1
|
Ardizzone A, Scuderi SA, Crupi L, Campolo M, Paterniti I, Capra AP, Esposito E. Linking GERD and the Peptide Bombesin: A New Therapeutic Strategy to Modulate Inflammatory, Oxidative Stress and Clinical Biochemistry Parameters. Antioxidants (Basel) 2024; 13:1043. [PMID: 39334702 PMCID: PMC11428475 DOI: 10.3390/antiox13091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Gastroesophageal reflux disease (GERD) represents one of the most prevalent foregut illnesses, affecting a large portion of individuals worldwide. Recent research has shown that inflammatory mediators such as cytokines, chemokines, and enzymes are crucial for causing esophageal mucosa alterations in GERD patients. It seems likely that the expression of various cytokines in the esophageal mucosa also induces oxidative stress by increasing the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). As humoral agents and peptidergic neurotransmitters that may support the enterogastric axis, bombesin and its related bombesin-like peptide, GRP (gastrin releasing peptide), have not been fully investigated. Therefore, considering all these assumptions, this study aimed to evaluate the influence of bombesin in reestablishing biochemical markers linked with inflammation and oxidative/nitrosative stress in GERD pathological settings. C57BL/6 mice were alternatively overfed and fasted for 56 days to induce GERD and then treated with bombesin (0.1, 0.5, and 1 mg/kg intraperitoneally) once daily for 7 days, and omeprazole was used as the positive control. After 7 days of treatment, gastric pain and inflammatory markers were evaluated. Abdominal pain was significantly reduced following bombesin administration, which was also successful in diminishing inflammatory and oxidative/nitrosative stress markers in a manner overlapping with omeprazole. Moreover, bombesin was also able to appreciably modulate gastric pH as a result of the restoration of gastric homeostasis. Overall, these observations indicated that the upregulation of bombesin and interconnected peptides is a promising alternative approach to treat GERD patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (S.A.S.); (L.C.); (M.C.); (I.P.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.A.); (S.A.S.); (L.C.); (M.C.); (I.P.)
| |
Collapse
|
2
|
Zheng Y, Li Y, Samreen, Zhang Z, Liu M, Cui X, Wang J. Evaluation of thyroid-disrupting effects of bisphenol F and bisphenol S on zebrafish (Danio rerio) using anti-transthyretin monoclonal antibody-based immunoassays. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106968. [PMID: 38851028 DOI: 10.1016/j.aquatox.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
The thyroid disrupting chemicals (TDCs) have raised great concerns due to their adverse impacts on thyroid hormones (THs). In this study, we investigated the thyroid-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), two major BPA substitutes, on adult zebrafish (Danio rerio). Firstly, anti-transthyretin (TTR) monoclonal antibody (anti-TTR mAb) was prepared and used to establish an indirect ELISA, which had a working range of 15.6∼1000 ng/mL of a detection limit of 6.1 ng/mL. The immunoassays based on anti-TTR mAb showed that exposure to BPF (10 and 100 μg/L) and BPS (100 μg/L) significantly elevated the levels of TTR protein in the plasma, liver, and brain tissues. Moreover, immunofluorescence showed that 100 μg/L BPF and BPS induced the production of TTR protein in liver and brain tissues. In addition, BPF and BPS increased THs levels and damaged thyroid tissue structure in adult female zebrafish. Especially, 100 μg/L BPF significantly increased T4 and T3 levels by 2.05 and 1.14 times, and induced pathological changes of thyroid follicles. The changes in the expression levels of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis further illustrated that BPF and BPS had significant adverse effects on THs homeostasis and thyroid function in zebrafish. Therefore, TTR immunoassays could be used for the evaluation of thyroid-disrupting effects in fish and BPF exhibited greater disruption than BPS.
Collapse
Affiliation(s)
- Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Samreen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
3
|
March-Vila E, Ferretti G, Terricabras E, Ardao I, Brea JM, Varela MJ, Arana Á, Rubiolo JA, Sanz F, Loza MI, Sánchez L, Alonso H, Pastor M. A continuous in silico learning strategy to identify safety liabilities in compounds used in the leather and textile industry. Arch Toxicol 2023; 97:1091-1111. [PMID: 36781432 PMCID: PMC10025185 DOI: 10.1007/s00204-023-03459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
There is a widely recognized need to reduce human activity's impact on the environment. Many industries of the leather and textile sector (LTI), being aware of producing a significant amount of residues (Keßler et al. 2021; Liu et al. 2021), are adopting measures to reduce the impact of their processes on the environment, starting with a more comprehensive characterization of the chemical risk associated with the substances commonly used in LTI. The present work contributes to these efforts by compiling and toxicologically annotating the substances used in LTI, supporting a continuous learning strategy for characterizing their chemical safety. This strategy combines data collection from public sources, experimental methods and in silico predictions for characterizing four different endpoints: CMR, ED, PBT, and vPvB. We present the results of a prospective validation exercise in which we confirm that in silico methods can produce reasonably good hazard estimations and fill knowledge gaps in the LTI chemical space. The proposed protocol can speed the process and optimize the use of resources including the lives of experimental animals, contributing to identifying potentially harmful substances and their possible replacement by safer alternatives, thus reducing the environmental footprint and impact on human health.
Collapse
Affiliation(s)
- Eric March-Vila
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Giacomo Ferretti
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Emma Terricabras
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Inés Ardao
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Brea
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Varela
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Álvaro Arana
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Juan Andrés Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Ferran Sanz
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - María Isabel Loza
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Héctor Alonso
- Department of Sustainability, INDITEX, Av. da Deputación, 15412, Arteixo, Spain
| | - Manuel Pastor
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Chen X, Hirano M, Ishibashi H, Lee JS, Kawai YK, Kubota A. Efficient in vivo and in silico assessments of antiandrogenic potential in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109513. [PMID: 36442599 DOI: 10.1016/j.cbpc.2022.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to establish zebrafish-based in vivo and in silico assay systems to evaluate the antiandrogenic potential of environmental chemicals. Zebrafish embryos were exposed to 17α-methyltestosterone (TES) alone or coexposed to TES and representative antiandrogens including flutamide, p,p'-DDE, vinclozolin, fenitrothion, and linuron. We assessed the transcript expression of the androgen-responsive gene sulfotransferase family 2, cytosolic sulfotransferase 3 (sult2st3). The expression of sult2st3 was significantly induced by TES in the later stages of embryonic development. However, the TES-induced expression of sult2st3 was inhibited by flutamide in a concentration-dependent manner (IC50: 5.7 μM), suggesting that the androgen receptor (AR) plays a role in sult2st3 induction. Similarly, p,p'-DDE, vinclozolin, and linuron repressed the TES-induced expression of sult2st3 (IC50s: 0.35, 3.9, and 52 μM, respectively). At the highest concentration tested (100 μM), fenitrothion also suppressed sult2st3 expression almost completely. Notably, p,p'-DDE and linuron did not inhibit sult2st3 induction due to higher concentrations of TES; instead, they potentiated TES-induced sult2st3 expression. Fenitrothion and linuron, which had relatively low antiandrogenic potentials in terms of sult2st3 inhibition, induced broader toxicities in zebrafish embryos; thus, the relationship between developmental toxicities and antiandrogenic potency was unclear. Additionally, an in silico docking simulation showed that all five chemicals interact with the zebrafish AR at relatively low interaction energies and with Arg702 as a key amino acid in ligand binding. Our findings suggest that a combination of zebrafish-based in vivo and in silico assessments represents a promising tool to assess the antiandrogenic potentials of environmental chemicals.
Collapse
Affiliation(s)
- Xing Chen
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan. https://twitter.com/chenxing910520
| | - Masashi Hirano
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-city, Kumamoto 862-8652, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Jae Seung Lee
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Yusuke K Kawai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan
| | - Akira Kubota
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
5
|
Shang Y, Zhang S, Cheng Y, Feng G, Dong Y, Li H, Fan S. Tetrabromobisphenol a exacerbates the overall radioactive hazard to zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120424. [PMID: 36272602 DOI: 10.1016/j.envpol.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The major health risks of dual exposure to two hazardous factors of plastics and radioactive contamination are obscure. In the present study, we systematically evaluated the combinational toxic effects of tetrabromobisphenol A (TBBPA), one of the most influential plastic ingredients, mainly from electronic wastes, and γ-irradiation in zebrafish for the first time. TBBPA (0.25 μg/mL for embryos and larvae, 300 μg/L for adults) contamination aggravated the radiation (6 Gy for embryos and larvae, 20 Gy for adults)-induced early dysplasia and aberrant angiogenesis of embryos, further impaired the locomotor vitality of irradiated larvae, and worsened the radioactive multiorganic histologic injury, neurobehavioural disturbances and dysgenesis of zebrafish adults as well as the inter-generational neurotoxicity in offspring. TBBPA exaggerated the radiative toxic effects not only by enhancing the inflammatory and apoptotic response but also by further unbalancing the endocrine system and disrupting the underlying gene expression profiles. In conclusion, TBBPA exacerbates radiation-induced injury in zebrafish, including embryos, larvae, adults and even the next generation. Our findings provide new insights into the toxicology of TBBPA and γ-irradiation, shedding light on the severity of cocontamination of MP components and radioactive substances and thereby inspiring novel remediation and rehabilitation strategies for radiation-injured aqueous organisms and radiotherapy patients.
Collapse
Affiliation(s)
- Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yajia Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China.
| |
Collapse
|
6
|
Qiao Y, He J, Han P, Qu J, Wang X, Wang J. Long-term exposure to environmental relevant triclosan induces reproductive toxicity on adult zebrafish and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154026. [PMID: 35219675 DOI: 10.1016/j.scitotenv.2022.154026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS) is widely used in personal care products and has become a contaminant ubiquitously found in the aquatic environment. It is reported exposure to triclosan can cause serious toxic effects on aquatic animals. However, the molecular mechanisms about long-term exposure to TCS-induced reproductive toxicity are not well elucidated. In the present study, adult zebrafish were exposed to TCS (2, 20 and 200 μg/L) for 150 days, and then the reproductive capacity assessment, steroid hormone and VTG quantitative measurement, histopathology observation and RNA sequencing analysis were performed to investigate the effects of TCS on its reproduction. The results indicated that long-term exposure to TCS causes the regulation disorder of the endocrine system, resulting in a reduction of the number of normal germ cells, and ultimately a decrease in the hatching rate and survival rate of offspring. This study revealed the toxic effects and contributed to our deep understanding about the potential disease of TCS exposure in the aquatic environment.
Collapse
Affiliation(s)
- Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
7
|
Faria M, Bellot M, Bedrossiantz J, Ramírez JRR, Prats E, Garcia-Reyero N, Gomez-Canela C, Mestres J, Rovira X, Barata C, Oliván LMG, Llebaria A, Raldua D. Environmental levels of carbaryl impair zebrafish larvae behaviour: The potential role of ADRA2B and HTR2B. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128563. [PMID: 35248961 DOI: 10.1016/j.jhazmat.2022.128563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours. Interestingly, the observed behavioural effects induced by carbaryl were acetylcholinesterase-independent. To elucidate the molecular initiating event that resulted in the observed behavioural effects, in silico predictions were followed by in vitro validation. We identified two target proteins that potentially interacted with carbaryl, the α2B adrenoceptor (ADRA2B) and the serotonin 2B receptor (HTR2B). Using a pharmacological approach, we then tested the hypothesis that carbaryl had antagonistic interactions with both receptors. Similar to yohimbine and SB204741, which are prototypic antagonists of ADRA2B and HTR2B, respectively, carbaryl increased the heart rate of zebrafish larvae. When we compared the behavioural effects of a 24-h exposure to these pharmacological antagonists with those of carbaryl, a high degree of similarity was found. These results strongly suggest that antagonism of both ADRA2B and HTR2B is the molecular initiating event that leads to adverse outcomes in zebrafish larvae that have undergone 24 h of exposure to environmentally relevant levels of carbaryl.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Xavier Rovira
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
8
|
Lee JS, Kawai YK, Morita Y, Covaci A, Kubota A. Estrogenic and growth inhibitory responses to organophosphorus flame retardant metabolites in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109321. [PMID: 35227875 DOI: 10.1016/j.cbpc.2022.109321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Recent evidence has revealed that organophosphorus flame retardants (OPFRs) elicit a variety of toxic effects, including endocrine disruption. The present study examined estrogenic and growth inhibitory responses to OPFR metabolites in comparison to their parent compounds using zebrafish eleutheroembryos.1 Exposure to 4-hydroxylphenyl diphenyl phosphate (HO-p-TPHP) but not its parent compound triphenyl phosphate (TPHP) elicited upregulation of a marker gene of estrogenic responses, cytochrome P450 19A1b (CYP19A1b), and this upregulation was reversed by co-exposure to an estrogen receptor antagonist. Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), as well as 3-hydroxylphenyl diphenyl phosphate (HO-m-TPHP) and diphenyl phosphate (DPHP), did not elicit significant changes in the CYP19A1b expression. Reduction in body length was induced by TPHP and to a lesser extent by its hydroxylated metabolites. Altered expression of genes involved in the synthesis and action of thyroid hormones, including iodothyronine deiodinases 1 and 2, thyroid hormone receptor alpha, and transthyretin, were commonly observed for TPHP and its hydroxylated metabolites. Reduction in the body length was also seen in embryos exposed to TDCIPP but not BDCIPP. The transcriptional effect of TDCIPP was largely different from that of TPHP, with decreased expression of growth hormone and prolactin observed only in TDCIPP-exposed embryos. Considering the concentration-response relationships for the growth retardation and gene expression changes, together with existing evidence from other researchers, it is likely that prolactin is in part involved in the growth inhibition caused by TDCIPP. The present study showed similarities and differences in the endocrine disruptive effects of OPFRs and their metabolites.
Collapse
Affiliation(s)
- Jae Seung Lee
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan
| | - Yusuke K Kawai
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan
| | - Yuri Morita
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Akira Kubota
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan.
| |
Collapse
|
9
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
10
|
Asala TE, Dasmahapatra AK, Myla A, Tchounwou PB. Histological and Histochemical Evaluation of the Effects of Graphene Oxide on Thyroid Follicles and Gas Gland of Japanese Medaka (Oryzias latipes) Larvae. CHEMOSPHERE 2022; 286:131719. [PMID: 34426126 PMCID: PMC8595807 DOI: 10.1016/j.chemosphere.2021.131719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
Graphene oxide (GO) has become a topic of increasing concern for its environmental and health risks. However, studies on the potential toxic effects of GO, especially as an endocrine disrupting chemical (EDC), are very limited. In the present study we have used Japanese medaka fish as a model to assess the endocrine disruption potential of GO by evaluating its toxic and histopathologic effects on thyroid follicles and the gas gland (GG) of medaka larvae. One day post-hatch (dph) starved medaka fries were exposed to GO (2.5, 5.0, 10.0, and 20 mg/L) for 96 h, followed by 6 weeks depuration in a GO-free environment with feeding. Larvae were sacrificed and histopathological evaluation of thyroid follicles and the GG cells were done microscopically. Different sizes of spherical/oval shape thyroid follicles containing PAS positive colloids, surrounded by single-layered squamous/cuboidal epithelium, were found to be scattered predominantly throughout the pharyngeal region near the ventral aorta. We have apparently observed a sex-specific difference in the follicular size and thyrocytes height and a non-linear effect of GO exposure on the larvae on 47th day post hatch (dph). The GG is composed of large uniform epithelial cells with eosinophilic cytoplasm. Like thyroids, our studies on GG cells indicate a sex-specific difference and GO exposure non-linearly reduced the GG cell numbers in males and females as well as in XY and XX genotypes. Our data further confirm that sex effect should be carefully considered while assessing the toxicity of EDCs on the thyroid gland.
Collapse
Affiliation(s)
- Tolulope E Asala
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, 1400 JR Lynch Street, Jackson, MS, 39217, USA.
| |
Collapse
|
11
|
Eser B, Tural R, Gunal AC, Sepici Dincel A. Does bisphenol A bioaccumulate on zebrafish? Determination of tissue bisphenol A level. Biomed Chromatogr 2021; 36:e5285. [PMID: 34826884 DOI: 10.1002/bmc.5285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a high-production-volume industrial chemical mainly used in the production of polycarbonates and epoxy resins utilized in the manufacture of containers, bottles, toys, and medical devices. It has systemic effects as an endocrine disruptor even at low doses. To analyze its quantity in biological materials, sensitive and reproducible methods have to be used. Different doses and duration (90 and 900 μg/L, 24 and 120 h, and 21 days) of BPA exposure to whole body zebrafish were analyzed after specific homogenization of tissue, and then a modified method HPLC was used. The mobile phase was acetonitrile and water using a gradient method of reversed-phase C18 column, and excitation = 227 nm/emission = 313 nm. The calibration curve for BPA using HPLC-fluorescence detection method was between a concentration range of 1 and 1000 ng/mL and linear, and r2 = 0.999. The mean and standard error of mean values were 4.29 ± 1.05, 2.50 ± 0.92, and 2.53 ± 0.68 for control; 10.43 ± 2.61, 11.46 ± 3.24, and 8.55 ± 3.11 for BPA-90 μg/L; and 17.78 ± 4.39, 21.55 ± 4.37, and 25.32 ± 3.25 for BPA-900 μg/L (24 h, 120 h, and 21 days, respectively). Although some statistical significance among dose/time was observed between two different dose-treated groups, statistical significance was not found in dose/time results within the group. However, the positive result of BPA in the control group can be explained by low-dose, chronic exposure or prevalence of endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Burcu Eser
- Research and Development Center, University of Health Sciences, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Rabia Tural
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Aysel Caglan Gunal
- Department of Environmental Sciences, Institute of Natural and Applied Sciences, Gazi University, Ankara, Turkey
| | - Aylin Sepici Dincel
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Jiang J, Chen L, Liu X, Wang L, Wu S, Zhao X. Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148777. [PMID: 34229239 DOI: 10.1016/j.scitotenv.2021.148777] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The combination effects of triazole fungicides on aquatic organisms remain largely unknown. In current study, an integrated histological, transcriptome, metabonomics and microbiology was applied to investigate the mixture effects and risk of tebuconazole (TEB) and difenoconazole (DIF) co-exposure on zebrafish liver and gonad at aquatic life benchmark. TEB and DIF mixture showed additive effect on the acute toxicity to adult zebrafish, the combined toxicity on liver was less than the additive effect of individual TEB and DIF, and TEB and DIF mixture also reduced the toxic effects on gonad and intestinal microflora. Transcriptomics and metabolomics further showed TEB and DIF mixture could induce more differentially expressed genes (DEGs) to regulate the metabolic pathways involved in energy metabolism, steroid hormone biosynthesis, retinol metabolism and microbial metabolism, to balance the energy metabolism and supplies, and maintain the steroid hormone and RA level, further reduced the toxic effect on liver and gonad caused by TEB and DIF. Our results showed the different responses and patterns on transcriptional and metabolic profiles mediated in the diverse toxicity and combination effects of TEB and DIF. The present results provided a deep mechanistic understanding of the combined effects and mode of action of DIF and TEB mixture on aquatic organisms, suggesting the concept of additive effects might sufficiently protective when evaluated the combination effects and ecological risk of TEB and DIF at aquatic life benchmarks.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shengan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
13
|
Abstract
Iodothyronine deiodinases are enzymes capable of activating and inactivating thyroid hormones (THs) and have an important role in regulating TH action in tissues throughout the body. Three types of deiodinases (D1, D2, and D3) were originally defined based on their biochemical characteristics. Cloning of the first complementary DNAs in the 1990s (Dio1 in rat and dio2 and dio3 in frog) allowed to confirm the existence of 3 distinct enzymes. Over the years, increasing genomic information revealed that deiodinases are present in all chordates, vertebrates, and nonvertebrates and that they can even be found in some mollusks and annelids, pointing to an ancient origin. Research in nonmammalian models has substantially broadened our understanding of deiodinases. In relation to their structure, we discovered for instance that biochemical properties such as inhibition by 6-propyl-2-thiouracil, stimulation by dithiothreitol, and temperature optimum are subject to variation. Data from fish, amphibians, and birds were key in shifting our view on the relative importance of activating and inactivating deiodination pathways and in showing the impact of D2 and D3 not only in local but also whole body T3 availability. They also led to the discovery of new local functions such as the acute reciprocal changes in D2 and D3 in hypothalamic tanycytes upon photostimulation, involved in seasonal rhythmicity. With the present possibilities for rapid and precise gene silencing in any species of interest, comparative research will certainly further contribute to a better understanding of the importance of deiodinases for adequate TH action, also in humans.
Collapse
Affiliation(s)
- Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
- Correspondence: Veerle Darras, PhD, Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, PB 2464, B-3000 Leuven, Belgium.
| |
Collapse
|
14
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
15
|
Endocrine disruptors in teleosts: Evaluating environmental risks and biomarkers. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Moraes AB, Giacomini ACVV, Genario R, Marcon L, Scolari N, Bueno BW, Demin KA, Amstislavskaya TG, Strekalova T, Soares MC, de Abreu MS, Kalueff AV. Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neurosci Lett 2020; 747:135591. [PMID: 33359732 DOI: 10.1016/j.neulet.2020.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Estradiol (17β-estradiol, E2) is a crucial estrogen hormone that regulates sexual, cognitive, social and affective behaviors in various species. However, complex central nervous system (CNS) effects of E2, including its activity in males, remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model system in translational neuroscience research. Here, we evaluate the effects of a single 24-h exposure to 20 μg/L of E2 on behavioral and endocrine (cortisol) responses in adult male zebrafish. Overall, E2 exerted pro-social effect in the social preference test, reduced whole-body cortisol levels, elevated exploration in the novel tank test and increased the shoal size in the shoaling test, indicative of an anxiolytic-like profile of this hormone in male zebrafish. Supporting mounting human and rodent evidence on the role of E2 in behavioral regulation, the observed pro-social and anxiolytic-like effects of E2 in male zebrafish reinforce the use of this aquatic organism in studying steroid-mediated CNS mechanisms of complex affective and social behaviors.
Collapse
Affiliation(s)
- Andréia B Moraes
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands; Laboratory of Psychiatric Neurobiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
17
|
Martínez R, Codina AE, Barata C, Tauler R, Piña B, Navarro-Martín L. Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122881. [PMID: 32474318 DOI: 10.1016/j.jhazmat.2020.122881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya 08007, Spain.
| | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
18
|
Jarque S, Rubio-Brotons M, Ibarra J, Ordoñez V, Dyballa S, Miñana R, Terriente J. Morphometric analysis of developing zebrafish embryos allows predicting teratogenicity modes of action in higher vertebrates. Reprod Toxicol 2020; 96:337-348. [PMID: 32822784 DOI: 10.1016/j.reprotox.2020.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
The early identification of teratogens in humans and animals is mandatory for drug discovery and development. Zebrafish has emerged as an alternative model to traditional preclinical models for predicting teratogenicity and other potential chemical-induced toxicity hazards. To prove its predictivity, we exposed zebrafish embryos from 0 to 96 h post fertilization to a battery of 31 compounds classified as teratogens or non-teratogens in mammals. The teratogenicity score was based on the measurement of 16 phenotypical parameters, namely heart edema, pigmentation, body length, eye size, yolk size, yolk sac edema, otic vesicle defects, otoliths defects, body axis defects, developmental delay, tail bending, scoliosis, lateral fins absence, hatching ratio, lower jaw malformations and tissue necrosis. Among the 31 compounds, 20 were detected as teratogens and 11 as non-teratogens, resulting in 94.44 % sensitivity, 90.91 % specificity and 87.10 % accuracy compared to rodents. These percentages decreased slightly when referred to humans, with 87.50 % sensitivity, 81.82 % specificity and 74.19 % accuracy, but allowed an increase in the prediction levels reported by rodents for the same compounds. Positive compounds showed a high correlation among teratogenic parameters, pointing out at general developmental delay as major cause to explain the physiological/morphological malformations. A more detailed analysis based on deviations from main trends revealed potential specific modes of action for some compounds such as retinoic acid, DEAB, ochratoxin A, haloperidol, warfarin, valproic acid, acetaminophen, dasatinib, imatinib, dexamethasone, 6-aminonicotinamide and bisphenol A. The high degree of predictivity and the possibility of applying mechanistic approaches makes zebrafish a powerful model for screening teratogenicity.
Collapse
Affiliation(s)
- Sergio Jarque
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| | - Maria Rubio-Brotons
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Jone Ibarra
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Víctor Ordoñez
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Sylvia Dyballa
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Rafael Miñana
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, Badalona, 08916 Barcelona, Spain.
| |
Collapse
|
19
|
Bailone RL, Fukushima HCS, Ventura Fernandes BH, De Aguiar LK, Corrêa T, Janke H, Grejo Setti P, Roça RDO, Borra RC. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 2020; 36:13. [PMID: 32382525 PMCID: PMC7203993 DOI: 10.1186/s42826-020-00042-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.
Collapse
Affiliation(s)
- Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, Federal Inspection Service, São Carlos, SP Brazil
- São Paulo State University, Botucatu, SP Brazil
| | - Hirla Costa Silva Fukushima
- Health and Biological Sciences Center, Federal University, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Luís Kluwe De Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Newport, UK
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Princia Grejo Setti
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| |
Collapse
|
20
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|
21
|
ZeOncoTest: Refining and Automating the Zebrafish Xenograft Model for Drug Discovery in Cancer. Pharmaceuticals (Basel) 2019; 13:ph13010001. [PMID: 31878274 PMCID: PMC7169390 DOI: 10.3390/ph13010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The xenograft of human cancer cells in model animals is a powerful tool for understanding tumor progression and metastatic potential. Mice represent a validated host, but their use is limited by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish larvae might represent a valuable alternative. Their small size and transparency allow the tracking of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of different experimental parameters, such as cell labeling, injection site, automated individual sample image acquisition, and analysis. This workflow implementation finally allows a higher precision and experimental throughput increase, when compared to previous reports. The approach was validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone. The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy of the compounds. Finally, the methodology has proven useful for understanding specific drugs mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the regulated preclinical drug discovery path.
Collapse
|
22
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|