1
|
Stompor-Gorący M, Włoch A, Sengupta P, Nasulewicz-Goldeman A, Wietrzyk J. Synergistic Proliferation Effects of Xanthohumol and Niflumic Acid on Merkel and Glioblastoma Cancer Cells: Role of Cell Membrane Interactions. Int J Mol Sci 2024; 25:11015. [PMID: 39456799 PMCID: PMC11508127 DOI: 10.3390/ijms252011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (Humulus lupulus), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other. Cell proliferation was quantified using the sulforodamine B (SRB) assay. In addition, the IC50 values for niflumic acid and xanthohumol applied separately were determined by cell proliferation tests for the following human cancer cell lines: 5637 (urinary bladder carcinoma), A-431 (epidermoid carcinoma), UM-SCC-17A (head and neck squamous carcinoma), SK-MEL-3 (melanoma), MCC13 (Merkel cell cancer), and A172 (glioblastoma), in comparison with the mouse normal fibroblasts (BALB/3T3 clone A31). The results show that the two-compound combinations of XN and NA significantly decreased the proliferation of cancer cells in a dose-dependent manner, and the effects were stronger than the additive responses to XN and NA individually. The membrane studies revealed a synergistic effect on the membrane rigidity when using the mixture of XN and NA, which may explain the observed increase in anticancer activity for the combined XN and NA. Our results suggest that NSAIDs, such as niflumic acid, may be a promising strategy for co-application with xanthohumol as anticancer drugs.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Priti Sengupta
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Anna Nasulewicz-Goldeman
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| |
Collapse
|
2
|
Papierska K, Judasz E, Tonińska W, Kubicki M, Krajka-Kuźniak V. Modulatory Effects of Chalcone Thio-Derivatives on NF-κB and STAT3 Signaling Pathways in Hepatocellular Carcinoma Cells: A Study on Selected Active Compounds. Int J Mol Sci 2024; 25:10739. [PMID: 39409068 PMCID: PMC11476945 DOI: 10.3390/ijms251910739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Our previous studies demonstrated the modulatory effects of new synthetic thio-chalcone derivatives in dishes on the Nrf2, NF-κB, and STAT3 signaling pathways in colon cancer cells. This study aimed to evaluate the effect of four selected active chalcone thio-derivatives on the NF-κB and STAT3 signaling pathways involved in inflammatory processes and cell proliferation in human liver cancer cells. Cell survival was assessed for cancer (HepG2) and normal (THLE-2) cell lines. Activation of NF-κB and STAT3 signaling pathways and the expression of proteins controlled by these pathways were estimated by Western blot, and qRT-PCR assessed the expression of NF-κB and STAT3 target genes. We also evaluated the impact on the selected kinases responsible for the phosphorylation of the studied transcription factors by MagneticBead-Based Multiplex Immunoassay. Among the thio-derivatives tested, especially derivatives 1 and 5, there was an impact on cell viability, cell cycle, apoptosis, and activation of NF-κB and STAT3 pathways in hepatocellular carcinoma (HCC), which confirms the possibilities of using them in combinatorial molecular targeted therapy of HCC. The tested synthetic thio-chalcones exhibit anticancer activity by initiating proapoptotic processes in HCC while showing low toxicity to non-cancerous cells. These findings confirm the possibility of using chalcone thio-derivatives in molecularly targeted combination therapy for HCC.
Collapse
Affiliation(s)
- Katarzyna Papierska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (E.J.); (W.T.); (V.K.-K.)
| | - Eliza Judasz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (E.J.); (W.T.); (V.K.-K.)
| | - Wiktoria Tonińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (E.J.); (W.T.); (V.K.-K.)
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-712 Poznań, Poland;
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (E.J.); (W.T.); (V.K.-K.)
| |
Collapse
|
3
|
Tronina T, Bartmańska A, Popłoński J, Rychlicka M, Sordon S, Filip-Psurska B, Milczarek M, Wietrzyk J, Huszcza E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int J Mol Sci 2023; 24:ijms24087408. [PMID: 37108571 PMCID: PMC10138577 DOI: 10.3390/ijms24087408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The antiproliferative activity of xanthohumol (1), a major prenylated chalcone naturally occurring in hops, and its aurone type derivative (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone (2) were investigated. Both flavonoids, as well as cisplatin as a reference anticancer drug, were tested in vivo against ten human cancer cell lines (breast cancer (MCF-7, SK-BR-3, T47D), colon cancer (HT-29, LoVo, LoVo/Dx), prostate cancer (PC-3, Du145), lung cancer (A549) and leukemia (MV-4-11) and two normal cell lines (human lung microvascular endothelial (HLMEC)) and murine embryonic fibroblasts (BALB/3T3). Chalcone 1 and aurone 2 demonstrated potent to moderate anticancer activity against nine tested cancer cell lines (including drug-resistant ones). The antiproliferative activity of all the tested compounds against cancer and the normal cell lines was compared to determine their selectivity of action. Prenylated flavonoids, especially the semisynthetic derivative of xanthohumol (1), aurone 2, were found as selective antiproliferative agents in most of the used cancer cell lines, whereas the reference drug, cisplatin, acted non-selectively. Our findings suggest that the tested flavonoids can be considered strong potential candidates for further studies in the search for effective anticancer drugs.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Agnieszka Bartmańska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
4
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Gupta KK, Sharma KK, Chandra H, Panwar H, Bhardwaj N, Altwaijry NA, Alsfouk AA, Dlamini Z, Afzal O, Altamimi ASA, Khan S, Mishra AP. The integrative bioinformatics approaches to predict the xanthohumol as anti-breast cancer molecule: Targeting cancer cells signaling PI3K and AKT kinase pathway. Front Oncol 2022; 12:950835. [PMID: 36591523 PMCID: PMC9798915 DOI: 10.3389/fonc.2022.950835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background Breast cancer is the most common type of cancer in women, and vast research is being conducted throughout the world for the treatment of this malignancy by natural products using various computational approaches. Xanthohumol, a prenylated flavonoid, is known for its anticancer activity; however, the mechanism behind its action is still in the preliminary stage. Methods The current study aimed to analyze the efficacy of xanthohumol compared to the currently available anticancer drugs targeting phosphoinositide-3-kinase (PI3K), serine/threonine kinase (AKT) receptors, and human epidermal growth factor receptor 2 (HER2) for breast cancer treatment through in silico analysis. Results The result revealed that the target compound showed significant binding affinity to targets within the PI3K, AKT, and HER2 signaling pathways with a binding energy of -7.5, -7.9, and -7.9 kcal/mol, respectively. Further prediction studies were then made concerning this compound's absorption, distribution, metabolism, and excretion (ADME) as well as drug-likeness properties, resulting in its oral bioavailability with only a single violation of Lipinski's rule of five. Conclusions The finding revealed the ability of xanthohumol to bind with multiple cancer cell signaling molecules including PI3K, AKT kinase, and HER2. The current novel study opened the door to advancing research into the management and treatment of breast cancer.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Himalaya Panwar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Najla A. Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Obaid Afzal
- 4SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Abdulmalik S. A. Altamimi
- 4SAMRC Precision Oncology Research Unit (PORU), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur, Uttar Pradesh, India,Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia,Department of Pharmaceutics, College of Pharmacy, King Saud University, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, South Africa,*Correspondence: Kamal Kant Sharma, ; Abhay Prakash Mishra, ; Shahanavaj Khan,
| |
Collapse
|
6
|
Lela L, Ponticelli M, Caddeo C, Vassallo A, Ostuni A, Sinisgalli C, Faraone I, Santoro V, De Tommasi N, Milella L. Nanotechnological exploitation of the antioxidant potential of Humulus lupulus L. extract. Food Chem 2022; 393:133401. [PMID: 35689927 DOI: 10.1016/j.foodchem.2022.133401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
The present study investigated the potential antioxidant applications of Humulus lupulus L. as raw extract and nanoformulated in liposomes. H. lupulus is commonly used as a food ingredient, but it is also a promising source of specialized metabolites with health-promoting effects. In the extract obtained by hydroalcoholic maceration, 24 compounds were characterized using liquid chromatography-mass spectrometry analyses. The extract exhibited an interesting antioxidant activity in in vitro spectrophotometric and cell assays. The extract was nanoformulated into liposomes to exploit and improve its beneficial proprieties. The in vitro assays revealed that, after incorporation into liposomes, the extract's antioxidant activity was preserved and even improved. Moreover, a lower dose of the extract was required to prevent reactive oxygen species overproduction when included in the nanoformulation. These results confirm the advantages of nanoformulating herbal extract to maximize its health-promoting effects for a potential pharmaceutical application.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Maria Ponticelli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Carla Caddeo
- Dept. of Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff TNcKILLERS s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Angela Ostuni
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff BioActiPlant s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Chiara Sinisgalli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff BioActiPlant s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff BioActiPlant s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy.
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy.
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
7
|
Zhang X, Wang T, Zhou H, Li Y, Guo H, Su H. Differential Inhibite Effect of Xanthohumol on HepG2 Cells and Primary Hepatocytes. Dose Response 2022; 20:15593258221136053. [DOI: 10.1177/15593258221136053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Xanthohumol (XN) is the major prenylated chalcone of the female inflorescences (cone) of the hop plant ( Humulus lupulus). It is also a constituent of beer, the major dietary source of prenylated flavonoids. It has shown strong antitumorigenic activity towards various types of cancer cells. In the present study, we show the impact on human hepatocarcinoma cell line HepG2 cell and potential adverse effects on rat primary hepatocytes. Cell growth/viability assay (MTT) demonstrated that HepG2 cells are highly sensitive to XN at a concentration range of 25-100 μM. The primary mode of tumor cell destruction was apoptosis as demonstrated by the binding of Annexin Ⅴ-FITC, we show that XN at a concentration of 25 μM induced apoptosis in HepG2. Further evidence that XN kills HepG2 by inducing apoptosis was provided by the impact of XN on the cleavage of PARP-1 and caspases-3. In contrast, XN concentrations up to 100 μM did not affect viability of primary rat hepatocytes in vitro, meanwhile, XN did not induce the apoptosis of primary rat hepatocytes in vitro . In summary, our data provide a rationale for clinical evaluation of XN for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiuli Zhang
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Tao Wang
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Haihong Zhou
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Yonghui Li
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Hongyun Guo
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| | - Haixiang Su
- Gansu Tumor Hospital, Gansu Province Academy of Medical Sciences, Lanzhou, China
| |
Collapse
|
8
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
9
|
Metabolomic and Proteomic Profile of Dried Hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. SEPARATIONS 2022. [DOI: 10.3390/separations9080204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hop (Humulus lupulus L.) is grown mainly for the production of beer. The flowers of the female plant give it the bitter taste and pungent aroma. There are a large number of hop varieties differing in their α-acid content, essential oil levels and odor profiles. Aside from their use in brewing, more recently, hops have been used for the pharmacological properties of its derivatives that are of great importance to the pharmaceutical industry. Hop is known to have a fairly complex chemistry characterized by the presence of a variety of sesquiterpenoids, diterpenoids and triterpenoids, phytoestrogens and flavonoids. Additionally, considering the countless applications in the pharmacological sector in recent years, a chemical characterization of the different cultivars is essential to better identify the source of specific secondary metabolites. For this purpose, the dried inflorescences of two hop cultivars, Chinook and Cascade, were investigated using Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry (SPME-GC-MS and LC-MS-MS) to describe their metabolomic and proteomic profile. Furthermore, thanks to an in-depth statistical survey, it was possible to carry out a comparative study highlighting interesting implications deriving from this investigative study.
Collapse
|
10
|
Vesaghhamedani S, Ebrahimzadeh F, Najafi E, Shabgah OG, Askari E, Shabgah AG, Mohammadi H, Jadidi-Niaragh F, Navashenaq JG. Xanthohumol: An underestimated, while potent and promising chemotherapeutic agent in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:3-14. [PMID: 35405185 DOI: 10.1016/j.pbiomolbio.2022.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Today, there is a growing interest nowadays in the use of herbal substances as cancer therapeutic agents. Over recent years, Xanthohumol (XTL) has been brought out as a prenylated chalcone that is found in hops (Humulus lupulus) and beer. XTL is being investigated for its potential properties, and it has been found to have various biological effects, including anti-microbial, anti-viral, and immunomodulatory. Other than these biological effects, it has also been found that XTL exerts anti-tumor effects. In the beginning, XTL, by modulating cell signaling pathways, including ERK, AKT, NF-κB, AMPK, Wnt/β-catenin, and Notch signaling in cancer cells, inhibits tumor cell functions. Moreover, XTL, by inducing apoptotic pathways, either intrinsic or extrinsic, promotes cancer cell death and arrests the cell cycle. Furthermore, XTL inhibits metastasis, angiogenesis, cancer stemness, drug resistance, cell respiration, etc., which results in tumor aggressiveness inhibition. XTL has low solubility in water, and it has been hypothesized that some modifications, including biotinylation, can improve its pharmacogenetic characteristics. Additionally, XTL derivates such as dihydroXTL and tetrahydroXTL can be helpful for more anti-tumor activities. Using XTL with other anti-tumor agents is another approach to overcome tumor cell resistance. XTL or its derivatives, it is believed, might provide novel chemotherapeutic methods in future cancer therapy.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Najafi
- Division of Anatomy and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
12
|
Abstract
In recent years, the role of gut microbial metabolites on the inhibition and progression of cancer has gained significant interest in anticancer research. It has been established that the gut microbiome plays a pivotal role in the development, treatment and prognosis of different cancer types which is often mediated through the gut microbial metabolites. For instance, gut microbial metabolites including bacteriocins, short-chain fatty acids and phenylpropanoid-derived metabolites have displayed direct and indirect anticancer activities through different molecular mechanisms. Despite the reported anticancer activity, some gut microbial metabolites including secondary bile acids have exhibited pro-carcinogenic properties. This review draws a critical summary and assessment of the current studies demonstrating the carcinogenic and anticancer activity of gut microbial metabolites and emphasises the need to further investigate the interactions of these metabolites with the immune system as well as the tumour microenvironment in molecular mechanistic and clinical studies.
Collapse
Affiliation(s)
- Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia,CONTACT Deep Jyoti Bhuyan ; NICM Health Research Institute, Western Sydney University, Penrith, NSW2751, Australia
| |
Collapse
|
13
|
Li X, Jin L, Yuchao M, Jiang Z, Tang H, Tong X. Xanthohumol inhibits non-small cell lung cancer by activating PUMA-mediated apoptosis. Toxicology 2022; 470:153141. [DOI: 10.1016/j.tox.2022.153141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
|
14
|
Torrens-Mas M, Alorda-Clara M, Martínez-Vigara M, Roca P, Sastre-Serra J, Oliver J, Pons DG. Xanthohumol reduces inflammation and cell metabolism in HT29 primary colon cancer cells. Int J Food Sci Nutr 2021; 73:471-479. [PMID: 34879764 DOI: 10.1080/09637486.2021.2012561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xanthohumol (XN) is a prenylated flavonoid known for its antioxidant and anti-inflammatory effects and has been studied as an anti-cancer agent. In this study, we aimed at analysing the effect of XN on a primary colorectal adenocarcinoma cell line, HT29, on cell viability, inflammatory and antioxidant gene expression, and metabolism. For this purpose, cells were treated with 10 nM and 10 µM XN, and cell viability, H2O2 production, lipid peroxidation and gene expression of inflammatory, antioxidant, and mitochondrial-related genes, as well as protein levels of metabolic enzymes, were determined. Results showed no significant effects on cell viability and a general decrease in pro-inflammatory, antioxidant and mitochondrial biogenesis gene expression with the lower concentration of XN. Furthermore, glucose and oxidative metabolism enzymes were also reduced. These results suggest that XN treatment, at low doses, could stop the proliferation and progression of HT29 cells by downregulating inflammatory signals and cell metabolism.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Translational Research in Aging and Longevity (TRIAL) Group, Vascular and Metabolic Pathologies Group, Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma, Spain.,Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| | - Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| | - Maria Martínez-Vigara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) Universitat de les Illes Balears, Palma, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
15
|
Constantinescu T, Lungu CN. Anticancer Activity of Natural and Synthetic Chalcones. Int J Mol Sci 2021; 22:11306. [PMID: 34768736 PMCID: PMC8582663 DOI: 10.3390/ijms222111306] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is a condition caused by many mechanisms (genetic, immune, oxidation, and inflammatory). Anticancer therapy aims to destroy or stop the growth of cancer cells. Resistance to treatment is theleading cause of the inefficiency of current standard therapies. Targeted therapies are the most effective due to the low number of side effects and low resistance. Among the small molecule natural compounds, flavonoids are of particular interest for theidentification of new anticancer agents. Chalcones are precursors to all flavonoids and have many biological activities. The anticancer activity of chalcones is due to the ability of these compounds to act on many targets. Natural chalcones, such as licochalcones, xanthohumol (XN), panduretin (PA), and loncocarpine, have been extensively studied and modulated. Modification of the basic structure of chalcones in order to obtain compounds with superior cytotoxic properties has been performed by modulating the aromatic residues, replacing aromatic residues with heterocycles, and obtaining hybrid molecules. A huge number of chalcone derivatives with residues such as diaryl ether, sulfonamide, and amine have been obtained, their presence being favorable for anticancer activity. Modification of the amino group in the structure of aminochalconesis always favorable for antitumor activity. This is why hybrid molecules of chalcones with different nitrogen hetercycles in the molecule have been obtained. From these, azoles (imidazole, oxazoles, tetrazoles, thiazoles, 1,2,3-triazoles, and 1,2,4-triazoles) are of particular importance for the identification of new anticancer agents.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Claudiu N. Lungu
- Department of Surgery, Country Emergency Hospital Braila, 810249 Braila, Romania
| |
Collapse
|
16
|
Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med Chem 2021; 13:2069-2081. [PMID: 34551612 DOI: 10.4155/fmc-2021-0241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hyperglycemia-associated advanced glycation end products (AGEs) and the receptor for AGE (RAGE) contribute to nonalcoholic fatty liver disease (NAFLD). Xanthohumol (XH) exhibits protective activities against liver diseases. Aim: To investigate the effects of XH on Type II diabetes mellitus (T2DM)-induced liver steatosis and fibrosis. Methods: NAFLD rat models were duplicated. Biomolecular markers were detected. Quantitative real-time PCR (RT-PCR) and western blot were used to detect mRNA and protein expression. Immunofluorescence assays were employed to identify the subcellular locations. Results: XH significantly ameliorated hyperglycemia and hyperlipidemia in rats. XH attenuated the expression of RAGE and NF-κB signaling. XH significantly alleviated inflammation and oxidation by upregulating NRF2 expression. Knockdown of NRF2 blocked XH protection in hepatocytes. Conclusion: XH protected against T2DM-induced liver steatosis and fibrosis by mediating NRF2/AGE/RAGE/NF-κB signaling.
Collapse
|
17
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
18
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|
19
|
Krajka-Kuźniak V, Paluszczak J, Kleszcz R, Baer-Dubowska W. (+)-Usnic acid modulates the Nrf2-ARE pathway in FaDu hypopharyngeal carcinoma cells. Mol Cell Biochem 2021; 476:2539-2549. [PMID: 33635505 PMCID: PMC8119403 DOI: 10.1007/s11010-021-04092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
Naturally occurring phytochemicals of different origin and structure, arctigenin, bergenin, usnic acid and xanthohumol, were shown to affect Nrf2 pathway in the context of various diseases, but their effect on this pathway in cancer cells was not extensively investigated. This study aimed to evaluate the effect of these compounds on Nrf2 expression and activation in hypopharyngeal FaDu squamous cell carcinoma cells. FaDu cells were treated with 2 or 10 μM arctigenin, bergenin, (+)-usnic acid or xanthohumol for 24 h. While arctigenin, bergenin, and xanthohumol did not affect either Nrf2 expression or activation, (+)-usnic acid treatment increased its transcript level and increased the nuclear/cytosol Nrf2 protein ratio—the measure of Nrf2 pathway activation. Consequently, (+)-usnic acid enhanced the transcription and translation of Nrf2 target genes: NQO1, SOD, and to a lesser extent, GSTP. The treatment of FaDu cells with (+)-usnic acid decreased both GSK-3β transcript and protein level, indicating its possible involvement in Nrf2 activation. All the tested compounds decreased Bax mRNA but did not change the level of Bax protein. (+)-Usnic acid tended to increase the percentage of early apoptotic cells and LC3 protein, autophagy marker. Significant induction of p53 also was observed after treatment with (+)-usnic acid. In summary, the results of this study indicate that low concentrations of (+)-usnic acid activate Nrf2 transcription factor, most probably as a result of ROS accumulation, but do not lead to FaDu hypopharyngeal carcinoma cells death.
Collapse
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Tuli HS, Aggarwal V, Parashar G, Aggarwal D, Parashar NC, Tuorkey MJ, Varol M, Sak K, Kumar M, Buttar HS. Xanthohumol: A Metabolite with Promising Anti-Neoplastic Potential. Anticancer Agents Med Chem 2021; 22:418-432. [PMID: 33622230 DOI: 10.2174/1871520621666210223095021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
The overwhelming globalburden of cancer has posed numerous challenges and opportunities for developing anti-cancer therapies. Phytochemicalshave emerged as promising synergistic compounds with potential anti-cancer effects to supplement chemo- and immune-therapeutic regimens. Anti cancer synergistic effects have been investigated in the interaction between phytocompounds derived from flavonoids such as quercetin, apigenin, kaempferol, hesperidin, emodin etc., and conventional drugs. Xanthohumol is one of the prenylatedphytoflavonoid that has demonstrated key anti-cancer activities in in vitro (anti proliferation of cancer cell lines) and in vivo(animal models of xenograft tumours)studies, and has been explored from different dimensions for targeting cancer subtypes. In the last decade, xanthohumol has been investigated how it induces the anti-cancer effects at cellular and molecular level.The different signalling cascades and targets of xanthohumolare summarized in thisreview.Overall, this reviewsummarizes the current advances made in the field of natural compounds with special reference to xanthohumol and its promising anti-cancer effectsto inhibit tumour progression.The present review hasalso touched upon the potential of xanthohumol transitioning into a lead candidate from nano-therapy viewpoint along with the challenges which need to be addressed for extensive pre-clinical and clinical anti-cancer studies.
Collapse
Affiliation(s)
- Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, PA. United States
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Nidarshana C Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana. India
| | - Muobarak J Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour. Egypt
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, MuglaSitkiKocman University, Mugla TR48000. Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur. India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario. Canada
| |
Collapse
|
21
|
Seitz T, Hackl C, Freese K, Dietrich P, Mahli A, Thasler RM, Thasler WE, Lang SA, Bosserhoff AK, Hellerbrand C. Xanthohumol, a Prenylated Chalcone Derived from Hops, Inhibits Growth and Metastasis of Melanoma Cells. Cancers (Basel) 2021; 13:cancers13030511. [PMID: 33572775 PMCID: PMC7866261 DOI: 10.3390/cancers13030511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most aggressive and lethal cancers worldwide. Despite recent progress in melanoma therapy, the prognosis for metastasized melanoma continues to be poor. Xanthohumol (XN), a prenylated chalcone derived from hop cones, is known to possess a broad spectrum of chemopreventive and anticancer activities. However, few studies have analyzed functional XN effects on melanoma cells and there have been no previous in vivo studies of its effects on metastasis. The aim of this study was to investigate the impact of XN on the tumorigenic and liver metastatic activity of melanoma cells. XN exhibited dose-dependent cytotoxic effects on human melanoma cell lines (Mel Ju; Mel Im) in vitro. Functional analysis in the subtoxic dose-range revealed that XN dose-dependently inhibited proliferation, colony formation, and migratory activity of melanoma cells. Subtoxic XN doses also induced markers of endoplasmic reticulum stress but inhibited the phosphorylation of the protumorigenic c-Jun N-terminal kinases (JNK). Furthermore, XN effects on hepatic metastasis were analyzed in a syngeneic murine model (splenic injection of murine B16 melanoma cells in C57/BL6 mice). Here, XN significantly reduced the formation of hepatic metastasis. Metastases formed in the liver of XN-treated mice revealed significantly larger areas of central necrosis and lower Ki67 expression scores compared to that of control mice. In conclusion, XN inhibits tumorigenicity of melanoma cells in vitro and significantly reduced hepatic metastasis of melanoma cells in mice. These data, in conjunction with an excellent safety profile that has been confirmed in previous studies, indicate XN as a promising novel agent for the treatment of hepatic (melanoma) metastasis.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
- Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, D-93053 Regensburg, Germany;
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
| | - Peter Dietrich
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University, D-91054 Erlangen, Germany
| | - Abdo Mahli
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
| | | | | | - Sven Arke Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, D-52074 Aachen, Germany;
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.S.); (K.F.); (P.D.); (A.M.); (A.K.B.)
- Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
22
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
23
|
Wang J, Lyu W, Zhang W, Chen Y, Luo F, Wang Y, Ji H, Zhang G. Discovery of natural products capable of inducing porcine host defense peptide gene expression using cell-based high throughput screening. J Anim Sci Biotechnol 2021; 12:14. [PMID: 33431034 PMCID: PMC7798283 DOI: 10.1186/s40104-020-00536-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background In-feed antibiotics are being phased out in livestock production worldwide. Alternatives to antibiotics are urgently needed to maintain animal health and production performance. Host defense peptides (HDPs) are known for their broad-spectrum antimicrobial and immunomodulatory capabilities. Enhancing the synthesis of endogenous HDPs represents a promising antibiotic alternative strategy to disease control and prevention. Methods To identify natural products with an ability to stimulate the synthesis of endogenous HDPs, we performed a high-throughput screening of 1261 natural products using a newly-established stable luciferase reporter cell line known as IPEC-J2/pBD3-luc. The ability of the hit compounds to induce HDP genes in porcine IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and jejunal explants were verified using RT-qPCR. Augmentation of the antibacterial activity of porcine 3D4/31 macrophages against a Gram-negative bacterium (enterotoxigenic E. coli) and a Gram-positive bacterium (Staphylococcus aureus) were further confirmed with four selected HDP-inducing compounds. Results A total of 48 natural products with a minimum Z-score of 2.0 were identified after high-throughput screening, with 21 compounds giving at least 2-fold increase in luciferase activity in a follow-up dose-response experiment. Xanthohumol and deoxyshikonin were further found to be the most potent in inducing pBD3 mRNA expression, showing a minimum 10-fold increase in IPEC-J2, 3D4/31 cells, and jejunal explants. Other compounds such as isorhapontigenin and calycosin also enhanced pBD3 mRNA expression by at least 10-fold in both IPEC-J2 cells and jejunal explants, but not 3D4/31 cells. In addition to pBD3, other porcine HDP genes such as pBD2, PG1-5, and pEP2C were induced to different magnitudes by xanthohumol, deoxyshikonin, isorhapontigenin, and calycosin, although clear gene- and cell type-specific patterns of regulation were observed. Desirably, these four compounds had a minimum effect on the expression of several representative inflammatory cytokine genes. Furthermore, when used at HDP-inducing concentrations, these compounds showed no obvious direct antibacterial activity, but significantly augmented the antibacterial activity of 3D4/31 macrophages (P < 0.05) against both Gram-negative and Gram-positive bacteria. Conclusions Our results indicate that these newly-identified natural HDP-inducing compounds have the potential to be developed as novel alternatives to antibiotics for prophylactic and therapeutic treatment of infectious diseases in livestock production.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wentao Lyu
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yonghong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Fang Luo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China. .,Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Guolong Zhang
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China. .,Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
24
|
Targeting Cancer Metabolism and Current Anti-Cancer Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:15-48. [PMID: 33725343 DOI: 10.1007/978-3-030-55035-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies have exploited the metabolic hallmarks that distinguish between normal and cancer cells, aiming at identifying specific targets of anti-cancer drugs. It has become apparent that metabolic flexibility allows cancer cells to survive during high anabolic demand or the depletion of nutrients and oxygen. Cancers can reprogram their metabolism to the microenvironments by increasing aerobic glycolysis to maximize ATP production, increasing glutaminolysis and anabolic pathways to support bioenergetic and biosynthetic demand during rapid proliferation. The increased key regulatory enzymes that support the relevant pathways allow us to design small molecules which can specifically block activities of these enzymes, preventing growth and metastasis of tumors. In this review, we discuss metabolic adaptation in cancers and highlight the crucial metabolic enzymes involved, specifically those involved in aerobic glycolysis, glutaminolysis, de novo fatty acid synthesis, and bioenergetic pathways. Furthermore, we also review the success and the pitfalls of the current anti-cancer drugs which have been applied in pre-clinical and clinical studies.
Collapse
|
25
|
Xanthohumol and Gossypol Are Promising Inhibitors against Babesia microti by In Vitro Culture via High-Throughput Screening of 133 Natural Products. Vaccines (Basel) 2020; 8:vaccines8040613. [PMID: 33081295 PMCID: PMC7711813 DOI: 10.3390/vaccines8040613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human babesiosis caused by Babesia microti is an emerging threat for severe illness and even death, with an increasing impact worldwide. Currently, the regimen of atovaquone and azithromycin is considered as the standard therapy for treating human babesiosis, which, however, may result in drug resistance and relapse, suggesting the necessity of developing new drugs to control B. microti. In this regard, natural products are promising candidates for drug design against B. microti due to their active therapeutic efficacy, lower toxicity, and fewer adverse reactions to host. Here, the potential inhibitors against B. microti were preliminarily screened from 133 natural products, and 47 of them were selected for further screening. Gossypol (Gp) and xanthohumol (Xn) were finally shown to effectively inhibit the growth of B. microti with IC50 values of 8.47 μm and 21.40 μm, respectively. The cytotoxicity results showed that Gp and Xn were non-toxic to erythrocytes at a concentration below 100 μm. Furthermore, both of them were confirmed to be non-toxic to different types of cells in previous studies. Our findings suggest the potential of Gp and Xn as effective drugs against B. microti infection.
Collapse
|
26
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
27
|
Samec M, Liskova A, Koklesova L, Samuel SM, Zhai K, Buhrmann C, Varghese E, Abotaleb M, Qaradakhi T, Zulli A, Kello M, Mojzis J, Zubor P, Kwon TK, Shakibaei M, Büsselberg D, Sarria GR, Golubnitschaja O, Kubatka P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J 2020; 11:377-398. [PMID: 32843908 PMCID: PMC7429635 DOI: 10.1007/s13167-020-00217-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011 Australia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafarik University, 040 11 Košice, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovak Republic
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 426 01 South Korea
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
28
|
Yin S, Song M, Zhao R, Liu X, Kang WK, Lee JM, Kim YE, Zhang C, Shim JH, Liu K, Dong Z, Lee MH. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol 2020; 8:366. [PMID: 32509787 PMCID: PMC7248302 DOI: 10.3389/fcell.2020.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related death worldwide. Xanthohumol is a prenylated flavonoid isolated from hops. Although xanthohumol has been reported to exert anti-obesity, hypoglycemic, anti-hyperlipidemia and anti-cancer activities, the mechanisms underlying its chemotherapeutic activity are yet to be elucidated. In the present study, we found that xanthohumol inhibited ESCC cell proliferation in vitro and in vivo by targeting keratin (KRT)-18. Xanthohumol suppressed the proliferation, foci formation, and anchorage-independent colony growth of KYSE30 cells. Using xanthohumol-sepharose conjugated bead pull-down and mass/mass analysis, we found that KRT18 is a novel target of xanthohumol in KYSE30 cells. KRT18 protein was highly expressed in patient ESCC tissues compared to adjunct tissues. Anti-proliferative activity of xanthohumol was abrogated or enhanced according to the knockdown or overexpression of KRT18 protein, respectively. Xanthohumol also induced apoptosis and cell cycle arrest at G1 phase which was associated with the modulation of expression of related makers including cyclin D1, cyclin D3, and cleaved-PARP, Bcl-2, cytochrome c and Bax. While xanthohumol attenuated KRT18 protein expression, it failed to cause any change in the KRT18 mRNA level. Furthermore, oral administration of xanthohumol decreased tumor volume and weight in patient-derived xenografts (PDXs) tumors having overexpressed KRT18. Overall these results suggest that xanthohumol acts as a KRT18 regulator to suppress the growth of ESCC.
Collapse
Affiliation(s)
- Shuying Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Woo Kyu Kang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Young Eun Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Chengjuan Zhang
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo-si, South Korea
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
29
|
Gieroba B, Arczewska M, Sławińska-Brych A, Rzeski W, Stepulak A, Gagoś M. Prostate and breast cancer cells death induced by xanthohumol investigated with Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118112. [PMID: 32014658 DOI: 10.1016/j.saa.2020.118112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Fourier Transform Infrared spectroscopy was applied to detect in vitro cell death induced in prostate (PC-3) and breast (T47D) cancer cell lines treated with xanthohumol (XN). After incubation of the cancer cells with XN, specific spectral shifts in the infrared spectra arising from selected cellular components were identified that reflected biochemical changes characteristic for apoptosis and necrosis. Detailed analysis of specific absorbance intensity ratios revealed the compositional changes in the secondary structure of proteins and membrane lipids. In this study, for the first time we examined the changes in these molecular components and linked them to deduce the involvement of molecular mechanisms in the XN-induced death of the selected cancer cells. We showed that XN concentration-dependent changes were attributed to phospholipid ester carbonyl groups, especially in the case of T47D cells, suggesting that XN acts as an inhibitor of cell proliferation. Additionally, we observed distinct changes in the region assigned to the absorption of DNA, which were correlated with a specific marker of cell death and dependent on the XN dose and the type of cancer cells. The microscopic observation and flow cytometry analysis revealed that the decrease in cancer cell viability was mainly related to the induction of necrotic cell death. Moreover, the T47D cells were slightly more sensitive to XN than the PC-3 cells. Considering the results obtained, it can be assumed that apoptosis and necrosis induced by XN may contribute to the anti-proliferative and cytotoxic properties of this flavonoid against cancer cell lines PC-3 and T47D.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Wojciech Rzeski
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; Department of Medical Biology, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
30
|
Scagliarini A, Mathey A, Aires V, Delmas D. Xanthohumol, a Prenylated Flavonoid from Hops, Induces DNA Damages in Colorectal Cancer Cells and Sensitizes SW480 Cells to the SN38 Chemotherapeutic Agent. Cells 2020; 9:E932. [PMID: 32290112 PMCID: PMC7226974 DOI: 10.3390/cells9040932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
In spite of chemotherapy and systematic screening for people at risk, the mortality rate of colorectal cancer (CRC) remains consistently high, with 600,000 deaths per year. This low success rate in the treatment of CRC results from many failures associated with high resistance and the risk of metastasis. Therefore, in response to these therapeutic failures, new strategies have been under development for several years aimed at increasing the effect of anticancer compounds and/or at reducing their secondary effects on normal cells, thus enabling the host to better withstand chemotherapy. This study highlights that xanthohumol (Xn) concentrations under the IC50 values were able to induce apoptosis and to enhance the DNA-damage response (DDR). We demonstrate for the first time that Xn exerts its anticancer activity in models of colon cancer through activation of the ataxia telangiectasia mutated (ATM) pathway. Subsequently, the ability of Xn to restore DNA damage in CRC cells can sensitize them to anticancer agents such as SN38 (7-ethyl-10-hydroxycamptothecin) used in chemotherapy.
Collapse
Affiliation(s)
- Alessandra Scagliarini
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.S.); (A.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Aline Mathey
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.S.); (A.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.S.); (A.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (A.S.); (A.M.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
| |
Collapse
|
31
|
Toxicity and Antitumor Activity of a Thiophene-Acridine Hybrid. Molecules 2019; 25:molecules25010064. [PMID: 31878135 PMCID: PMC6983054 DOI: 10.3390/molecules25010064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
The antitumor effects of thiophene and acridine compounds have been described; however, the clinical usefulness of these compounds is limited due to the risk of high toxicity and drug resistance. The strategy of molecular hybridization presents the opportunity to develop new drugs which may display better target affinity and less serious side effects. Herein, 2-((6-Chloro-2-methoxy-acridin-9-yl)amino)-5,6,7,8-tetrahydro-4H-cyclohepta[b]-thiophene-3-carbonitrile (ACS03), a hybrid thiophene–acridine compound with antileishmanial activity, was tested for toxicity and antitumor activity. The toxicity was evaluated in vitro (on HaCat and peripheral blood mononuclear cells) and in vivo (zebrafish embryos and acute toxicity in mice). Antitumor activity was also assessed in vitro in HCT-116 (human colon carcinoma cell line), K562 (chronic myeloid leukemic cell line), HL-60 (human promyelocytic leukemia cell line), HeLa (human cervical cancer cell line), and MCF-7 (breast cancer cell line) and in vivo (Ehrlich ascites carcinoma model). ACS03 exhibited selectivity toward HCT-116 cells (Half maximal inhibitory concentration, IC50 = 23.11 ± 1.03 µM). In zebrafish embryos, ACS03 induced an increase in lactate dehydrogenase, glutathione S-transferase, and acetylcholinesterase activities. The LD50 (lethal dose 50%) value in mice was estimated to be higher than 5000 mg/kg (intraperitoneally). In vivo, ACS03 (12.5 mg/kg) induced a significant reduction in tumor volume and cell viability. In vivo antitumor activity was associated with the nitric oxide cytotoxic effect. In conclusion, significant antitumor activity and weak toxicity were recorded for this hybrid compound, characterizing it as a potential anticancer compound.
Collapse
|
32
|
Xanthohumol, a Prenylated Flavonoid from Hops, Induces Caspase-Dependent Degradation of Oncoprotein BCR-ABL in K562 Cells. Antioxidants (Basel) 2019; 8:antiox8090402. [PMID: 31527518 PMCID: PMC6769755 DOI: 10.3390/antiox8090402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
BCR-ABL oncoprotein drives the initiation, promotion, and progression of chronic myelogenous leukemia (CML). Tyrosine kinase inhibitors are the first choice for CML therapy, however, BCR-ABL mediated drug resistance limits its clinical application and prognosis. A novel promising therapeutic strategy for CML therapy is to degrade BCR-ABL using small molecules. Antioxidant xanthohumol (XN) is a hop-derived prenylated flavonoid with multiple bioactivities. In this study, we showed XN could inhibit the proliferation, induce S phase cell cycle arrest, and stimulate apoptosis in K562 cells. XN degraded BCR-ABL in a concentration- and time-dependent manner, and the involved degradation pathway was caspase activation, while not autophagy induction or ubiquitin proteasome system (UPS) activation. Moreover, we revealed for the first time that XN could inhibit the UPS and autophagy in K562 cells, and the inhibitory effect of XN on autophagy could attenuate imatinib-induced autophagy and enhance the therapeutic efficiency of imatinib in K562 cells. Our present findings identified XN act as a degrader of BCR-ABL in K562 cells, and XN had potential to be developed as an alternate agent for CML therapy.
Collapse
|
33
|
Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int J Biol Sci 2019; 15:2497-2508. [PMID: 31595166 PMCID: PMC6775317 DOI: 10.7150/ijbs.37481] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human colorectal cancer (CRC). In the present study, we reported that Hexokinase 2 (HK2) is overexpressed in human CRC tissues and cell lines, knockout of HK2 inhibited cell proliferation, colony formation, and xenograft tumor growth. We demonstrated that the natural compound, xanthohumol, has a profound anti-tumor effect on CRC via down-regulation of HK2 and glycolysis. Xanthohumol suppressed CRC cell growth both in vitro and in vivo. Treatment with xanthohumol promoted the release of cytochrome C and activated the intrinsic apoptosis pathway. Moreover, our results revealed that xanthohumol down-regulated the EGFR-Akt signaling, exogenous overexpression of constitutively activated Akt1 significantly impaired xanthohumol-induced glycolysis suppression and apoptosis induction. Our results suggest that targeting HK2 appears to be a new approach for clinical CRC prevention or treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|