collapse
|
6
|
Anker M, Yousefi-Darani A, Zettel V, Paquet-Durand O, Hitzmann B, Krupitzer C. Online Monitoring of Sourdough Fermentation Using a Gas Sensor Array with Multivariate Data Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7681. [PMID: 37765737 PMCID: PMC10536588 DOI: 10.3390/s23187681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
Sourdough can improve bakery products' shelf life, sensory properties, and nutrient composition. To ensure high-quality sourdough, the fermentation has to be monitored. The characteristic process variables for sourdough fermentation are pH and the degree of acidity measured as total titratable acidity (TTA). The time- and cost-intensive offline measurement of process variables can be improved by utilizing online gas measurements in prediction models. Therefore, a gas sensor array (GSA) system was used to monitor the fermentation process of sourdough online by correlation of exhaust gas data with offline measurement values of the process variables. Three methods were tested to utilize the extracted features from GSA to create the models. The most robust prediction models were achieved using a PCA (Principal Component Analysis) on all features and combined two fermentations. The calibrations with the extracted features had a percentage root mean square error (RMSE) from 1.4% to 12% for the pH and from 2.7% to 9.3% for the TTA. The coefficient of determination (R2) for these calibrations was 0.94 to 0.998 for the pH and 0.947 to 0.994 for the TTA. The obtained results indicate that the online measurement of exhaust gas from sourdough fermentations with gas sensor arrays can be a cheap and efficient application to predict pH and TTA.
Collapse
Affiliation(s)
- Marvin Anker
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Abdolrahim Yousefi-Darani
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.Y.-D.); (O.P.-D.); (B.H.)
| | - Viktoria Zettel
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.Y.-D.); (O.P.-D.); (B.H.)
| | - Olivier Paquet-Durand
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.Y.-D.); (O.P.-D.); (B.H.)
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany; (A.Y.-D.); (O.P.-D.); (B.H.)
| | - Christian Krupitzer
- Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
7
|
Wei G, Regenstein JM. Microbiota structure of traditional starters from around the Tai-hang mountains and their influence on the fermentation properties, aroma profile and quality of Chinese steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5116-5125. [PMID: 37002807 DOI: 10.1002/jsfa.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Steamed bread is a popular staple food in China, and the significant regional differences of the microbiota in traditional starters make the flavor and quality of steamed bread highly variable along with long preparation times. Therefore, analyzing the microbial flora of traditional starters and their influences on the flavor and quality may help to solve the problems mentioned earlier, and it may also be conducive to potentially meet consumer needs and permit industrialization of this traditional fermented food. RESULTS One hundred and thirty-two fungal and 50 bacterial species were identified in five traditional starters, each with a different dominant genus. The fermentation properties of dough showed that total titratable acid, dough volume and gas production increased and the pH decreased with fermentation time. The traditional starters improved the quality of Chinese steamed bread (CSB) including the crumb structure, specific volume and sensory attributes. Thirty-three aroma compounds with a VIP (variable importance for the projection) > 1 were identified as characteristic aroma compounds. The correlations among the microbiota, aroma and qualities of CSB showed a greater contribution from the bacteria, which was consistent with the predictions of metabolic pathways in the sequenced genomes. CONCLUSION The quality of CSB fermented with traditional starters was improved induced by their different microbial profiles, and bacteria made a greater contribution than fungus to the aroma and qualities of CSB. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | |
Collapse
|
8
|
Wei G, Chitrakar B, Wu J, Sang Y. Exploration of microbial profile of traditional starters and its influence on aroma profile and quality of Chinese steamed bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2522-2531. [PMID: 36600672 DOI: 10.1002/jsfa.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chinese steamed bread (CSB) is a popular staple food in China with traditional ethnic characteristics. CSB with traditional starters has good flavor and texture but is unstable and requires a long preparation time. Therefore, it is necessary to analyze the traditional starters (ST) and their influence on the flavor and quality of steamed bread to meet people's requirements as a staple food. RESULTS The count of yeast, lactic acid bacteria and total microbial population significantly varied in different traditional starters; Saccharomyces and Lactobacillus were the predominant genera. Among the tested samples, fungi were found in ST from Shijiazhuang (SJ), Handan (HD) and Langfang (LF), while bacteria were found in ST from Tangshan (TS) and SJ at sub-predominant levels. In terms of the bread quality, the highest specific volume and porosity were in XT-CSB (Xingtai); the highest height/diameter ratio was in SJ-CSB; and the highest sensory score was in TS-CSB. A total of 26 aroma compounds (VIP > 1; variable importance for predictive components) were identified to discriminate CSB fermented with different starters, which were separated by stepwise canonical discriminant analysis using two functions. The correlation analysis among microbiota, aroma compounds and bread quality showed a higher contribution of bacteria than of fungi. CONCLUSION Differences in microbial profiles caused different aroma profiles and quality of CSB; and the CSB fermented with traditional starters were sufficiently separated by stepwise canonical discriminant analysis based on aroma compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangna Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Șerban LR, Păucean A, Chiș MS, Pop CR, Man SM, Pușcaș A, Ranga F, Socaci SA, Alexa E, Berbecea A, Semeniuc CA, Mureșan V. Metabolic Profile of Einkorn, Spelt, Emmer Ancient Wheat Species Sourdough Fermented with Strain of Lactiplantibacillus plantarum ATCC 8014. Foods 2023; 12:foods12051096. [PMID: 36900613 PMCID: PMC10001257 DOI: 10.3390/foods12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.
Collapse
Affiliation(s)
- Larisa Rebeca Șerban
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Tang N, Xing X, Li H, Jiao H, Ji S, Ai Z. Effect of Alkali on the Microbial Community and Aroma Profile of Chinese Steamed Bread Prepared with Chinese Traditional Starter. Foods 2023; 12:foods12030617. [PMID: 36766145 PMCID: PMC9914934 DOI: 10.3390/foods12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Alkali is an indispensable additive in Chinese steamed bread (CSB) production. This work aimed to evaluate the key roles of alkali in the microbial community of dough fermented using Chinese traditional starter (CTS) and the aroma profiles of CSB. The dominant fungi in CTS and fermented dough were members of the phylum Ascomycota and the genus Saccharomyces. Pediococcus, Companilactobacillus, and Weissella were the dominant bacterial genera in CTS and fermented dough. Adding alkali could retain the types of dominant yeasts and LAB derived from CTS, decrease the relative abundance of Companilactobacillus crustorum and Weissella cibaria, and increase that of Pediococcus pentosaceus, in fermented dough. Principal component analysis (PCA) indicated that adding alkali decreased the content of sourness-related volatiles in CSB fermented by CTS. Correlation analysis showed that Pediococcus and Weissella in fermented dough were positively correlated with the lipid oxidation flavor-related compounds in CSB, and Lactobacillus was positively correlated with sourness-related aroma compounds. Synthetic microbial community experiments indicated that CSB fermented by the starter containing P. pentosaceus possessed a strong aroma, and adding alkali weakened the flavor intensity. Alkali addition could promote the formation of ethyl acetate and methyl acetate with a pleasant fruity aroma in W. cibaria-associated CSB.
Collapse
Affiliation(s)
- Ning Tang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Xiaolong Xing
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Huipin Li
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Honggang Jiao
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Shengxin Ji
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
- Correspondence: ; Tel./Fax: +86-371-63558150
| |
Collapse
|
11
|
Zhang K, Zhang C, Gao L, Liu Y. Microbial diversity in laomian and yeast dough and its influence on volatiles in Chinese steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Can Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Lingling Gao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Yue Liu
- Henan University of Technology 450008 Zhengzhou Henan China
| |
Collapse
|
12
|
Impact of Leavening Agent and Wheat Variety on Bread Organoleptic and Nutritional Quality. Microorganisms 2022; 10:microorganisms10071416. [PMID: 35889135 PMCID: PMC9317705 DOI: 10.3390/microorganisms10071416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated. Here, we assessed the impact of two wheat varieties as well as the impact of sourdoughs and yeasts on multiple components of bread organoleptic and nutritional quality. Using a participatory research approach including scientists and bakers, we compared breads leavened with three different sourdoughs and three different commercial yeasts as well as a mix of sourdough and yeast. Breads were made from two wheat varieties commonly used in organic farming: the variety “Renan” and the landrace “Barbu”. Except for bread minerals contents that mostly depended on wheat variety, bread quality was mostly driven by the fermenting agent. Sourdough breads had lower sugar and organic acids contents. These differences were mostly attributable to lower amounts of maltose and malate. They also had a higher proportion of soluble proteins than yeast breads, with specific aroma profiles. Finally, their aroma profiles were specific and more diverse compared to yeast breads. Interestingly, we also found significant nutritional and organoleptic quality differences between sourdough breads. These results highlight the value of sourdough bread and the role of sourdough microbial diversity in bread nutritional and organoleptic quality.
Collapse
|
13
|
Relationship between Microbial Composition of Sourdough and Texture, Volatile Compounds of Chinese Steamed Bread. Foods 2022; 11:foods11131908. [PMID: 35804724 PMCID: PMC9265662 DOI: 10.3390/foods11131908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The objective of this work was to explore the relationship between the microbial communities of sourdoughs collected from the Xinjiang and Gansu areas of China and the quality of steamed bread. Compared to yeast-based steamed bread, sourdough-based steamed bread is superior in terms of its hardness, adhesiveness, flexibility, and chewiness. It is rich in flavor compounds, but a significant difference in volatile flavor substances was observed between the two sourdoughs. A total of 19 strains of lactic acid bacteria (LAB) were isolated from the Gansu sourdough sample, in which Lactiplantibacillus plantarum and Pediococcus pentosaceus were the dominant species, accounting for 42.11% and 36.84%, respectively. A total of 16 strains of LAB were isolated from the Xinjiang sourdough sample, in which Lactiplantibacillus plantarum was the dominant species, accounting for 75%. High-throughput sequencing further confirmed these results. Clearly, the species diversity of Gansu sourdough was higher. The volatile profiles of the sourdoughs were similar, but differences in the individual volatile compounds were detected between the sourdoughs of the Gansu and Xinjiang regions. These results point out that the differences in the microbiota and the dominant strains lead to differences in the quality of sourdoughs from region to region. This investigation offers promising guidance on improving the quality of traditional steamed bread by adjusting the microorganisms in sourdough.
Collapse
|
14
|
Abstract
Fermented foods and beverages have become a part of daily diets in several societies around the world. Emitted volatile organic compounds play an important role in the determination of the chemical composition and other information of fermented foods and beverages. Electronic nose (E-nose) technologies enable non-destructive measurement and fast analysis, have low operating costs and simplicity, and have been employed for this purpose over the past decades. In this work, a comprehensive review of the recent progress in E-noses is presented according to the end products of the main fermentation types, including alcohol fermentation, lactic acid fermentation, acetic acid fermentation and alkaline fermentation. The benefits, research directions, limitations and challenges of current E-nose systems are investigated and highlighted for fermented foods and beverage applications.
Collapse
|
15
|
Xi J, Zhao Q, Xu D, Jin Y, Wu F, Xu X. Evolution of volatiles and quality of Chinese steamed bread during storage at different temperatures. Food Chem 2022; 381:132213. [PMID: 35121328 DOI: 10.1016/j.foodchem.2022.132213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
The aim of this work is to investigate the evolution of volatiles and quality of CSB during 4 d of storage at 4 °C and 25 °C, respectively. Rapidly increasing hardness and decreasing resilience were observed in CSB after 1 d of storage at 4 °C. However, relative soft CSB was found after 1 d of storage at 25 °C as a result of the lower rate of retrogradation. Volatiles were monitored by gas chromatography-mass spectrometer. Significant (P < 0.05) decrease of 4 esters and 2-pentylfuran were observed with prolonged storage time for CSB stored at both 4 °C and 25 °C. PCA analysis indicated that the storage temperature of 4 °C was beneficial to remain CSB volatiles during long storage time (2-4 d). These findings might be beneficial to retain more volatiles and quality and finally extend shelf-life of CSB.
Collapse
Affiliation(s)
- Jinzhong Xi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiyan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengfeng Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
17
|
Rossi S, Parrotta L, Del Duca S, Rosa MD, Patrignani F, Schluter O, Lanciotti R. Effect of Yarrowia lipolytica RO25 cricket-based hydrolysates on sourdough quality parameters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Xi J, Zhao Q, Xu D, Jin Y, Wu F, Jin Z, Xu X. Volatile compounds in Chinese steamed bread influenced by fermentation time, yeast level and steaming time. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Effect of Na 2CO 3 on quality and volatile compounds of steamed bread fermented with yeast or sourdough. Food Chem 2020; 324:126786. [PMID: 32344353 DOI: 10.1016/j.foodchem.2020.126786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The effects of Na2CO3 on the quality, change of protein subunits and volatile compounds of sourdough leavened Chinese steamed bread (sourdough-CSB) and yeast leavened CSB (yeast-CSB) were investigated. Results suggested that, low Na2CO3 level endowed both CSB with softer crumb and little change of surface color. Besides, Na2CO3 addition improved the overall aroma profile by inhibiting the production of aroma-negative compounds (butanoic acid, 1-octen-3-ol, hexanal and heptanal). Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed an obvious increase in intensity of protein bands with low molecular weight, consistent with the result of size-exclusion high-performance liquid chromatography analysis and free sulfhydryl group (SH) content, indicating the hydrolysis of glutenin macropolymer (GMP) under alkaline condition in yeast-CSB. While in sourdough-CSB, GMP and SH content firstly decreased at low Na2CO3 level (0-0.2%) and then increased at high Na2CO3 level (0.3%-0.5%).
Collapse
|
21
|
Longin F, Beck H, Gütler H, Heilig W, Kleinert M, Rapp M, Philipp N, Erban A, Brilhaus D, Mettler-Altmann T, Stich B. Aroma and quality of breads baked from old and modern wheat varieties and their prediction from genomic and flour-based metabolite profiles. Food Res Int 2020; 129:108748. [PMID: 32036907 DOI: 10.1016/j.foodres.2019.108748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
Bread aroma is the principal characteristic perceived by the consumer yet it is mostly disregarded in the product chain. The main aim of this study was to evaluate the potential to include bread aroma as a new target criterion into the wheat product chain. The objectives of our study were to (i) quantify the influence of genetic versus environmental factors on the bread aroma and quality characteristics, (ii) evaluate whether bread baked from modern wheat varieties differ in terms of aroma from those baked from old varieties, and (iii) compare genomic and metabolomic approaches for their efficiency to predict bread aroma and quality characteristics in a wheat breeding program. Agronomic characters as well as bread aroma and quality traits were assessed for 18 old and 22 modern winter wheat varieties evaluated at up to three locations in Germany. Metabolite profiles of all 120 flour samples were collected using a 7200 GC-QTOF. Considerable differences in the adjusted entry means for all examined bread aroma and quality characters were observed. For aroma, which was rated on a scale from 1 to 9, the adjusted entry means varied for the 40 wheat varieties between 3 and 8. In contrast, the aroma of bread prepared from old and modern wheat varieties did not differ significantly (P < 0.05). Bread aroma was not significantly (P < 0.05) correlated with grain yield, which suggested that it is possible to select for the former character in wheat breeding programs without reducing the gain of selection for the latter. Finally, we have shown that bread aroma can be better predicted using a combination of metabolite and SNP genotyping profiles instead of the SNP genotyping profile only. In conclusion, we have illustrated possibilities to increase the quality of wheat for consumers in the product chain.
Collapse
Affiliation(s)
- Friedrich Longin
- State Plant Breeding Institute, Univ. of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | - Michael Kleinert
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Matthias Rapp
- State Plant Breeding Institute, Univ. of Hohenheim, 70599 Stuttgart, Germany
| | - Norman Philipp
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research(IPK), 06466 Gatersleben, Germany
| | - Alexander Erban
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476 Golm, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany; Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany; Plant Metabolism and Metabolomics Laboratory, Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Benjamin Stich
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
22
|
Yan B, Yang H, Wu Y, Lian H, Zhang H, Chen W, Fan D, Zhao J. Quality Enhancement Mechanism of Alkali-Free Chinese Northern Steamed Bread by Sourdough Acidification. Molecules 2020; 25:molecules25030726. [PMID: 32046080 PMCID: PMC7037005 DOI: 10.3390/molecules25030726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
Alkali was used to adjust the pH and neutralize the excess acids of dough in the processing of Chinese northern steamed bread (CNSB). However, extra alkali addition generally resulted in alkalic flavor and poor appearance. The aim of this work was to investigate the role of proofed dough pH on the texture of CNSB. Correlation analysis demonstrated that the pH value of proofed dough has a significant effect on the textural properties of CNSB. The mechanism studies found that gradual acidification of dough by lactic acid bacteria is a critical factor affecting the process. Conversely, chemical acidification weakened the texture property of products and reduced the dough rheology. Scanning electron microscope (SEM) analysis showed that fermentation with starter for 12 h produced a continuous and extensional protein network in the proofed dough. Furthermore, the decreasing pH of proofed dough increased the extractability of protein in a sodium dodecyl sulfate (SDS)-containing medium and the content of free sulfhydryl (SH). The structure and content of gluten, especially influenced by gradual acidification level, change the quality of the final product. It is a novel approach to obtain an alkali-free CNSB with excellent quality by moderate gluten adjustment.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yejun Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huizhang Lian
- Wuxi Huashun Minsheng Food Co. Ltd., Wuxi 214218, China;
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-85326696
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.Y.); (H.Y.); (Y.W.); (H.Z.); (W.C.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|