1
|
Li J, Sun L, Zhao Y. Advances in non-coding RNA as a biomarker for obstructive sleep apnoea hypoventilation syndrome. Sleep Breath 2024; 28:1899-1908. [PMID: 39017902 DOI: 10.1007/s11325-024-03109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Obstructive sleep apnoea hypoventilation syndrome (OSAHS) is a common sleep disorder that affects multiple body systems, which in turn is closely associated with cognitive dysfunction, diabetes mellitus, oncological cardiovascular diseases and metabolic disorders. In recent years, non-coding RNA (ncRNA) has emerged as a new opportunity for biomarker discovery. We therefore discuss the research progress and potential role of ncRNAs in obstructive sleep apnea hypoventilation syndrome. METHODS This review systematically searched relevant academic literature from PubMed, Web of Science and other databases. During the retrieval process, a combination of keywords such as "OSAHS", "ncRNA", "lncRNA", "miRAN", "circRNA" was used for search. RESULTS Circulating ncRNA has good area under the ROC curve, sensitivity and specificity in the diagnosis of OSAHS, and has the potential to become a diagnostic marker for OSAHS, while several circulating ncRNAs or circulating ncRNAs in combination with other tests such as the Obstructive Sleep Apnoea Screening Scale have a higher value of application as a test for OSAHS. Further analyses revealed that many circulating ncRNAs were significantly differentially expressed in the serum of OSAHS patients with different very severities, a potential marker for predicting the severity of OSAHS, and that the ncRNA content of patients' serum also had a significant effect during CPAP therapy, suggesting that it may have potential for therapeutic monitoring. Meanwhile, serum ncRNAs from patients have been shown to be effective in the diagnosis of OSAHS complications such as hypertension, Alzheimer's disease, acute myocardial infarction and atherosclerosis. The expression of up- or down-regulated ncRNAs can regulate different signalling pathways, which in turn affects various OSAHS complications such as pulmonary hypertension, diabetes mellitus, and cognitive dysfunction, and is expected to become a new direction for the treatment of these complications. CONCLUSIONS The changes in ncRNA expression in OSAHS patients are expected to be a novel biomarker for the diagnosis and treatment of OSAHS, and can also be used as a potential biomarker for the combination of diabetes mellitus, cardiovascular disease, respiratory disease, and cognitive dysfunction in OSAHS. It is believed that the continuous progress of ncRNA-related research is expected to promote the early detection, diagnosis and treatment of OSAHS and its complications.
Collapse
Affiliation(s)
- Jingli Li
- Kunming University of Science and Technology Affiliated The First People's Hospital of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Limei Sun
- Kunming University of Science and Technology Affiliated Puer City People's Hospital, Puer, 665000, Yunnan, China
| | - Yuan Zhao
- Kunming University of Science and Technology Affiliated Puer City People's Hospital, Puer, 665000, Yunnan, China.
| |
Collapse
|
2
|
Guo W, Sun L, Yue H, Guo X, Chen L, Zhang J, Chen Z, Wang Y, Wang J, Lei W. Associations of Intermittent Hypoxia Burden with Gut Microbiota Dysbiosis in Adult Patients with Obstructive Sleep Apnea. Nat Sci Sleep 2024; 16:1483-1495. [PMID: 39347484 PMCID: PMC11438448 DOI: 10.2147/nss.s484377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Clinical studies focusing on the association between the gut microbiota and obstructive sleep apnea (OSA) are limited. This study aimed to explore the relationship between intermittent hypoxia and the composition of gut microbiota in adults by analyzing the differences in the characteristics and functional distribution of gut microbiota between patients with different severities of OSA and healthy individuals. Patients and Methods A cohort of 113 individuals from the First Affiliated Hospital of Sun Yat-sen University underwent overnight polysomnography from July 2019 to August 2021. The individuals included 16 healthy controls and 97 patients with OSA, categorized by the apnea-hypopnea index into mild, moderate, and severe groups. Fecal samples were analyzed using high-throughput sequencing of the 16S rRNA V3-V4 region to assess gut microbiota composition and function. Correlation analysis was used to evaluate the association between clinical indicators and microbiota markers. Results In patients with OSA, the gut microbiota diversity and the abundance of specific microbes that produce short-chain fatty acids decreased (P<0.05). The phyla Verrucomicrobia and Candidatus Saccharibacteria, genera Gemmiger and Faecalibacterium, and the species Gemmiger formicilis exhibited decreasing abundance with increasing OSA severity. Correlation analysis revealed a robust association between the proportion of total sleep time, characterized by nighttime blood oxygen saturation below 90%, and the alterations in the gut microbiota, demonstrating that elevated levels of desaturation are correlated with pronounced microbiota dysbiosis (P<0.05). Conclusion Compared to the control group, the intermittent hypoxia exhibited by patients with OSA may be related to alterations in the composition and structure of the gut microbiota. Our results demonstrate the importance of monitoring hypoxia indicators in future clinical practice.
Collapse
Affiliation(s)
- Wenbin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Lin Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Xueqin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Lin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Jinhong Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Zhuqi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yiming Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Jiao Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
3
|
Zhou L, Zhou L, Chen Q, Chen C, Qian Y, Lou D, Ma H, Wang S. Identification and preliminary validation of differently expressed genes as candidate biomarkers associated with atherosclerosis. Gene 2024; 915:148410. [PMID: 38527674 DOI: 10.1016/j.gene.2024.148410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Atherosclerosis (AS) is the primary cause of deadly cardio-cerebro vascular diseases globally. This study aims to explore the key differentially expressed genes (DEGs), potentially serving as predictive biomarkers for AS. METHODS Microarray datasets were retrieved from the GEO database for DEGs and DE-miRNAs identification. Then biological function of DEGs were elucidated based on gene ontology (GO) and KEGG pathway enrichment analysis. The protein-protein interaction (PPI) network and DEGs-DE-miRNAs network were constructed, with emphasis on hub DEGs selection and their interconnections. Additionally, receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic precision of hub DEGs for AS. More importantly, an AS Syrian Golden hamster model was established to validate the expression levels of hub DEGs in AS. RESULTS A total of 203 DEGs and 10 DE-miRNAs were screened, with six genes were chosen as hub DEGs. These DEGs were significantly enriched in AS-related biological processes and pathways, such as immune and inflammatory response, cellular response to IL-1 and TNF, positive regulation of angiogenesis, Type I diabetes mellitus, Cytokine-cytokine receptor interaction, TLR signaling pathway. Also, these DEGs and DE-miRNAs formed a closely-interacted DE-miRNAs - DEGs - KEGG pathway network. Besides, hub DEGs presented promising diagnostic potential for AS (AUC: 0.781 ∼ 0.887). In addition, the protein expression levels of TNF-α, CXCL8, CCL4, IL-1β, CCL3 and CCR8 were significantly increased in AS group Syrian Golden hamsters. CONCLUSION The identified candidate genes TNF, CXCL8, CCL4, IL1B, CCL3 and CCR8 may have the potential to serve as prognostic biomarker in diagnosing AS.
Collapse
Affiliation(s)
- Liqin Zhou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Liping Zhou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Qiliang Chen
- Department of Pharmacy, Zhuji Renze Rehabilitation Hospital, Zhuji 311899, Zhejiang, China
| | - Congying Chen
- Department of Pharmacy, Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310018, Zhejiang, China
| | - Yuanyuan Qian
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Dayong Lou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Huanjie Ma
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Suying Wang
- Department of Pharmacy, Shengzhou Chinese Medicine Hospital, Shengzhou 312400, Zhejiang, China.
| |
Collapse
|
4
|
Wang L, Liu H, Zhou L, Zheng P, Li H, Zhang H, Liu W. Association of Obstructive Sleep Apnea with Nonalcoholic Fatty Liver Disease: Evidence, Mechanism, and Treatment. Nat Sci Sleep 2024; 16:917-933. [PMID: 39006248 PMCID: PMC11244635 DOI: 10.2147/nss.s468420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Zhu M, Tang X, Xu J, Gong Y. Identification of HK3 as a promising immunomodulatory and prognostic target in sepsis-induced acute lung injury. Biochem Biophys Res Commun 2024; 706:149759. [PMID: 38484574 DOI: 10.1016/j.bbrc.2024.149759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Sepsis is a life-threatening global disease with a significant impact on human health. Acute lung injury (ALI) has been identified as one of the primary causes of mortality in septic patients. This study aimed to identify candidate genes involved in sepsis-induced ALI through a comprehensive approach combining bioinformatics analysis and experimental validation. METHODS The datasets GSE65682 and GSE32707 obtained from the Gene Expression Omnibus database were merged to screen for sepsis-induced ALI related differentially expressed genes (DEGs). Functional enrichment and immune infiltration analyses were conducted on DGEs, with the construction of protein-protein interaction (PPI) networks to identify hub genes. In vitro and in vivo models of sepsis-induced ALI were used to study the expression and function of hexokinase 3 (HK3) using various techniques including Western blot, real-time PCR, immunohistochemistry, immunofluorescence, Cell Counting Kit-8, Enzyme-linked immunosorbent assay, and flow cytometry. RESULTS The results of bioinformatics analysis have identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic significance for sepsis-induced ALI. The HK3 has profound effects on sepsis-induced ALI and exhibits a correlation with immune regulation. Experimental results showed increased HK3 expression in lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro studies demonstrated upregulation of HK3 in lipopolysaccharide (LPS)-stimulated lung epithelial cells, with cytoplasmic localization around the nucleus. Interestingly, following the knockdown of HK3 expression, lung epithelial cells exhibited a significant decrease in proliferation activity and glycolytic flux, accompanied by an increase in cellular inflammatory response, oxidative stress, and cell apoptosis. CONCLUSIONS It was observed for the first time that HK3 plays a crucial role in the progression of sepsis-induced ALI and may be a valuable target for immunomodulation and therapy.Bioinformatics analysis identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic relevance in sepsis-induced ALI. Experimental findings showed increased HK3 expression in the lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro experiments demonstrated increased HK3 levels in lung epithelial cells stimulated with LPS, with cytoplasmic localization near the nucleus. Knockdown of HK3 expression resulted in decreased proliferation activity and glycolytic flux, increased inflammatory response, oxidative stress, and cell apoptosis in lung epithelial cells.
Collapse
Affiliation(s)
- Mingyu Zhu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaokai Tang
- Department of Orthopaedic, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Xu
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuanqi Gong
- Department of Intensive Care Unit, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Wang Z, Gao M, Kan J, Cheng Q, Chen X, Tang C, Chen D, Zong S, Jin C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024; 13:1028. [PMID: 38611336 PMCID: PMC11011479 DOI: 10.3390/foods13071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a complicated inflammatory disease with a continually growing incidence. In this study, resistant starch was obtained from purple sweet potato (PSPRS) by the enzymatic isolation method. Then, the structural properties of PSPRS and its protective function in dextran sulfate sodium (DSS)-induced colitis were investigated. The structural characterization results revealed that the crystallinity of PSPRS changed from CA-type to A-type, and the lamellar structure was totally destroyed during enzymatic hydrolysis. Compared to DSS-induced colitis mice, PSPRS administration significantly improved the pathological phenotype and colon inflammation in a dose-dependent manner. ELISA results indicated that DSS-induced colitis mice administered with PSPRS showed higher IL-10 and IgA levels but lower TNF-α, IL-1β, and IL-6 levels. Meanwhile, high doses (300 mg/kg) of PSPRS significantly increased the production of acetate, propionate, and butyrate. 16S rDNA high-throughput sequencing results showed that the ratio of Firmicutes to Bacteroidetes and the potential probiotic bacteria levels were notably increased in the PSPRS treatment group, such as Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group, and Bifidobacterium. Simultaneously, harmful bacteria like Bacteroides, Staphylococcus, and Akkermansia were significantly inhibited by the administration of a high dose of PSPRS (p < 0.05). Therefore, PSPRS has the potential to be a functional food for promoting intestinal health and alleviating UC.
Collapse
Affiliation(s)
| | | | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Z.W.); (M.G.); (Q.C.); (X.C.); (C.T.); (D.C.); (S.Z.); (C.J.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Rajkov B, Zdravković M, Ninić A, Brajković M, Klašnja S, Gardijan V, Memon L, Munjas J, Mihajlović M, Spasojević-Kalimanovska V, Radosavljević V, Sopić M. Upregulation of peripheral blood mononuclear cells resistin gene expression in severe obstructive sleep apnea and obstructive sleep apnea with coexisting type 2 diabetes mellitus. Sleep Breath 2023; 27:2031-2039. [PMID: 36917442 DOI: 10.1007/s11325-023-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is characterised by increased systemic inflammation, and is often accompanied with type 2 diabetes mellitus (T2DM) and cardiovascular disease. The aim of this investigation was to evaluate gene expression of resistin, its receptor CAP1 and CD36 as the indicators of the inflammatory changes in PBMCs in relation to the severity of OSA, and the presence of type 2 diabetes mellitus (T2DM) in OSA. METHODS Severity of OSA was defined by the apnea/hypopnea index (AHI): AHI < 30: mild to moderate OSA (MM-OSA), AHI ≥ 30: severe OSA (S-OSA). Presence of T2DM was captured: OSA with T2DM (OSA + T2DM), OSA without T2DM (OSA-T2DM). PBMC resistin, CAP1, and CD36 mRNA were determined by real-time PCR. RESULTS Resistin mRNA was significantly upregulated in S-OSA (N = 54) compared to the MM-OSA (N = 52, P = 0.043); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.302; P = 0.166, respectively). Resistin mRNA was significantly upregulated in OSA + T2DM (N = 29) compared to the OSA-T2DM (N = 77, P = 0.029); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.662; P = 0.108, respectively). AHI and T2DM were independent predictors of resistin mRNA above the 75th percentile (OR = 3.717 [1.152-11.991]; OR = 3.261 [1.000-10.630], P = 0.042 respectively). CONCLUSION Resistin gene upregulation in S-OSA indicates its possible contribution to increased inflammation in S-OSA and makes it a possible marker of the disease severity. Resistin gene upregulation in OSA + T2DM suggests that a joint effect of these two comorbidities may have a major contribution to increased inflammation and complications that arise from this state.
Collapse
Affiliation(s)
- Branislava Rajkov
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Zdravković
- Department of Cardiology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Milica Brajković
- Department of Pulmology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Slobodan Klašnja
- Department of Cardiology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Vera Gardijan
- Department of Pulmology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Lidija Memon
- Department of Laboratory Diagnostics, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Marija Mihajlović
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | | | | | - Miron Sopić
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
8
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
9
|
Ou Y, Zong D, Ouyang R. Role of epigenetic abnormalities and intervention in obstructive sleep apnea target organs. Chin Med J (Engl) 2023; 136:631-644. [PMID: 35245923 PMCID: PMC10129098 DOI: 10.1097/cm9.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Obstructive sleep apnea (OSA) is a common condition that has considerable impacts on human health. Epigenetics has become a rapidly developing and exciting area in biology, and it is defined as heritable alterations in gene expression and has regulatory effects on disease progression. However, the published literature that is integrating both of them is not sufficient. The purpose of this article is to explore the relationship between OSA and epigenetics and to offer better diagnostic methods and treatment options. Epigenetic modifications mainly manifest as post-translational modifications in DNA and histone proteins and regulation of non-coding RNAs. Chronic intermittent hypoxia-mediated epigenetic alterations are involved in the progression of OSA and diverse multiorgan injuries, including cardiovascular disease, metabolic disorders, pulmonary hypertension, neural dysfunction, and even tumors. This article provides deeper insights into the disease mechanism of OSA and potential applications of targeted diagnosis, treatment, and prognosis in OSA complications.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
10
|
Dong N, Liu WY. Regulatory mechanism of downregulation of SOD1 expression on cardiomyocyte function. Sleep Breath 2023; 27:399-410. [PMID: 35307768 DOI: 10.1007/s11325-022-02595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Many diseases are clinically related to oxidative stress. Obstructive sleep apnea (OSA) is a common disease with oxidative stress in clinical practice, which is mostly associated with cardio-cerebrovascular diseases. It has been shown that the level of oxidative stress increases and the level of antioxidant copper zinc superoxide dismutase (SOD1) decreases in intermittent hypoxia (IH). SOD1 is one of the key antioxidant enzymes in organisms, and it can also be used as a signal transmission controller. Its abnormal expression further affects organ functions, but the specific mechanism is not yet fully clear. METHODS We downregulated the SOD1 gene in H9C2 cell line, using high-throughput RNA sequencing (RNA-seq) to find differentially expressed genes (DEGs) related to cardiomyocyte function by using GO and KEGG databases to annotate, enrich and analyze the metabolic pathways of DEGs. RESULTS Through the analysis of these functional gene changes, we can understand the regulation of SOD1 downregulation on cardiomyocyte function. The results found 213 DEGs, of which 135 genes were upregulated and 78 genes were downregulated. The upregulated DEGs were mainly enriched in biological processes such as transcriptional regulation and metabolism. The expression levels of EGR1 and NR1D1 exceeded 1 in the samples. EGR1 was reported to be involved in oxidative stress and cardiac hypertrophy, and NR1D1 played an important regulatory role in regulating inflammatory responses and reducing ROS production. The biological processes involved in downregulated DEGs mainly involve metabolism and redox processes. Among them, SCD1 and CCL2 genes were highly expressed among the genes involved in the redox process involved in SOD1. SCD1 is an important player in the regulation of cardiometabolic processes; downregulation of CCL2 reduces atherosclerosis. We found that the TNF signaling pathway, NOD-like receptor signaling pathway, and chemokine signaling pathway, which were enriched in KEGG analysis, were all associated with inflammation, and the CXCL1 and CCL7 genes are all related to inflammation. CONCLUSION The gene and signaling pathways involved in oxidative stress and inflammatory response process regulated by SOD1 were demonstrated. SOD1 may affect the function of the heart by affecting myocardial contraction, inflammation, lipid metabolism, and other pathways. It is inferred that they may also play a role in the process of OSA-related myocardial injury, which is worthy of attention and further study.
Collapse
Affiliation(s)
- Na Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.,Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wei-Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
11
|
Takasawa S, Shobatake R, Itaya‐Hironaka A, Makino M, Uchiyama T, Sakuramoto‐Tsuchida S, Takeda Y, Ota H, Yamauchi A. Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. J Cell Mol Med 2022; 26:6019-6031. [PMID: 36457269 PMCID: PMC9753449 DOI: 10.1111/jcmm.17618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep apnoea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/Type 2 diabetes. The induction of insulin resistance in skeletal muscle is a key phenomenon to develop diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human RD and mouse C2C12 muscle cells to normoxia or IH and measured their mRNA levels by real-time RT-PCR. We found that IH significantly increased the mRNA and protein levels of muscle-derived insulin resistance-factors (myokines) such as IL-8, osteonectin (ON), and myonectin (MN) in muscle cells. We further analysed the IH-induced expression mechanisms of IL-8, ON, and MN genes in muscle cells. Deletion analyses of the human myokine promoter(s) revealed that the regions -152 to -151 in IL-8, -105 to -99 in ON, and - 3741 to -3738 in MN promoters were responsible for the activation by IH in RD cells. The promoters contain consensus transcription factor binding sequences for OCT1 in IL-8 and MN promoters, and for NRF2 in ON promoter, respectively. The introduction of siRNA for OCT1 abolished the IH-induced expression(s) of IL-8 and MN and siRNA for NRF2 abolished the IH-induced expression of ON.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Ryogo Shobatake
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of NeurologyNara Medical UniversityNaraJapan,Department of NeurologyNara City HospitalNaraJapan
| | | | - Mai Makino
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Tomoko Uchiyama
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Diagnostic PathologyNara Medical UniversityNaraJapan
| | | | | | - Hiroyo Ota
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Respiratory MedicineNara Medical UniversityNaraJapan
| | - Akiyo Yamauchi
- Department of BiochemistryNara Medical UniversityNaraJapan
| |
Collapse
|
12
|
Research progress on the role of exosomes in obstructive sleep apnea-hypopnea syndrome-related atherosclerosis. Sleep Med Rev 2022; 66:101696. [PMID: 36174425 DOI: 10.1016/j.smrv.2022.101696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide. Atherosclerosis, a multifactorial disease with complicated pathogenesis, is the main cause of CVD, underlying several major adverse cardiovascular events. Obesity is the main cause of obstructive sleep apnea (OSA) and a significant risk for atherosclerosis. OSA is an independent risk factor for CVD. Recent research has focused on understanding the underlying molecular mechanisms by which OSA influences atherosclerosis pathogenesis. The role of exosomes in this process has attracted considerable attention. Exosomes are a type of extracellular vesicles (EV) that are released from many cells (both healthy and diseased) and mediate cell-to-cell communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells, thereby modulating the functions of target cells and tissues. Intermittent hypoxia in OSA alters the exosomal carrier in circulation and promotes the permeability and dysfunction of endothelial cells, which have been associated with the pathogenesis of atherosclerosis. This review discusses the potential roles of exosomes and exosome-derived molecules in the development and progression of OSA-related atherosclerosis. Additionally, we explore the possible mechanisms underlying OSA-related atherosclerosis and provide new insights for the development of novel exosome-based therapeutics for OSA-related atherosclerosis and CVD.
Collapse
|
13
|
Shobatake R, Ota H, Takahashi N, Ueno S, Sugie K, Takasawa S. The Impact of Intermittent Hypoxia on Metabolism and Cognition. Int J Mol Sci 2022; 23:12957. [PMID: 36361741 PMCID: PMC9654766 DOI: 10.3390/ijms232112957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Intermittent hypoxia (IH), one of the primary pathologies of sleep apnea syndrome (SAS), exposes cells throughout the body to repeated cycles of hypoxia/normoxia that result in oxidative stress and systemic inflammation. Since SAS is epidemiologically strongly correlated with type 2 diabetes/insulin resistance, obesity, hypertension, and dyslipidemia included in metabolic syndrome, the effects of IH on gene expression in the corresponding cells of each organ have been studied intensively to clarify the molecular mechanism of the association between SAS and metabolic syndrome. Dementia has recently been recognized as a serious health problem due to its increasing incidence, and a large body of evidence has shown its strong correlation with SAS and metabolic disorders. In this narrative review, we first outline the effects of IH on the expression of genes related to metabolism in neuronal cells, pancreatic β cells, hepatocytes, adipocytes, myocytes, and renal cells (mainly based on the results of our experiments). Next, we discuss the literature regarding the mechanisms by which metabolic disorders and IH develop dementia to understand how IH directly and indirectly leads to the development of dementia.
Collapse
Affiliation(s)
- Ryogo Shobatake
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiroyo Ota
- Department Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Nobuyuki Takahashi
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan
| | - Satoshi Ueno
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
14
|
Upregulation of Reg IV and Hgf mRNAs by Intermittent Hypoxia via Downregulation of microRNA-499 in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232012414. [PMID: 36293268 PMCID: PMC9603944 DOI: 10.3390/ijms232012414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and is a risk factor for cardiovascular disease (CVD) and insulin resistance/Type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of several cardiomyokines. We found that the mRNA levels of regenerating gene IV (Reg IV) and hepatocyte growth factor (Hgf) in H9c2 and P19.CL6 cardiomyocytes were significantly increased by IH, whereas the promoter activities of the genes were not increased. A target mRNA search of microRNA (miR)s revealed that rat and mouse mRNAs have a potential target sequence for miR-499. The miR-499 level of IH-treated cells was significantly decreased compared to normoxia-treated cells. MiR-499 mimic and non-specific control RNA (miR-499 mimic NC) were introduced into P19.CL6 cells, and the IH-induced upregulation of the genes was abolished by introduction of the miR-499 mimic, but not by the miR-499 mimic NC. These results indicate that IH stress downregulates the miR-499 in cardiomyocytes, resulting in increased levels of Reg IV and Hgf mRNAs, leading to the protection of cardiomyocytes in SAS patients.
Collapse
|
15
|
Niinikoski I, Kouki S, Koho N, Aromaa M, Holopainen S, Laurila HP, Fastrès A, Clercx C, Lilja-Maula L, Rajamäki MM. Evaluation of VEGF-A and CCL2 in dogs with brachycephalic obstructive airway syndrome or canine idiopathic pulmonary fibrosis and in normocephalic dogs. Res Vet Sci 2022; 152:557-563. [PMID: 36183612 DOI: 10.1016/j.rvsc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
Brachycephalic obstructive airway syndrome (BOAS) and canine idiopathic pulmonary fibrosis (CIPF) of West Highland White Terriers (WHWTs) often cause intermittent or chronic hypoxemia. Our objective was to evaluate serum and bronchoalveolar lavage fluid (BALF) concentrations of hypoxemia-related proinflammatory mediators vascular endothelial growth factor A (VEGF-A) and chemokine (CC motif) ligand 2 (CCL2) in brachycephalic dogs (BDs) and WHWTs with and without CIPF. Additionally, effects of BOAS severity and ageing on these mediators were assessed. 114 BDs (28 English Bulldogs (EBs), 37 French Bulldogs, 49 Pugs), 16 WHWTs with CIPF, 26 healthy WHWTs, and 39 normocephalic control dogs were included. Fifty-four BDs were re-examined after two to three years. Bead-based immunoassay was used for proinflammatory mediator measurements. Compared with controls, significantly higher serum concentrations of VEGF-A were seen in EBs (P = 0.009) and of CCL2 in CIPF and healthy WHWTs (P < 0.001; P = 0.002). BALF samples were available from controls, EBs, and WHWTs. VEGF-A was significantly lower in EBs (P < 0.001) and in CIPF and healthy WHWTs (P = 0.006; P = 0.007) and CCL2 was higher in CIPF WHWTs (P = 0.01) compared with controls. Between visits, only serum VEGF-A significantly decreased in BDs (P < 0.001), but breed, BOAS severity, or its change had no significant effect. In conclusion, in EBs with BOAS proinflammatory changes in VEGF-A were detected in both serum and BALF. Ageing reduced serum VEGF-A in BDs. In WHWTs, our results confirmed earlier findings of CCL2 as an important biomarker for CIPF.
Collapse
Affiliation(s)
- I Niinikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland.
| | - S Kouki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - N Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M Aromaa
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - S Holopainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - H P Laurila
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - A Fastrès
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - C Clercx
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Bd de Colonster 1, 4000 Liège, Belgium
| | - L Lilja-Maula
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| | - M M Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, P.O. Box 57, FI-00014, University of Helsinki, Finland
| |
Collapse
|
16
|
Imani MM, Sadeghi M, Mohammadi M, Brühl AB, Sadeghi-Bahmani D, Brand S. Association of Blood MCP-1 Levels with Risk of Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091266. [PMID: 36143943 PMCID: PMC9506345 DOI: 10.3390/medicina58091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
Background and objective: Among the broad variety of chemokines, monocyte chemoattractant protein-1 (MCP-1) is considered to be one of the most important chemokines. Among others, MCP-1 activates monocytes and other immune cells highly involved in inflammation. In the present systematic review and meta-analysis, we evaluated the relationship between serum/plasma MCP-1 levels and the risk of obstructive sleep apnea (OSA) in adults as a disease related to inflammation. Materials and methods: Four databases were systematically investigated until 12 July 2022. We used the Review Manager 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) to extract and calculate the standardized mean difference (SMD) and its 95% confidence interval (CI) of plasma/serum levels of MCP-1 between adults with and without OSA. Results: Eight articles including eleven studies in adults were entered into the meta-analysis. The serum/plasma MCP-1 levels in adults with OSA were higher than that in the controls (SMD = 0.81; p = 0.0007) and as well as for adults with severe OSA compared to those with mild and moderate OSA (SMD = 0.42; p < 0.0001). The subgroup analysis showed that ethnicity was an effective factor in the pooled analysis of blood MCP-1 levels in adults with OSA compared to the controls (Asians: (p < 0.0001), mixed ethnicity: (p = 0.04), and Caucasians: (p = 0.89)). The meta-regression showed increasing serum/plasma MCP-1 levels in adults with OSA versus the controls, publication year, age of controls, body mass index (BMI) of controls, and sample size reduced, and also BMI and the apnea−hypopnea index of adults with OSA increased. Conclusions: The meta-analysis showed that compared to the controls, serum/plasma levels of MCP-1 in adults with OSA were significantly more, as well as adults with severe OSA having more serum/plasma MCP-1 levels compared to the adults with mild to moderate OSA. Therefore, MCP-1 can be used as a diagnostic and therapeutic factor in adults with OSA.
Collapse
Affiliation(s)
- Mohammad Moslem Imani
- Department of Orthodontics, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Masoud Sadeghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Mehdi Mohammadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Annette Beatrix Brühl
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland
| | - Dena Sadeghi-Bahmani
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 6719851115, Iran
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417466191, Iran
- Correspondence:
| |
Collapse
|
17
|
Maciejewska-Skrendo A, Tarnowski M, Kopytko P, Kochanowicz A, Mieszkowski J, Stankiewicz B, Sawczuk M. CCL2 Gene Expression and Protein Level Changes Observed in Response to Wingate Anaerobic Test in High-Trained Athletes and Non-Trained Controls. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9947. [PMID: 36011581 PMCID: PMC9408289 DOI: 10.3390/ijerph19169947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Intensive, acute exercise may bring a large systemic inflammatory response marked by substantial increases in inflammatory cytokines and chemokines. One such chemokines-CCL2-is a key factor involved in inflammatory reaction to exercise. The direct aim of the study was to describe the changes in the CCL2 expression levels after anaerobic exercise in well-trained athletes adapted to long-term training and in non-trained participants. The expression of CCL2 mRNA was evaluated in peripheral blood MNCs and CCL2 protein level was observed in blood plasma. The changes were assessed as the response to an acute, intensive bout of exercise (Wingate Anaerobic Test) in two groups of participants: well-trained soccer players and non-trained individuals. An increase of CCL2 expression inn both mRNA and protein levels was observed. The response was greater in non-trained individuals and elevated levels of CCL2 transcripts persisted for more than 24 h after exercise. Well-trained individuals responded more modestly and the effect was attenuated relatively quickly. This shows muscular adaptation to a continuous training regime in well-trained individuals and better control of immune reactions to muscular injury. In non-training individuals, the induction of the inflammatory response was greater, suggesting presence of more serious myotrauma.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland or
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland or
| | - Maciej Tarnowski
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland or
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patrycja Kopytko
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland or
| | - Andrzej Kochanowicz
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland or
| | - Jan Mieszkowski
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland or
| | - Błażej Stankiewicz
- Institute of Physical Culture, Kazimierz Wielki University, 85-091 Bydgoszcz, Poland
| | - Marek Sawczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland or
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland or
| |
Collapse
|
18
|
Takasawa S, Makino M, Uchiyama T, Yamauchi A, Sakuramoto-Tsuchida S, Itaya-Hironaka A, Takeda Y, Asai K, Shobatake R, Ota H. Downregulation of the Cd38-Cyclic ADP-Ribose Signaling in Cardiomyocytes by Intermittent Hypoxia via Pten Upregulation. Int J Mol Sci 2022; 23:ijms23158782. [PMID: 35955916 PMCID: PMC9368863 DOI: 10.3390/ijms23158782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia, IH), and it is a risk factor for cardiovascular disease (CVD) and insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of the components of Cd38-cyclic ADP-ribose (cADPR) signaling. We found that the mRNA levels of cluster of differentiation 38 (Cd38), type 2 ryanodine receptor (Ryr2), and FK506-binding protein 12.6 (Fkbp12.6) in H9c2 and P19.CL6 cardiomyocytes were significantly decreased by IH, whereas the promoter activities of these genes were not decreased. By contrast, the expression of phosphatase and tensin homolog deleted from chromosome 10 (Pten) was upregulated in IH-treated cells. The small interfering RNA for Pten (siPten) and a non-specific control RNA were introduced into the H9c2 cells. The IH-induced downregulation of Cd38, Ryr2, and Fkbp12.6 was abolished by the introduction of the siPten, but not by the control RNA. These results indicate that IH stress upregulated the Pten in cardiomyocytes, resulting in the decreased mRNA levels of Cd38, Ryr2, and Fkbp12.6, leading to the inhibition of cardiomyocyte functions in SAS patients.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Correspondence: ; Tel.: +81-74-422-3051 (ext. 2227); Fax: +81-744-24-9525
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Diagnostic Pathology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | | | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| | - Keito Asai
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Nara, Japan
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Nara, Japan
| |
Collapse
|
19
|
Intermittent Hypoxia Increased the Expression of DBH and PNMT in Neuroblastoma Cells via MicroRNA-375-Mediated Mechanism. Int J Mol Sci 2022; 23:ijms23115868. [PMID: 35682548 PMCID: PMC9180443 DOI: 10.3390/ijms23115868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sleep apnea syndrome (SAS), characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia (IH)), is a risk factor for hypertension and insulin resistance. We report a correlation between IH and insulin resistance/diabetes. However, the reason why hypertension is induced by IH is elusive. Here, we investigated the effect of IH on the expression of catecholamine-metabolizing enzymes using an in vitro IH system. Human and mouse neuroblastoma cells (NB-1 and Neuro-2a) were exposed to IH or normoxia for 24 h. Real-time RT-PCR revealed that IH significantly increased the mRNA levels of dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in both NB-1 and Neuro-2a. Western blot showed that the expression of DBH and PNMT in the NB-1 cells was significantly increased by IH. Reporter assays revealed that promoter activities of DBH and PNMT were not increased by IH. The miR-375 level of IH-treated cells was significantly decreased relative to that of normoxia-treated cells. The IH-induced up-regulation of DBH and PNMT was abolished by the introduction of the miR-375 mimic, but not by the control RNA. These results indicate that IH stress increases levels of DBH and PNMT via the inhibition of miR-375-mediated mRNA degradation, potentially playing a role in the emergence of hypertension in SAS patients.
Collapse
|
20
|
Editorial to Special Issue "Sleep Apnea and Intermittent Hypoxia 2.0". Int J Mol Sci 2022; 23:ijms23105299. [PMID: 35628109 PMCID: PMC9140767 DOI: 10.3390/ijms23105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
|
21
|
Judson MA, Tiwari A, Gemoets DE. The Relationship of Obesity and OSA to the Development of Sarcoidosis. Chest 2022; 162:1086-1092. [DOI: 10.1016/j.chest.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022] Open
|
22
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
23
|
A Review of the Associations Between Obstructive Sleep Apnea and Gestational Diabetes Mellitus and Possible Mechanisms of Disease. Reprod Sci 2022; 30:81-92. [PMID: 35257355 PMCID: PMC9810675 DOI: 10.1007/s43032-022-00904-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/25/2022] [Indexed: 01/07/2023]
Abstract
Obstructive sleep apnea (OSA) usually leads to the occurrence of diabetes. Gestational diabetes mellitus (GDM) is a common gestational complication associated with adverse maternal and fetal outcomes. Increasing studies suggest that women with OSA during pregnancy may be at a significantly greater risk of developing GDM. It is crucial to explore the association between OSA and GDM and the mechanisms underlying this association. In this review, we presented a comprehensive literature review of the following: the association between OSA and GDM, the possible mechanisms of this association, and the effects of continuous positive airway pressure (CPAP) on OSA with GDM. The results showed that most authors suggested that there was an association between OSA and GDM. The intermittent hypoxemia (IH) and reduction of slow-wave sleep (SWS) may be the key to this association. IH induces the products of oxidative stress and inflammation as well as dysregulation of the hypothalamic-pituitary-adrenal, which lead to diabetes. In addition, SWS reduction in OSA enhances the inflammation by increasing the inflammatory cytokines, increases the sympathetic activation, and causes changes in leptin level, which result in the development of GDM. Additionally, whether CPAP is beneficial to GDM remains still unclear.
Collapse
|
24
|
Yang JCS, Huang LH, Wu SC, Wu YC, Wu CJ, Lin CW, Tsai PY, Chien PC, Hsieh CH. Recovery of Dysregulated Genes in Cancer-Related Lower Limb Lymphedema After Supermicrosurgical Lymphaticovenous Anastomosis – A Prospective Longitudinal Cohort Study. J Inflamm Res 2022; 15:761-773. [PMID: 35153500 PMCID: PMC8824698 DOI: 10.2147/jir.s350421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Johnson Chia-Shen Yang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lien-Hung Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chan Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Jung Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Wei Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Yu Tsai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Peng-Chen Chien
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Hua Hsieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Correspondence: Ching-Hua Hsieh, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, 123 Dapi Road, Niaosong District, Kaohsiung City, 833, Taiwan, Tel +886-7-7317123, ext.8002, Fax +886-7-7354309, Email
| |
Collapse
|
25
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
26
|
Shobatake R, Ota H, Takahashi N, Ueno S, Sugie K, Takasawa S. Anorexigenic Effects of Intermittent Hypoxia on the Gut-Brain Axis in Sleep Apnea Syndrome. Int J Mol Sci 2021; 23:364. [PMID: 35008784 PMCID: PMC8745445 DOI: 10.3390/ijms23010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Sleep apnea syndrome (SAS) is a breathing disorder characterized by recurrent episodes of upper-airway collapse, resulting in intermittent hypoxia (IH) during sleep. Experimental studies with animals and cellular models have indicated that IH leads to attenuation of glucose-induced insulin secretion from pancreatic β cells and to enhancement of insulin resistance in peripheral tissues and cells, such as the liver (hepatocytes), adipose tissue (adipocytes), and skeletal muscles (myocytes), both of which could lead to obesity. Although obesity is widely recognized as a major factor in SAS, it is controversial whether the development of SAS could contribute directly to obesity, and the effect of IH on the expression of appetite regulatory genes remains elusive. Appetite is regulated appropriately by both the hypothalamus and the gut as a gut-brain axis driven by differential neural and hormonal signals. In this review, we summarized the recent epidemiological findings on the relationship between SAS and feeding behavior and focused on the anorexigenic effects of IH on the gut-brain axis by the IH-induced up-regulation of proopiomelanocortin and cocaine- and amphetamine-regulated transcript in neuronal cells and the IH-induced up-regulation of peptide YY, glucagon-like peptide-1 and neurotensin in enteroendocrine cells and their molecular mechanisms.
Collapse
Affiliation(s)
- Ryogo Shobatake
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.U.); (K.S.)
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan;
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Hiroyo Ota
- Department Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan;
| | - Nobuyuki Takahashi
- Department of Neurology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara 630-8305, Japan;
| | - Satoshi Ueno
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.U.); (K.S.)
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.U.); (K.S.)
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| |
Collapse
|
27
|
Uchiyama T, Ota H, Ohbayashi C, Takasawa S. Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. Int J Mol Sci 2021; 22:12898. [PMID: 34884703 PMCID: PMC8657675 DOI: 10.3390/ijms222312898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea syndrome (SAS) is a prevalent disorder characterized by recurrent apnea or hypoxia episodes leading to intermittent hypoxia (IH) and arousals during sleep. Currently, the relationship between SAS and metabolic diseases is being actively analyzed, and SAS is considered to be an independent risk factor for the development and progression of insulin resistance/type 2 diabetes (T2DM). Accumulating evidence suggests that the short cycles of decreased oxygen saturation and rapid reoxygenation, a typical feature of SAS, contribute to the development of glucose intolerance and insulin resistance. In addition to IH, several pathological conditions may also contribute to insulin resistance, including sympathetic nervous system hyperactivity, oxidative stress, vascular endothelial dysfunction, and the activation of inflammatory cytokines. However, the detailed mechanism by which IH induces insulin resistance in SAS patients has not been fully revealed. We have previously reported that IH stress may exacerbate insulin resistance/T2DM, especially in hepatocytes, adipocytes, and skeletal muscle cells, by causing abnormal cytokine expression/secretion from each cell. Adipose tissues, skeletal muscle, and the liver are the main endocrine organs producing hepatokines, adipokines, and myokines, respectively. In this review, we focus on the effect of IH on hepatokine, adipokine, and myokine expression.
Collapse
Affiliation(s)
- Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8522, Japan;
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
| |
Collapse
|
28
|
Takeda Y, Itaya-Hironaka A, Yamauchi A, Makino M, Sakuramoto-Tsuchida S, Ota H, Kawaguchi R, Takasawa S. Intermittent Hypoxia Upregulates the Renin and Cd38 mRNAs in Renin-Producing Cells via the Downregulation of miR-203. Int J Mol Sci 2021; 22:10127. [PMID: 34576290 PMCID: PMC8466835 DOI: 10.3390/ijms221810127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The upregulation of the renin-angiotensin system has been reported in IH, and the correlation between renin and CD38 has been noted. We exposed human HEK293 and mouse As4.1 renal cells to experimental IH or normoxia for 24 h and then measured the mRNA levels using a real-time reverse transcription polymerase chain reaction. The mRNA levels of Renin (Ren) and Cd38 were significantly increased by IH, indicating that they could be involved in the CD38-cyclic ADP-ribose signaling pathway. We next investigated the promotor activities of both genes, which were not increased by IH. Yet, a target mRNA search of the microRNA (miRNA) revealed both mRNAs to have a potential target sequence for miR-203. The miR-203 level of the IH-treated cells was significantly decreased when compared with the normoxia-treated cells. The IH-induced upregulation of the genes was abolished by the introduction of the miR-203 mimic, but not the miR-203 mimic NC negative control. These results indicate that IH stress downregulates the miR-203 in renin-producing cells, thereby resulting in increased mRNA levels of Ren and Cd38, which leads to hypertension.
Collapse
Affiliation(s)
- Yoshinori Takeda
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Asako Itaya-Hironaka
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Sumiyo Sakuramoto-Tsuchida
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
- Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Ryuji Kawaguchi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (Y.T.); (A.I.-H.); (A.Y.); (M.M.); (S.S.-T.); (H.O.)
| |
Collapse
|
29
|
Tian L, Jia Z, Xu Z, Shi J, Zhao X, He K. Transcriptional landscape in rat intestines under hypobaric hypoxia. PeerJ 2021; 9:e11823. [PMID: 34395078 PMCID: PMC8325916 DOI: 10.7717/peerj.11823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oxygen metabolism is closely related to the intestinal homeostasis environment, and the occurrence of many intestinal diseases is as a result of the destruction of oxygen gradients. The hypobaric hypoxic environment of the plateau can cause dysfunction of the intestine for humans, such as inflammation. The compensatory response of the small intestine cells to the harsh environment definitely changes their gene expression. How the small intestine cells response the hypobaric hypoxic environment is still unclear. We studied the rat small intestine under hypobaric hypoxic conditions to explore the transcriptional changes in rats under acute/chronic hypobaric hypoxic conditions. We randomly divided rats into three groups: normal control group (S), acute hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 2 weeks (W2S) and chronic hypobaric hypoxia group, exposing to hypobaric hypoxic condition for 4 weeks (W4S). The RNA sequencing was performed on the small intestine tissues of the three groups of rats. The results of principal component analysis showed that the W4S and W2S groups were quite different from the control group. We identified a total of 636 differentially expressed genes, such as ATP binding cassette, Ace2 and Fabp. KEGG pathway analysis identified several metabolic and digestive pathways, such as PPAR signaling pathway, glycerolipid metabolism, fat metabolism, mineral absorption and vitamin metabolism. Cogena analysis found that up-regulation of digestive and metabolic functions began from the second week of high altitude exposure. Our study highlights the critical role of metabolic and digestive pathways of the intestine in response to the hypobaric hypoxic environment, provides new aspects for the molecular effects of hypobaric hypoxic environment on intestine, and raises further questions about between the lipid metabolism disorders and inflammation.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhenguo Xu
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - XiaoJing Zhao
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Military Translational Medicine Lab, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Jin J, Lin J, Xu A, Lou J, Qian C, Li X, Wang Y, Yu W, Tao H. CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment. Front Oncol 2021; 11:722916. [PMID: 34386431 PMCID: PMC8354025 DOI: 10.3389/fonc.2021.722916] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) formation is a major cause of immunosuppression. The TME consists of a considerable number of macrophages and stromal cells that have been identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that CCL2 can attract other host cells in the TME and direct their differentiation in cooperation with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor patients because of the accumulation of immunosuppressive cell subtypes. However, there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of specific cell types such as inflammatory monocytes and neutrophils. The inflammation state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review works focusing on the interactions between cancer cells and host cells, and on the biological role of CCL2 in these processes.
Collapse
Affiliation(s)
- Jiakang Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Xiumao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Does C-C Motif Chemokine Ligand 2 (CCL2) Link Obesity to a Pro-Inflammatory State? Int J Mol Sci 2021; 22:ijms22031500. [PMID: 33540898 PMCID: PMC7867366 DOI: 10.3390/ijms22031500] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms of how obesity contributes to the development of cardio-metabolic diseases are not entirely understood. Obesity is frequently associated with adipose tissue dysfunction, characterized by, e.g., adipocyte hypertrophy, ectopic fat accumulation, immune cell infiltration, and the altered secretion of adipokines. Factors secreted from adipose tissue may induce and/or maintain a local and systemic low-grade activation of the innate immune system. Attraction of macrophages into adipose tissue and altered crosstalk between macrophages, adipocytes, and other cells of adipose tissue are symptoms of metabolic inflammation. Among several secreted factors attracting immune cells to adipose tissue, chemotactic C-C motif chemokine ligand 2 (CCL2) (also described as monocyte chemoattractant protein-1 (MCP-1)) has been shown to play a crucial role in adipose tissue macrophage infiltration. In this review, we aimed to summarize and discuss the current knowledge on CCL2 with a focus on its role in linking obesity to cardio-metabolic diseases.
Collapse
|
32
|
CCR2/CCL2 and CMKLR1/RvE1 chemokines system levels are associated with insulin resistance in rheumatoid arthritis. PLoS One 2021; 16:e0246054. [PMID: 33508012 PMCID: PMC7842933 DOI: 10.1371/journal.pone.0246054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) has been associated with insulin resistance (IR). Due to an excess in storage of white adipose tissue, IR has an inflammatory process that overlaps with RA. This is performed by the activation/migration of monocytes carried out by the CCR2/CCL2 and CMKLR1/RvE1 chemokines systems. Furthermore, these can potentiate chronic inflammation which is the central axis in the immunopathogenesis of RA. We evaluated the association between the relative expression of CCR2 and CMKLR1 and the serum levels of their ligands CCL2 and RvE1, in the context of adiposity status with IR as a comorbidity in RA. We studied 138 controls and 138 RA-patients classified with and without IR. We evaluated adiposity, RA activity, IR status and immunometabolic profiles by routine methods. Insulin, CCL2 and RvE1 serum levels were determined by ELISA. Relative expression of CCR2, CMKLR1 and RPS28 as constitutive gene by SYBR green RT-qPCR and 2-ΔΔCT method. Increased measurements were observed of body adiposity and metabolic status as follows: RA with IR>control group with IR>RA without IR> control group without IR. CCR2 and CMKLR1 relative expression was increased in RA without IR versus control without IR. CCR2: 2.3- and 1.3-fold increase and CMKLR1: 3.5- and 2.7-fold increase, respectively. Whereas, CCR2 expression correlates with CMKLR1 expression (rho = 0.331) and IR status (rho = 0.497 to 0.548). CMKLR1 expression correlates with inflammation markers (rho = 0.224 to 0.418). CCL2 levels were increased in the RA groups but levels of RvE1 were increased in RA without IR. We conclude that in RA with IR, the chemokine receptors expression pattern showed a parallel increase with their respective ligands. RA and IR in conjunction with the pathological distribution of body fat mass might exacerbate chronic inflammation. These results suggest that high CCL2 levels and compensatory RvE1 levels might not be enough to resolve the inflammation by themselves.
Collapse
|
33
|
Florijn BW, Valstar GB, Duijs JMGJ, Menken R, Cramer MJ, Teske AJ, Ghossein-Doha C, Rutten FH, Spaanderman MEA, den Ruijter HM, Bijkerk R, van Zonneveld AJ. Sex-specific microRNAs in women with diabetes and left ventricular diastolic dysfunction or HFpEF associate with microvascular injury. Sci Rep 2020; 10:13945. [PMID: 32811874 PMCID: PMC7435264 DOI: 10.1038/s41598-020-70848-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF) are microcirculation defects following diabetes mellitus (DM). Unrecognized HFpEF is more prevalent in women with diabetes compared to men with diabetes and therefore sex-specific diagnostic strategies are needed. Previously, we demonstrated altered plasma miRs in DM patients with microvascular injury [defined by elevated plasma Angiopoietin-2 (Ang-2) levels]. This study hypothesized the presence of sex-differences in plasma miRs and Ang-2 in diabetic (female) patients with LVDD or HFpEF. After a pilot study, we assessed 16 plasma miRs in patients with LVDD (n = 122), controls (n = 244) and female diabetic patients (n = 10). Subsequently, among these miRs we selected and measured plasma miR-34a, -224 and -452 in diabetic HFpEF patients (n = 53) and controls (n = 52). In LVDD patients, miR-34a associated with Ang-2 levels (R2 0.04, R = 0.21, p = 0.001, 95% CI 0.103–0.312), with plasma levels being diminished in patients with DM, while women with an eGFR < 60 ml/min and LVDD had lower levels of miR-34a, -224 and -452 compared to women without an eGFR < 60 ml/min without LVDD. In diabetic HFpEF women (n = 28), plasma Ang-2 levels and the X-chromosome located miR-224/452 cluster increased compared to men. We conclude that plasma miR-34a, -224 and -452 display an association with the microvascular injury marker Ang-2 and are particularly targeted to women with LVDD or HFpEF.
Collapse
Affiliation(s)
- Barend W Florijn
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands. .,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gideon B Valstar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jacques M G J Duijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Roxana Menken
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Maarten J Cramer
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Arco J Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Research School GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics and Gynecology, Research School GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hester M den Ruijter
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Díaz-García E, Jaureguizar A, Casitas R, García-Tovar S, Sánchez-Sánchez B, Zamarrón E, López-Collazo E, García-Río F, Cubillos-Zapata C. SMAD4 Overexpression in Patients with Sleep Apnoea May Be Associated with Cardiometabolic Comorbidities. J Clin Med 2020; 9:jcm9082378. [PMID: 32722512 PMCID: PMC7464800 DOI: 10.3390/jcm9082378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with several diseases related to metabolic and cardiovascular risk. Although the mechanisms involved in the development of these disorders may vary, OSA patients frequently present an increase in transforming growth factor beta (TGFβ), the activity of which is higher still in patients with hypertension, diabetes or cardiovascular morbidity. Smad4 is a member of the small mother against decapentaplegic homologue (Smad) family of signal transducers and acts as a central mediator of TGFβ signalling pathways. In this study, we evaluate Smad4 protein and mRNA expression from 52 newly diagnosed OSA patients, with an apnoea-hypopnoea index (AHI) ≥30 and 26 healthy volunteers. These analyses reveal that OSA patients exhibit high levels of SMAD4 which correlates with variation in HIF1α, mTOR and circadian genes. Moreover, we associated high concentrations of Smad4 plasma protein with the presence of diabetes, dyslipidaemia and hypertension in these patients. Results suggest that increased levels of SMAD4, mediated by intermittent hypoxaemia and circadian rhythm deregulation, may be associated with cardiometabolic comorbidities in patients with sleep apnoea.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ana Jaureguizar
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Raquel Casitas
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Begoña Sánchez-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Ester Zamarrón
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
| | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- The Innate Immune Response Group, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain; (E.D.-G.); (A.J.); (R.C.); (B.S.-S.); (E.Z.); (E.L.-C.); (F.G.-R.)
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain;
- Correspondence:
| |
Collapse
|
35
|
Abstract
Obstructive sleep apnea (OSA), characterized by recurrent episodes of apnea during sleep and daytime sleepiness, seriously affects human health and may lead to systemic organ dysfunction. The pathogenesis of OSA is complex and still uncertain, but multiple surveys have shown that obesity is an important factor, and the incidence of OSA in people with obesity is as high as 30%. Adipokines are a group of proteins secreted from adipocytes, which are dysregulated in obesity and may contribute to OSA. Here, we review the most important and representative research results regarding the correlation between obesity-related adipokines including leptin, adiponectin, omentin-1, chemerin, and resistin and OSA in the past 5 years, provide an overview of these key adipokines, and analyze possible intrinsic mechanisms and influencing factors. The existing research shows that OSA is associated with an increase in the serum levels of leptin, chemerin, and resistin and a decrease in the levels of adiponectin and omentin-1; the findings presented here can be used to monitor the development of OSA and obesity, prevent future comorbidities, and identify risk factors for cardiovascular and other diseases, while different adipokines can be linked to OSA through different pathways such as insulin resistance, intermittent hypoxia, and inflammation, among others. We hope our review leads to a deeper and more comprehensive understanding of OSA based on the relevant literature, which will also provide directions for future clinical research.
Collapse
Affiliation(s)
- Xiongye Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jixiong Xu
- The First Clinical Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
36
|
Wen WW, Sun HL, Yang YX, Jia YF, Huang ML, Du YH, Qin YW, Fang F, Zhang M, Wei YX. The association between circulating APRIL levels and severity of obstructive sleep apnea in Chinese adults. Clin Chim Acta 2020; 508:161-169. [PMID: 32417211 DOI: 10.1016/j.cca.2020.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is the most common type of sleep breathing disorder and is characterized by chronic intermittent hypoxia, which could cause inflammation and nuclear factor kappa B (NF-KB)-dependent inflammatory pathways activation. Circulating APRIL (a proliferation-inducing ligand) play an important role in promoting inflammation and NF-KB-dependent inflammatory pathways activation. We explored the role of APRIL as a potential mechanism of inflammation in OSA patients. METHODS After detailed sleep evaluated, venous blood and demographic data were collected from 155 subjects with varying severity of OSA and 52 control subjects. Plasma levels of APRIL were measured by human Magnetic Luminex assay. RESULTS Plasma APRIL levels were significantly higher in OSA subjects compared with control subjects. Categorization of the OSA subjects into mild, moderate, and severe OSA subgroups found that plasma levels of APRIL increased with the severity of OSA. After adjusting confounding factors, found that increased plasma APRIL levels were conferred a higher odds ratio of OSA. Moreover, plasma APRIL levels were positively associated with the apnea-hypopnea index, which represents the severity of OSA. Furthermore, plasma APRIL showed higher discriminatory accuracy in predicting the presence of OSA. CONCLUSIONS Plasma APRIL levels were significantly associated with the occurrence of OSA and its severity. APRIL could be a plasma biomarker with a positive diagnostic value for inflammation and NF-KB-dependent inflammatory pathways activation in subjects with OSA. TRIAL REGISTRATION The project was approved by the Chinese Clinical Trial Registry (No. ChiCTRROC-17011027).
Collapse
Affiliation(s)
- Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hai-Li Sun
- Department of Otolaryngology Head & Neck Surgery, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yun-Xiao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yi-Fan Jia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng-Ling Huang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yun-Hui Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yan-Wen Qin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fang Fang
- Department of Otolaryngology Head & Neck Surgery, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Yong-Xiang Wei
- Department of Otolaryngology Head & Neck Surgery, Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
37
|
Song F, Zou J, Song Z, Xu H, Qian Y, Zhu H, Liu S, Guan J, Chen J, Yi H. Association of Adipocytokines With Carotid Intima Media Thickness and Arterial Stiffness in Obstructive Sleep Apnea Patients. Front Endocrinol (Lausanne) 2020; 11:177. [PMID: 32300333 PMCID: PMC7142226 DOI: 10.3389/fendo.2020.00177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Obstructive sleep apnea (OSA) results in increased carotid intima-media thickness (IMT) and arterial stiffness; however, the association between adipocytokines and IMT/arterial stiffness in OSA patients is unclear. Methods: We enrolled 95 normal weight and overweight, not obese, participants from May 2018 to December 2018 in this study. All subjects underwent a carotid artery ultrasound examination and polysomnography. Blood samples were used to determine serum chemerin, adiponectin, SFRP5, and apelin levels. Correlations between two quantitative variables were assessed using the Pearson or Spearman coefficient. Stepwise models of multiple linear regression analysis were performed to assess the independent relationships. Result: IMT in OSA patients was significantly higher than in the non-snorers. There were significant differences in the arterial stiffness parameters such as distensibility coefficient (DC), compliance coefficient (CC), and pulse wave velocity (PWV). SFRP5 level was lower in OSA patients than in non-snorers. Adiponectin correlated with CC, DC, and PWV among OSA patients; however, the relationship disappeared after a multivariable adjustment. Age was independently associated with all quantitative IMT and stiffness indices. AHI and minimum oxygen saturation (Mini SaO2) were independently related to arterial stiffness. Conclusion: The quantitative IMT and carotid arterial elasticity were significantly worse among OSA patients. Age was the main independent factor correlated with quantitative IMT and arterial stiffness, and AHI and mini SaO2 were associated factors. There were no relationships between aforementioned adipocytokines and quantitative IMT/carotid arterial stiffness.
Collapse
Affiliation(s)
- Fan Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Juanjuan Zou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhiyuan Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huajun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yinjun Qian
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huaming Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Suru Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jie Chen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Jie Chen
| | - Hongliang Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Hongliang Yi
| |
Collapse
|
38
|
Involvement of Receptor for Advanced Glycation Endproducts in Hypertensive Disorders of Pregnancy. Int J Mol Sci 2019; 20:ijms20215462. [PMID: 31683992 PMCID: PMC6862609 DOI: 10.3390/ijms20215462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia/hypertensive disorders of pregnancy (PE/HDP) is a serious and potentially life-threatening disease. Recently, PE/HDP has been considered to cause adipose tissue inflammation, but the detailed mechanism remains unknown. We exposed human primary cultured adipocytes with serum from PE/HDP and healthy controls for 24 h, and analyzed mRNA expression of several adipokines, cytokines, and ligands of the receptor for advanced glycation endproducts (RAGE). We found that the mRNA levels of interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), high mobility group box 1 (HMGB1), and RAGE were significantly increased by the addition of PE/HDP serum. Among RAGE ligands, advanced glycation endproducts (AGE) and HMGB1 increased mRNA levels of IL-6 and CCL2 in SW872 human adipocytes and mouse 3T3-L1 cells. The introduction of small interfering RNA for RAGE (siRAGE) into SW872 cells abolished the AGE- and HMGB1-induced up-regulation of IL-6 and CCL2. In addition, lipopolysaccharide (LPS), a ligand of RAGE, increased the expression of IL-6 and CCL2 and siRAGE attenuated the LPS-induced expression of IL-6 and CCL2. These results strongly suggest that the elevated AGE, HMGB1, and LPS in pregnant women up-regulate the expression of IL-6 and CCL2 via the RAGE system, leading to systemic inflammation such as PE/HDP.
Collapse
|
39
|
Relationship Between Intermittent Hypoxia and Type 2 Diabetes in Sleep Apnea Syndrome. Int J Mol Sci 2019; 20:ijms20194756. [PMID: 31557884 PMCID: PMC6801686 DOI: 10.3390/ijms20194756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Sleep apnea syndrome (SAS) is a very common disease involving intermittent hypoxia (IH), recurrent symptoms of deoxygenation during sleep, strong daytime sleepiness, and significant loss of quality of life. A number of epidemiological researches have shown that SAS is an important risk factor for insulin resistance and type 2 diabetes mellitus (DM), which is associated with SAS regardless of age, gender, or body habitus. IH, hallmark of SAS, plays an important role in the pathogenesis of SAS and experimental studies with animal and cellular models indicate that IH leads to attenuation of glucose-induced insulin secretion from pancreatic β cells and to enhancement of insulin resistance in peripheral tissues and cells, such as liver (hepatocytes), adipose tissue (adipocytes), and skeletal muscles (myocytes). In this review, we focus on IH-induced dysfunction in glucose metabolism and its underlying molecular mechanisms in several cells and tissues related to glucose homeostasis.
Collapse
|
40
|
Kimura H, Ota H, Kimura Y, Takasawa S. Effects of Intermittent Hypoxia on Pulmonary Vascular and Systemic Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173101. [PMID: 31455007 PMCID: PMC6747246 DOI: 10.3390/ijerph16173101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Obstructive sleep apnea (OSA) causes many systemic disorders via mechanisms related to sympathetic nerve activation, systemic inflammation, and oxidative stress. OSA typically shows repeated sleep apnea followed by hyperventilation, which results in intermittent hypoxia (IH). IH is associated with an increase in sympathetic activity, which is a well-known pathophysiological mechanism in hypertension and insulin resistance. In this review, we show the basic and clinical significance of IH from the viewpoint of not only systemic regulatory mechanisms focusing on pulmonary circulation, but also cellular mechanisms causing lifestyle-related diseases. First, we demonstrate how IH influences pulmonary circulation to cause pulmonary hypertension during sleep in association with sleep state-specific change in OSA. We also clarify how nocturnal IH activates circulating monocytes to accelerate the infiltration ability to vascular wall in OSA. Finally, the effects of IH on insulin secretion and insulin resistance are elucidated by using an in vitro chamber system that can mimic and manipulate IH. The obtained data implies that glucose-induced insulin secretion (GIS) in pancreatic β cells is significantly attenuated by IH, and that IH increases selenoprotein P, which is one of the hepatokines, as well as TNF-α, CCL-2, and resistin, members of adipokines, to induce insulin resistance via direct cellular mechanisms. Clinical and experimental findings concerning IH give us productive new knowledge of how lifestyle-related diseases and pulmonary hypertension develop during sleep.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Advanced Medicine for Pulmonary Circulation and Respiratory Failure, Graduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo 113-8603, Japan.
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuya Kimura
- Center for Pulmonary Diseases, NHO Tokyo National Hospital, Kiyose, Tokyo 204-0023, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
41
|
Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int J Mol Sci 2019; 20:ijms20122937. [PMID: 31208080 PMCID: PMC6627863 DOI: 10.3390/ijms20122937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable phenotypic changes which do not involve alterations in the DNA sequence, including histone modifications, non-coding RNAs, and DNA methylation. Recently, much attention has been paid to the role of hypoxia-mediated epigenetic regulation in cancer, pulmonary hypertension, adaptation to high altitude, and cardiorenal disease. In contrast to sustained hypoxia, chronic intermittent hypoxia with re-oxygenation (IHR) plays a major role in the pathogenesis of various adverse consequences of obstructive sleep apnea (OSA), resembling ischemia re-perfusion injury. Nevertheless, the role of epigenetics in the pathogenesis of OSA is currently underexplored. This review proposes that epigenetic processes are involved in the development of various adverse consequences of OSA by influencing adaptive potential and phenotypic variability under conditions of chronic IHR. Improved understanding of the interaction between genetic and environmental factors through epigenetic regulations holds great value to give deeper insight into the mechanisms underlying IHR-related low-grade inflammation, oxidative stress, and sympathetic hyperactivity, and clarify their implications for biomedical research.
Collapse
|
42
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|