1
|
Burkard M, Piotrowsky A, Leischner C, Detert K, Venturelli S, Marongiu L. The Antiviral Activity of Polyphenols. Mol Nutr Food Res 2025:e70042. [PMID: 40166854 DOI: 10.1002/mnfr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyphenols are secondary metabolites produced by a large variety of plants. These compounds that comprise the class of phenolic acids, stilbenes, lignans, coumarins, flavonoids, and tannins have a wide range of employment, from food production to medical usages. Among the beneficial applications of polyphenols, their antiviral activity is gaining importance due to the increased prevalence of drug-resistant viruses such as herpes and hepatitis B viruses. In the present review, we provide an overview of the most promising or commonly used antiviral polyphenols and their mechanisms of action focusing on their effects on enveloped viruses of clinical importance (double-stranded linear or partially double-stranded circular DNA viruses, negative sense single-stranded RNA viruses with nonsegmented or segmented genomes, and positive sense single-stranded RNA viruses). The present work emphasizes the relevance of polyphenols, in particular epigallocatechin-3-gallate and resveratrol, as alternative or supportive antivirals. Polyphenols could interfere with virtually all steps of viral infection, from the adsorption to the release of viral particles. The activity of polyphenols against viruses is especially relevant given the risk of widespread outbreaks associated with viruses, remarked by the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Katja Detert
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Tuebingen, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Menis Candela F, Soria EA, Moliva MV, Suárez Perrone A, Reinoso EB, Giordano W, Sabini MC. Anti-DENV-2 Activity of Ethanolic Extracts from Arachis hypogaea L.: Peanut Skin as a Relevant Resource of Bioactive Compounds against Dengue Virus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2881. [PMID: 39458828 PMCID: PMC11511524 DOI: 10.3390/plants13202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Dengue is an emerging disease of high impact on human health. Plants are an important source of new antivirals and Arachis hypogaea stands for its biological properties. The aim of this study was to evaluate the cytotoxicity and antiviral activity and elucidate the antiviral mechanism of ethanolic extracts from A. hypogaea against dengue virus 2 (DENV-2). The skin or tegument ethanolic extract (TEEs) and seed ethanolic extract (SEEs) were obtained. Cytotoxicity was evaluated by MTT and Neutral Red Uptake (NRU). Antiviral activity was evaluated at different stages of the viral replication cycle by the lysis plaque reduction method. The 50% inhibitory concentration (IC50) and selectivity index (SI) were determined. Antiviral activity was further determined by RT-qPCR. The CC50 values were 169 (NRU) and 65 (MTT) µg/mL for TEE. In addition, the CC50 values were >1400 (NRU) and 636 (MTT) µg/mL for SEE. The TEE demonstrated 99.9 ± 0.1% viral inhibition. The TEE presented an IC50 = 3.47 and SI of 48.7 (NRU) and 18.73 (MTT). Its mechanism of antiviral action is broad and it acts in the viral adsorption-penetration stage and inhibits the first steps of infection in the post-penetration stage. It is also capable of acting as virucidal and as prophylactic. Studies of RT-qPCR indicated that the TEE inhibited viral RNA synthesis. These findings suggest that the TEE from A. hypogaea could be a promising antiviral candidate for treating DENV-2 infections.
Collapse
Affiliation(s)
- Florencia Menis Candela
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
| | - Elio Andrés Soria
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina;
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina
| | - Melina Vanesa Moliva
- Departament of Microbiology and Inmunology, Microbial Genetics Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (M.V.M.); (E.B.R.)
| | - Agostina Suárez Perrone
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
| | - Elina Beatríz Reinoso
- Departament of Microbiology and Inmunology, Microbial Genetics Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (M.V.M.); (E.B.R.)
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud, INBIAS-Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina;
| | - María Carola Sabini
- Departament of Microbiology and Inmunology, Virology Area, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto CP 5800, Argentina; (F.M.C.); (A.S.P.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina;
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo Gómez, Ciudad Universitaria, Córdoba Capital CP 5016, Argentina
| |
Collapse
|
3
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Choudhary P, Atri N. Promising role of Vitamin D and plant metabolites against COVID-19: Clinical trials review. Heliyon 2023; 9:e21205. [PMID: 37920525 PMCID: PMC10618788 DOI: 10.1016/j.heliyon.2023.e21205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Vitamin D possesses immunomodulatory qualities and is protective against respiratory infections. Additionally, it strengthens adaptive and cellular immunity and boosts the expression of genes involved in oxidation. Experts suggested taking vitamin D supplements to avoid and treat viral infection and also COVID-19, on the other hand, since the beginning of time, the use of plants as medicines have been vital to human wellbeing. The WHO estimates that 80 % of people worldwide use plants or herbs for therapeutic purposes. Secondary metabolites from medicinal plants are thought to be useful in lowering infections from pathogenic microorganisms due to their ability to inhibit viral protein and enzyme activity by binding with them. As a result, this manuscript seeks to describe the role of vitamin D and probable plant metabolites that have antiviral activities and may be complementary to the alternative strategy against COVID-19 in a single manuscript through reviewing various case studies.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Prayagraj, India
| | | | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Mohanty SS, Sahoo CR, Paidesetty SK, Padhy RN. Role of phytocompounds as the potential anti-viral agent: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2311-2329. [PMID: 37160482 PMCID: PMC10169142 DOI: 10.1007/s00210-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Viral diseases are the most notorious infective agent(s) causing morbidity and mortality in every nook and corner for ages; viruses are active in host cells, and specific anti-virus medicines' developments remain uncanny. In this century of the biological era, human viruses act predominantly as versatile spreaders. The infection of the present COVID-19 virus is up in the air; blithely, the integument of medicinal chemistry approaches, particularly bioactive derived phytocompounds could be helpful to control those human viruses, recognized in the last 100 years. Indeed, natural products are being used for various therapeutic purposes. The major bioactive phytocompounds are chemically containing coumarin, thiosulfonate, steroid, polysaccharide, tannin, lignin, proanthocyanidin, terpene, quinone, saponin, flavonoid, alkaloid, and polyphenol, that are documented for inhibitory action against several viral infections. Mostly, about 20-30% of plants from tropical or temperate regions are known to have some antiviral activity. This comprehensive analysis of bioactive-derived phytocompounds would represent a significant impact and might be helpful for antiviral research and the current state of viral treatments.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Department of Medical Oncology, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
- Present Address: Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, ICMR-Regional Medical Research Centre, 751023 Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Rabindra Nath Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| |
Collapse
|
5
|
Sharma R, Bhattu M, Tripathi A, Verma M, Acevedo R, Kumar P, Rajput VD, Singh J. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. ENVIRONMENTAL RESEARCH 2023; 227:115725. [PMID: 37001848 DOI: 10.1016/j.envres.2023.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The viral diseases encouraged scientific community to evaluate the natural antiviral bioactive components rather than protease inhibitors, harmful organic molecules or nucleic acid analogues. For this purpose, medicinal plants have been gaining tremendous importance in the field of attenuating the various kinds of infectious and non-infectious diseases. Most of the commonly used medicines contains the bioactive components/phytoconstituents that are generally extracted from medicinal plants. Moreover, the medicinal plants offer many advantages for the recovery applications of infectious disease especially in viral infections including HIV-1, HIV-2, Enterovirus, Japanese Encephalitis Virus, Hepatitis B virus, Herpes Virus, Respiratory syncytial virus, Chandipura virus and Influenza A/H1N1. Considering the lack of acceptable drug candidates and the growing antimicrobial resistance to existing drug molecules for many emerging viral diseases, medicinal plants may offer best platform to develop sustainable/efficient/economic alternatives against viral infections. In this regard, for exploring and analyzing large volume of scientific data, bibliometric analysis was done using VOS Viewer shedding light on the emerging areas in the field of medicinal plants and their antiviral activity. This review covers most of the plant species that have some novel bioactive compound like gnidicin, gniditrin, rutin, apigenin, quercetin, kaempferol, curcumin, tannin and oleuropin which showed high efficacy to inhibit the several disease causing virus and their mechanism of action in HIV, Covid-19, HBV and RSV were discussed. Moreover, it also delves the in-depth mechanism of medicinal with challenges and future prospective. Therefore, this work delves the key role of environment in the biological field.
Collapse
Affiliation(s)
- Rhydum Sharma
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Ashutosh Tripathi
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Roberto Acevedo
- San Sebastián University, Campus Bellavista 7, Santiago, Chile
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
6
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Sadeer NB, Haddad JG, Ezzat MO, Desprès P, Abdallah HH, Zengin G, Alshamrani IM, Barnawi J, Khalid A, Abdalla AN, Le Van B, El Kalamouni C, Mahomoodally MF. Rhizophora mucronata Lam., a halophyte from Mauritius Island, inhibits the entry of Zika virus in human cells (A549)- an in vitro and in silico analysis. J Biomol Struct Dyn 2023; 41:12599-12609. [PMID: 36648248 DOI: 10.1080/07391102.2023.2167115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
The recent appearance of Zika virus (ZIKV) in Brazil should serve as a wake-up call to international authorities, as it poses a threat to global public health. In the present study, we investigated whether a mangrove plant, Rhizophora mucronata Lam. (R. mucronata) collected in Mauritius, possesses anti-ZIKV activity at the non-cytotoxic doses. ZIKVMC-MR766NIID (ZIKVGFP) was used for assessing anti ZIKV activity. In silico docking (Autodock 4) and molecular simulation were performed on collected data. Using a recombinant ZIKV expressing reporter green fluorescent protein(GFP) protein, we discovered that fruit and root methanolic, decocted fruit and root extracts were effective inhibitors of ZIKV infection in human epithelial A549 cells at negligible cytotoxicity. The mechanisms by which such extracts prevented ZIKV infection are linked to the inability of the virus to attach to the host cell surface. The outcomes of this study were supported by the docking calculations in which some of the dominant compounds have shown high binding affinity against ZIKV. The scientific data gathered in this study might pave the way for the future development of possible R. mucronata inhibitors to combat ZIKV.fCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Juliano G Haddad
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, Ramadi, Anbar, Iraq
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University-erbil, erbil, Iraq
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | | | - Jameel Barnawi
- Department of Medical Lab Technology, Prince Fahd Bin Sultan Research chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bao Le Van
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Chaker El Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, La Réunion, France
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Ramiharimanana FD, Haddad JG, Andrianavalonirina MA, Apel C, Olivon F, Diotel N, Desprès P, Ramanandraibe VV, El Kalamouni C. Antiviral Effect of Stenocline ericoides DC. and Stenocline inuloides DC., Two Flavonoid-Rich Endemic Plants from Madagascar, against Dengue and Zika Viruses. Pharmaceuticals (Basel) 2022; 15:ph15121500. [PMID: 36558951 PMCID: PMC9787939 DOI: 10.3390/ph15121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Dengue and Zika viruses are identified as the most medically important arthropod-borne viral pathogens. Over the past 20 years, the global dengue incidence has dramatically increased with epidemics of severe dengue where the case fatality rate can reach up to 20% in untreated patients. The association between Zika virus infection and severe congenital anomalies was first reported in 2015. Today no specific antiviral therapies are available for dengue and Zika virus infections, accentuating the need of adapted antiviral strategies based on medicinal plant drug discovery. Plants are a potential source of antiviral phytocompounds which act primarily by blocking virus entry in the host-cell. In the present study, we evaluated whether crude extracts from Stenocline ericoides DC. and Stenocline inuloides DC., two endemic plants from Madagascar, may have antiviral effects against dengue and Zika viruses. We showed that S. ericoides has virucidal action whereas S. inuloides inhibits the early steps of virus infection with a non-cytotoxic effect in human cells. The administration of S. ericoides and S. inuloides extracts in zebrafish had no effect on the behavior of animals at the active doses against dengue and Zika viruses, suggesting the absence of adverse effects at these doses. LC-HRMS2 and molecular networking analyses revealed the richness of these two plants in polyphenols and flavonoid with the presence of clusters of phytocompounds specific to each Stenocline species. Consequently, S. ericoides and S. inuloides represent potential sources for natural and safe antiviral phytocompounds against flaviviruses of medical concern.
Collapse
Affiliation(s)
- Fenia D. Ramiharimanana
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
- International Associated Laboratory, University of Antananarivo-Lyon 1, Antananarivo P.O. Box 906, Madagascar
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
| | | | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, University of Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | | | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, UMR 1188, 97491 Sainte Clotilde, France
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
| | | | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Université de la Réunion, 94791 Sainte Clotilde, France
- Correspondence:
| |
Collapse
|
9
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
10
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
11
|
A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081287. [PMID: 36013466 PMCID: PMC9410304 DOI: 10.3390/life12081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants’ active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022.
Collapse
|
12
|
Ghaddar B, Gence L, Veeren B, Bringart M, Bascands JL, Meilhac O, Diotel N. Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish. Antioxidants (Basel) 2022; 11:antiox11071309. [PMID: 35883799 PMCID: PMC9312056 DOI: 10.3390/antiox11071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and “anti-diabetic” use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the “anti-weight-gain” effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited “anti-weight-gain” properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.
Collapse
Affiliation(s)
- Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Matthieu Bringart
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- CHU de La Réunion, 97400 Saint-Denis, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- Correspondence:
| |
Collapse
|
13
|
Tamkutė L, Haddad JG, Diotel N, Desprès P, Venskutonis PR, El Kalamouni C. Cranberry Pomace Extract Exerts Antiviral Activity against Zika and Dengue Virus at Safe Doses for Adult Zebrafish. Viruses 2022; 14:1101. [PMID: 35632841 PMCID: PMC9147401 DOI: 10.3390/v14051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Mosquito-borne dengue virus (DENV) and zika virus (ZIKV) infections constitute a global health emergency. Antivirals directly targeting the virus infectious cycle are still needed to prevent dengue hemorrhagic fever and congenital zika syndrome. In the present study, we demonstrated that Cranberry Pomace (CP) extract, a polyphenol-rich agrifood byproduct recovered following cranberry juice extraction, blocks DENV and ZIKV infection in human Huh7.5 and A549 cell lines, respectively, in non-cytotoxic concentrations. Our virological assays identified CP extract as a potential inhibitor of virus entry into the host-cell by acting directly on viral particles, thus preventing their attachment to the cell surface. At effective antiviral doses, CP extract proved safe and tolerable in a zebrafish model. In conclusion, polyphenol-rich agrifood byproducts such as berry extracts are a promising source of safe and naturally derived nutraceutical antivirals that target medically important pathogens.
Collapse
Affiliation(s)
- Laura Tamkutė
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu, pl. 19, LT-50254 Kaunas, Lithuania;
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| | - Nicolas Diotel
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, UMR 1188, 97490 Saint-Denis de La Réunion, France;
| | - Philippe Desprès
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu, pl. 19, LT-50254 Kaunas, Lithuania;
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux En Milieu Insulaire Tropical, Université De La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (L.T.); (J.G.H.); (P.D.)
| |
Collapse
|
14
|
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13:750494. [PMID: 35359838 PMCID: PMC8963989 DOI: 10.3389/fphar.2022.750494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue has become a worldwide affliction despite incessant efforts to search for a cure for this long-lived disease. Optimistic consequences for dengue vaccine are implausible as the efficiency is tied to previous dengue virus (DENV) exposure and a very high cost is required for large-scale production of vaccine. Medicinal plants are idyllic substitutes to fight DENV infection since they constitute important components of traditional medicine and show antiviral properties, although the mechanism behind the action of bioactive compounds to obstruct viral replication is less explored and yet to be discovered. This review includes the existing traditional knowledge on how DENV infects and multiplies in the host cells, conscripting different medicinal plants that obtained bioactive compounds with anti-dengue properties, and the probable mechanism on how bioactive compounds modulate the host immune system during DENV infection. Moreover, different plant species having such bioactive compounds reported for anti-DENV efficiency should be validated scientifically via different in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | | - M. M. Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
15
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
16
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
17
|
Cataneo AHD, Ávila EP, Mendes LADO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Flavonoids as Molecules With Anti- Zika virus Activity. Front Microbiol 2021; 12:710359. [PMID: 34566915 PMCID: PMC8462986 DOI: 10.3389/fmicb.2021.710359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Eloah Pereira Ávila
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Camila Rodrigues Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| |
Collapse
|
18
|
Bibi Sadeer N, Haddad JG, Oday Ezzat M, Desprès P, Abdallah HH, Zengin G, Uysal A, El Kalamouni C, Gallo M, Montesano D, Mahomoodally MF. Bruguiera gymnorhiza (L.) Lam. at the Forefront of Pharma to Confront Zika Virus and Microbial Infections-An In Vitro and In Silico Perspective. Molecules 2021; 26:5768. [PMID: 34641314 PMCID: PMC8510246 DOI: 10.3390/molecules26195768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in Brazil and the increasing resistance developed by pathogenic bacteria to nearly all existing antibiotics should be taken as a wakeup call for the international authority as this represents a risk for global public health. The lack of antiviral drugs and effective antibiotics on the market triggers the need to search for safe therapeutics from medicinal plants to fight viral and microbial infections. In the present study, we investigated whether a mangrove plant, Bruguiera gymnorhiza (L.) Lam. (B. gymnorhiza) collected in Mauritius, possesses antimicrobial and antibiotic potentiating abilities and exerts anti-ZIKV activity at non-cytotoxic doses. Microorganisms Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70603, methicillin-resistant Staphylococcus aureus ATCC 43300 (MRSA), Salmonella enteritidis ATCC 13076, Sarcina lutea ATCC 9341, Proteus mirabilis ATCC 25933, Bacillus cereus ATCC 11778 and Candida albicans ATCC 26555 were used to evaluate the antimicrobial properties. Ciprofloxacin, chloramphenicol and streptomycin antibiotics were used for assessing antibiotic potentiating activity. ZIKVMC-MR766NIID (ZIKVGFP) was used for assessing anti-ZIKV activity. In silico docking (Autodock 4) and ADME (SwissADME) analyses were performed on collected data. Antimicrobial results revealed that Bruguiera twig ethyl acetate (BTE) was the most potent extract inhibiting the growth of all nine microbes tested, with minimum inhibitory concentrations ranging from 0.19-0.39 mg/mL. BTE showed partial synergy effects against MRSA and Pseudomonas aeruginosa when applied in combination with streptomycin and ciprofloxacin, respectively. By using a recombinant ZIKV-expressing reporter GFP protein, we identified both Bruguiera root aqueous and Bruguiera fruit aqueous extracts as potent inhibitors of ZIKV infection in human epithelial A549 cells. The mechanisms by which such extracts prevented ZIKV infection are linked to the inability of the virus to bind to the host cell surface. In silico docking showed that ZIKV E protein, which is involved in cell receptor binding, could be a target for cryptochlorogenic acid, a chemical compound identified in B. gymnorhiza. From ADME results, cryptochlorogenic acid is predicted to be not orally bioavailable because it is too polar. Scientific data collected in this present work can open a new avenue for the development of potential inhibitors from B. gymnorhiza to fight ZIKV and microbial infections in the future.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Mohammed Oday Ezzat
- Department of Chemistry, College of Education for Women, University of Anbar, Ramadi 31001, Iraq;
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey;
| | - Ahmet Uysal
- Department of Medicinal Laboratory, Vocational School of Health Services, Selcuk University, 42130 Konya, Turkey;
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (J.G.H.); (P.D.); (C.E.K.)
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius;
| |
Collapse
|
19
|
Yao ZW, Liu H, Zhou R, Feng MY, Wang F, Qin XJ, Chen XX, Zheng CB, Luo RH, Yang LM, Cen S, Xiong SD, Liu HY, Zheng YT. Non-volatile acylphloroglucinol components from Eucalyptus robusta inhibit Zika virus by impairing RdRp activity of NS5. Bioorg Chem 2021; 116:105303. [PMID: 34464815 DOI: 10.1016/j.bioorg.2021.105303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023]
Abstract
Eucalyptus is a large genus of the Myrtaceae family with high value in various fields of industry. Recently, attention has been focused on the functional properties of Eucalyptus extracts. These extracts have been traditionally used to combat various infectious diseases, and volatile oils are usually considered to play a major role. But the positive effects of non-volatile acylphloroglucinols, a class of specialized metabolites with relatively high content in Eucalyptus, should not be neglected. Herein, non-volatile acylphloroglucinols from leaves of Eucalyptus robusta were evaluated for their abilities to inhibit Zika virus (ZIKV) which is associated with severe neurological damage and complications. The results showed eucalyprobusone G, a new symmetrical acylphloroglucinol dimer, possessed the significant ability to inhibit ZIKV without inducing cytotoxicity. The EC50 values of eucalyprobusone G against the African lineage (MR766) and Asian lineage (SZ-WIV01) of ZIKV were 0.43 ± 0.08 and 10.10 ± 3.84 μM which were 110 times and 5.8 times better than those of the reference compound ribavirin, respectively. Further action mode research showed that eucalyprobusone G impairs the viral binding and RdRp activity of NS5. The results broaden the functional properties of Eucalyptus robusta and indicate acylphloroglucinol dimers could be developed as anti-ZIKV agents.
Collapse
Affiliation(s)
- Zhai-Wen Yao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Pharmacy, Soochow University, Suzhou 215021, China
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mi-Yan Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Fang Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Medicine, Kunming University of Science and Technology Kunming 650500, China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiu-Xiu Chen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Pharmacy, Soochow University, Suzhou 215021, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liu-Meng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Si-Dong Xiong
- College of Pharmacy, Soochow University, Suzhou 215021, China.
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
20
|
Cranberry ( Vaccinium macrocarpon) Extract Impairs Nairovirus Infection by Inhibiting the Attachment to Target Cells. Pathogens 2021; 10:pathogens10081025. [PMID: 34451488 PMCID: PMC8401317 DOI: 10.3390/pathogens10081025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Hazara virus (HAZV) belongs to the Nairoviridae family and is included in the same serogroup of the Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is the most widespread tick-borne arbovirus. It is responsible for a serious hemorrhagic disease, for which specific and effective treatment and preventive systems are missing. Bioactive compounds derived from several natural products may provide a natural source of broad-spectrum antiviral agents, characterized by good tolerability and minimal side effects. Previous in vitro studies have shown that a cranberry (Vaccinium macrocarpon Ait.) extract containing a high content of A-type proanthocyanidins (PAC-A) inhibits the replication of herpes simplex and influenza viruses by hampering their attachment to target cells. Given the broad-spectrum antimicrobial activity of polyphenols and the urgency to develop therapies for the treatment of CCHF, we investigated the antiviral activity of cranberry extract against HAZV, a surrogate nairovirus model of CCHFV that can be handled in Level 2 Biosafety Laboratories (BSL-2). The results indicate that the cranberry extract exerts an antiviral activity against HAZV by targeting early stages of the viral replication cycle, including the initial adsorption to target cells. Although the details of the molecular mechanism of action remain to be clarified, the cranberry extract exerts a virucidal effect through a direct interaction with HAZV particles that leads to the subsequent impairment of virus attachment to cell-surface receptors. Finally, the antiviral activity of the cranberry extract was also confirmed for CCHFV. As a whole, the evidence obtained suggests that cranberry extract is a valuable candidate to be considered for the development of therapeutic strategies for CCHFV infections.
Collapse
|
21
|
Zheleva-Dimitrova D, Sinan KI, Etienne OK, Ak G, Sharmeen JB, Dervisoglu G, Ozdemir FA, Mahomoodally MF, Zengin G. Comprehensive chemical characterization and biological evaluation of two Acacia species: A. nilotica and A. ataxacantha. Food Chem Toxicol 2021; 156:112446. [PMID: 34339749 DOI: 10.1016/j.fct.2021.112446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The genus Acacia (Family Leguminosae) is composed of several medicinal plants used for treating miscellaneous diseases. Amid the important members of this genus, A. nilotica and A. ataxacantha are widely employed for their tremendous healing properties. Hence, this present work aimed to determine the total phenolic and flavonoid contents and investigate the antioxidant, antiproliferative, anti-enzyme and antimicrobial potentials of methanolic and water extracts of leaves and stem bark of A. nilotica and A. ataxacantha obtained by maceration and ultrasonication. The total phenolic and flavonoid contents were obtained in the range of 33.35-116.60 mg GAE/g and 0.26-49.90 mg RE/g, respectively, with the methanolic leaf extracts of both species showing the highest contents. Moreover, the methanolic extracts were observed to display higher antioxidant potentials in almost all antioxidant assays performed compared to the water extracts (ABTS: 52.66-943.81 mg TE/g, DPPH: 8.51-493.90 mg TE/g, CUPRAC: 106.39-1193.75 mg TE/g; FRAP: 31.38-416.21 mg TE/g, and phosphomolybdenum: 0.90-4.17 mM TE/g). However, the water extracts were seen to be better metal chelators than the methanolic extracts (8.47-36.85 mg EDTAE/g). Additionally, all extracts were found to exhibit anti-tyrosinase (30.79-74.80 mg KAE/g) and anti-amylase (0.10-1.10 mM ACAE/g) properties. With the exception of a few extracts, glucosidase and acetylcholinesterase inhibitions (1.69-2.12 mg ACAE/g and 0.42-2.61 mg GALAE/g, respectively) were also demonstrated. While the methanolic extracts of both species showed antimicrobial potency against all the 18 tested microorganisms (gram positive, gram negative, and fungi), the water extracts were effective only against the gram positive bacteria. The extracts were also found to exhibit antiproliferative effects on SH-SY5Y human neuroblastoma cells, with the methanolic extracts showing higher cytotoxic potential than the water extracts. Therefore, this study showed these species to be good sources of antioxidants, enzyme inhibitors, antimicrobials and antiproliferative agents, which could be of great interest for their applications as natural bioactive ingredients in the development of pharmaceuticals and nutraceuticals.
Collapse
Affiliation(s)
| | - Kouadio Ibrahime Sinan
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
| | - Ouattara Katinan Etienne
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Gunes Ak
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
| | - Jugreet B Sharmeen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Gokhan Dervisoglu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000, Bingol, Turkey
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, 12000, Bingol, Turkey
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey.
| |
Collapse
|
22
|
Phytoconstituents as Lead Compounds for Anti-Dengue Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:159-193. [PMID: 34258741 DOI: 10.1007/978-981-16-0267-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dengue is an arthropod-borne viral disease common in subtropical and tropical regions. The widespread use of traditional medicines in these regions for dengue fever (DF) has encouraged researchers to explore the therapeutic effect of herbs and their phytochemicals in dengue infection. Phytochemicals such as quercetin, baicalein, luteolin, oxindole alkaloids, celastrol and geraniin have shown significant inhibition of dengue virus in vitro. Many phytoconstituents have better selectivity index supporting their safety profile for future development. However, in vivo studies supporting therapeutic potency for these active phytoconstituents are limited. There is a need for studies translating anti-dengue profile of active phytoconstituents to find successful anti-dengue compounds.
Collapse
|
23
|
Cahyati WH, Siyam N, Putriningtyas ND. The potential of red dragon fruit peel yogurt to improve platelet levels in heparin-induced thrombocytopenia in Wistar rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients infected with the dengue virus will develop thrombocytopenia which can cause bleeding and complications. One of the materials that contain antioxidants and have potential as a functional food is red dragon fruit peel. This peel can be processed into yogurt as a way to increase antioxidant function which ultimately supports the immune system of its users. This study analyzed the effect of red dragon fruit peel yogurt on the platelet levels of thrombocytopenic Wistar rats. It used a pre-post-test control group design. Male Wistar rats were randomly assigned into seven groups: K-; K+; and five treatment groups that received dragon fruit peel yogurt at doses of 5% (K1); 10% (K2); 15% (K3); 20% (K4); and 25% (K5). Thrombocytopenia was induced by 0.1 mL.100g-1 BW of heparin for 3 days. The intervention was carried out for 28 days. The result showed that all groups had significant differences before and after the intervention (p <0.05). Tukey analysis showed that there were significant differences in all groups (p <0.05). Yogurt containing 25% red dragon fruit peel provides an effective dose for improving platelet levels in thrombocytopenic rats.
Collapse
|
24
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Papaya Fruit Pulp and Resulting Lactic Fermented Pulp Exert Antiviral Activity against Zika Virus. Microorganisms 2020; 8:microorganisms8091257. [PMID: 32825246 PMCID: PMC7565477 DOI: 10.3390/microorganisms8091257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
There are a several emerging and re-emerging RNA viruses that are prevalent around the world for which there are no licensed vaccines or antiviral drugs. Zika virus (ZIKV) is an example of an emerging virus that has become a significant concern worldwide because of its association with severe congenital malformations and neurological disorders in adults. Several polyphenol-rich extracts from plants were used as nutraceuticals which exhibit potent in vitro antiviral effects. Here, we demonstrated that the papaya pulp extracted from Carica papaya fruit inhibits the infection of ZIKV in human cells without loss of cell viability. At the non-cytotoxic concentrations, papaya pulp extract has the ability to reduce the virus progeny production in ZIKV-infected human cells by at least 4-log, regardless of viral strains tested. Time-of-drug-addition assays revealed that papaya pulp extract interfered with the attachment of viral particles to the host cells. With a view of preserving the properties of papaya pulp over time, lactic fermentation based on the use of bacterial strains Weissella cibaria 64, Lactobacillus plantarum 75 and Leuconostoc pseudomesenteroides 56 was performed and the resulting fermented papaya pulp samples were tested on ZIKV. We found that lactic fermentation of papaya pulp causes a moderate loss of antiviral activity against ZIKV in a bacterial strain-dependent manner. Whereas IC50 of the papaya pulp extract was 0.3 mg/mL, we found that fermentation resulted in IC50 up to 4 mg/mL. We can conclude that papaya pulp possesses antiviral activity against ZIKV and the fermentation process has a moderate effect on the antiviral effect.
Collapse
|
26
|
Sorres J, André A, Elslande EV, Stien D, Eparvier V. Potent and Non-Cytotoxic Antibacterial Compounds Against Methicillin-Resistant Staphylococcus aureus Isolated from Psiloxylon mauritianum, A Medicinal Plant from Reunion Island. Molecules 2020; 25:E3565. [PMID: 32764510 PMCID: PMC7465348 DOI: 10.3390/molecules25163565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023] Open
Abstract
With the occurrence of antibiotic-resistant Staphylococcus aureus strains, identification of new anti-staphylococcal drugs has become a necessity. It has long been demonstrated that plants are a large and diverse source of antibacterial compounds. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, was chemically investigated for its reported biological activity against S. aureus. Aspidin VB, a phloroglucinol derivative never before described, together with Aspidin BB, were first isolated from the ethyl acetate extract of P. mauritianum leaves. Their structures were elucidated from spectroscopic data. Aspidin VB exhibited strong antibacterial activity against standard and methicillin-resistant S. aureus strains, with a minimal inhibition concentration (MIC) of 0.25 μg/mL, and no cytotoxicity was observed at 10-5 M in MRC5 cells. Due to its biological activities, Aspidin VB appears to be a good natural lead in the fight against S. aureus.
Collapse
Affiliation(s)
- Jonathan Sorres
- Association DESIBER, 98 rue Roger Payet, Rivière des Pluies, La Réunion, 97438 Sainte Marie, France
- CNRS, Institute of Chemistry of Natural Substances UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.A.); (E.V.E.)
| | - Amandine André
- CNRS, Institute of Chemistry of Natural Substances UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.A.); (E.V.E.)
- Laboratoire Shigeta, 62 boulevard Davout, 75020 Paris, France
| | - Elsa Van Elslande
- CNRS, Institute of Chemistry of Natural Substances UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.A.); (E.V.E.)
| | - Didier Stien
- CNRS, Institute of Chemistry of Natural Substances UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.A.); (E.V.E.)
- Laboratory of Biodiversity and Microbial Biotechnologies (LBBM), Sorbonne University, CNRS, 75006 Paris, France; UPMC Univ Paris 06, Banyuls-sur-Mer Oceanological Observatory, 66650 Banyuls-sur-Mer, France;
| | - Véronique Eparvier
- CNRS, Institute of Chemistry of Natural Substances UPR2301, University of Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.A.); (E.V.E.)
| |
Collapse
|
27
|
Hasan M, Zafar A, Shahzadi I, Luo F, Hassan SG, Tariq T, Zehra S, Munawar T, Iqbal F, Shu X. Fractionation of Biomolecules in Withania coagulans Extract for Bioreductive Nanoparticle Synthesis, Antifungal and Biofilm Activity. Molecules 2020; 25:E3478. [PMID: 32751780 PMCID: PMC7435783 DOI: 10.3390/molecules25153478] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Withania coagulans contains a complex mixture of various bioactive compounds. In order to reduce the complexity of the plant extract to purify its phytochemical biomolecules, a novel fractionation strategy using different solvent combination ratios was applied to isolate twelve bioactive fractions. These fractions were tested for activity in the biogenic synthesis of cobalt oxide nanoparticles, biofilm and antifungal activities. The results revealed that plant extract with bioactive fractions in 30% ratio for all solvent combinations showed more potent bioreducing power, according to the observed color changes and the appearance of representative absorption peaks at 500-510 nm in the UV-visible spectra which confirm the synthesis of cobalt oxide nanoparticles (Co3O4 NPs). XRD diffraction was used to define the crystal structure, size and phase composition of the products. The fractions obtained using 90% methanol/hexane and 30% methanol/hexane showed more effectiveness against biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus so these fractions could potentially be used to treat bacterial infections. The 90% hexane/H2O fraction showed excellent antifungal activity against Aspergillus niger and Candida albicans, while the 70% methanol/hexane fraction showed good antifungal activity for C. albicans, so these fractions are potentially useful for the treatment of various fungal infections. On the whole it was concluded that fractionation based on effective combinations of methanol/hexane was useful to investigate and study bioactive compounds, and the active compounds from these fractions may be further purified and tested in various clinical trials.
Collapse
Affiliation(s)
- Murtaza Hasan
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Department of Biochemistry and Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.Z.); (I.S.); (T.T.)
| | - Ayesha Zafar
- Department of Biochemistry and Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.Z.); (I.S.); (T.T.)
| | - Irum Shahzadi
- Department of Biochemistry and Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.Z.); (I.S.); (T.T.)
| | - Fan Luo
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Shahbaz Gul Hassan
- College of Information Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology (Baghdad-ul-Jadeed Campus), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.Z.); (I.S.); (T.T.)
| | - Sadaf Zehra
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Tauseef Munawar
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (T.M.); (F.I.)
| | - Faisal Iqbal
- Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (T.M.); (F.I.)
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
28
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
29
|
Haddad JG, Grauzdytė D, Koishi AC, Viranaicken W, Venskutonis PR, Nunes Duarte dos Santos C, Desprès P, Diotel N, El Kalamouni C. The Geraniin-Rich Extract from Reunion Island Endemic Medicinal Plant Phyllanthus phillyreifolius Inhibits Zika and Dengue Virus Infection at Non-Toxic Effect Doses in Zebrafish. Molecules 2020; 25:molecules25102316. [PMID: 32429073 PMCID: PMC7287739 DOI: 10.3390/molecules25102316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The mosquito-borne viruses dengue (DENV) and Zika (ZIKV) viruses are two medically important pathogens in tropical and subtropical regions of the world. There is an urgent need of therapeutics against DENV and ZIKV, and medicinal plants are considered as a promising source of antiviral bioactive metabolites. In the present study, we evaluated the ability of Phyllanthus phillyreifolius, an endemic medicinal plant from Reunion Island, to prevent DENV and ZIKV infection in human cells. At non-cytotoxic concentration in vitro, incubation of infected A549 cells with a P. phillyreifolius extract or its major active phytochemical geraniin resulted in a dramatic reduction of virus progeny production for ZIKV as well as four serotypes of DENV. Virological assays showed that P. phillyreifolius extract-mediated virus inhibition relates to a blockade in internalization of virus particles into the host cell. Infectivity studies on ZIKV showed that both P. phillyreifolius and geraniin cause a loss of infectivity of the viral particles. Using a zebrafish model, we demonstrated that administration of P. phillyreifolius and geraniin has no effect on zebrafish locomotor activity while no morbidity nor mortality was observed up to 5 days post-inoculation. Thus, P. phillyreifolius could act as an important source of plant metabolite geraniin which is a promising antiviral compound in the fight against DENV and ZIKV.
Collapse
Affiliation(s)
- Juliano G. Haddad
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Dovilė Grauzdytė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (D.G.); (P.R.V.)
| | - Andrea Cristine Koishi
- Laboratorio de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba 81350-010, Brazil; (A.C.K.); (C.N.D.d.S.)
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (D.G.); (P.R.V.)
| | - Claudia Nunes Duarte dos Santos
- Laboratorio de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba 81350-010, Brazil; (A.C.K.); (C.N.D.d.S.)
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France;
| | - Chaker El Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
- Correspondence: ; Tel.: +33-262-938822
| |
Collapse
|
30
|
Ayapana triplinervis Essential Oil and Its Main Component Thymohydroquinone Dimethyl Ether Inhibit Zika Virus at Doses Devoid of Toxicity in Zebrafish. Molecules 2019; 24:molecules24193447. [PMID: 31547527 PMCID: PMC6804133 DOI: 10.3390/molecules24193447] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne virus of medical concern. ZIKV infection may represent a serious disease, causing neonatal microcephaly and neurological disorders. Nowadays, there is no approved antiviral against ZIKV. Several indigenous or endemic medicinal plants from Mascarene archipelago in Indian Ocean have been found able to inhibit ZIKV infection. The purpose of our study was to determine whether essential oil (EO) from Reunion Island medicinal plant Ayapana triplinervis, whose thymohydroquinone dimethyl ether (THQ) is the main component has the potential to prevent ZIKV infection in human cells. Virological assays were performed on human epithelial A549 cells infected with either GFP reporter ZIKV or epidemic viral strain. Zebrafish assay was employed to evaluate the acute toxicity of THQ in vivo. We showed that both EO and THQ inhibit ZIKV infection in human cells with IC50 values of 38 and 45 µg/mL, respectively. At the noncytotoxic concentrations, EO and THQ reduced virus progeny production by 3-log. Time-of-drug-addition assays revealed that THQ could act as viral entry inhibitor. At the antiviral effective concentration, THQ injection in zebrafish does not lead to any signs of stress and does not impact fish survival, demonstrating the absence of acute toxicity for THQ. From our data, we propose that THQ is a new potent antiviral phytocompound against ZIKV, supporting the potential use of medicinal plants from Reunion Island as a source of natural and safe antiviral substances against medically important mosquito-borne viruses.
Collapse
|
31
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
32
|
A GFP Reporter MR766-Based Flow Cytometry Neutralization Test for Rapid Detection of Zika Virus-Neutralizing Antibodies in Serum Specimens. Vaccines (Basel) 2019; 7:vaccines7030066. [PMID: 31315283 PMCID: PMC6789833 DOI: 10.3390/vaccines7030066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne virus of major public health concern. ZIKV infection is responsible for congenital Zika disease and other neurological defects. Antibody-mediated virus neutralization is an essential component of protective antiviral immunity against ZIKV. In the present study, we assessed whether our GFP reporter ZIKV derived from African viral strain MR766 could be useful for the development of a flow cytometry neutralization test (FNT), as an alternative to the conventional plaque-reduction neutralization test (PRNT). To improve the efficacy of GFP-expressing MR766, we selected virus variant MR766GFP showing a high level of GFP signal in infected cells. A MR766GFP-based FNT was assayed with immune sera from adult mice that received ZIKBeHMR-2. The chimeric ZIKV clone ZIKBeHMR-2 comprises the structural protein region of epidemic strain BeH819015 into MR766 backbone. We reported that adult mice inoculated with ZIKBeHMR-2 developed high levels of neutralizing anti-ZIKV antibodies. Comparative analysis between MR766GFP-based FNT and conventional PRNT was performed using mouse anti-ZIKBeHMR-2 immune sera. Indistinguishable neutralization patterns were observed when compared with PRNT50 and FNT50. We consider that the newly developed MR766GFP-based FNT is a valid format for measuring ZIKV-neutralizing antibodies in serum specimens.
Collapse
|
33
|
Doratoxylon apetalum, an Indigenous Medicinal Plant from Mascarene Islands, Is a Potent Inhibitor of Zika and Dengue Virus Infection in Human Cells. Int J Mol Sci 2019; 20:ijms20102382. [PMID: 31091703 PMCID: PMC6567149 DOI: 10.3390/ijms20102382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) and Dengue virus (DENV) are mosquito-borne viruses of the Flavivirus genus that could cause congenital microcephaly and hemorrhage, respectively, in humans, and thus present a risk to global public health. A preventive vaccine against ZIKV remains unavailable, and no specific antiviral drugs against ZIKV and DENV are licensed. Medicinal plants may be a source of natural antiviral drugs which mostly target viral entry. In this study, we evaluate the antiviral activity of Doratoxylum apetalum, an indigenous medicinal plant from the Mascarene Islands, against ZIKV and DENV infection. Our data indicated that D. apetalum exhibited potent antiviral activity against a contemporary epidemic strain of ZIKV and clinical isolates of four DENV serotypes at non-cytotoxic concentrations in human cells. Time-of-drug-addition assays revealed that D. apetalum extract acts on ZIKV entry by preventing the internalisation of virus particles into the host cells. Our data suggest that D. apetalum-mediated ZIKV inhibition relates to virus particle inactivation. We suggest that D. apetalum could be a promising natural source for the development of potential antivirals against medically important flaviviruses.
Collapse
|