1
|
Lee S, Kim YG, Jung HI, Lim JS, Nam KC, Choi HS, Kwak BS. Bone-on-a-chip simulating bone metastasis in osteoporosis. Biofabrication 2024; 16:045025. [PMID: 39116896 DOI: 10.1088/1758-5090/ad6cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Osteoporosis is the most common bone disorder, which is a highly dangerous condition that can promote bone metastases. As the current treatment for osteoporosis involves long-term medication therapy and a cure for bone metastasis is not known, ongoing efforts are required for drug development for osteoporosis. Animal experiments, traditionally used for drug development, raise ethical concerns and are expensive and time-consuming. Organ-on-a-chip technology is being developed as a tool to supplement such animal models. In this study, we developed a bone-on-a-chip by co-culturing osteoblasts, osteocytes, and osteoclasts in an extracellular matrix environment that can represent normal bone, osteopenia, and osteoporotic conditions. We then simulated bone metastases using breast cancer cells in three different bone conditions and observed that bone metastases were most active in osteoporotic conditions. Furthermore, it was revealed that the promotion of bone metastasis in osteoporotic conditions is due to increased vascular permeability. The bone-on-a-chip developed in this study can serve as a platform to complement animal models for drug development for osteoporosis and bone metastasis.
Collapse
Affiliation(s)
- Sunghan Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Young Gyun Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Seok Lim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsanbuk-do 38541, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ki Chang Nam
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Han Seok Choi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Bong Seop Kwak
- College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
- MediSphere Inc., 280, Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| |
Collapse
|
2
|
Fois MG, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller RK, Tahmasebi Birgani ZN. Mini-bones: miniaturized bone in vitro models. Trends Biotechnol 2024; 42:910-928. [PMID: 38493050 DOI: 10.1016/j.tibtech.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques. We analyze the performance of 'mini-bone' models according to their applications for studying basic bone biology or as regeneration models, disease models, and screening platforms, and provide an outlook on future trends, challenges, and opportunities.
Collapse
Affiliation(s)
- Maria Gabriella Fois
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Martijn van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Roman K Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Zeinab Niloofar Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Kumar V, Naqvi SM, Verbruggen A, McEvoy E, McNamara LM. A mechanobiological model of bone metastasis reveals that mechanical stimulation inhibits the pro-osteolytic effects of breast cancer cells. Cell Rep 2024; 43:114043. [PMID: 38642336 DOI: 10.1016/j.celrep.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/22/2024] Open
Abstract
Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.
Collapse
Affiliation(s)
- Vatsal Kumar
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Syeda M Naqvi
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Anneke Verbruggen
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland.
| |
Collapse
|
4
|
Dani S, Schütz K, Dikici E, Bernhardt A, Lode A. The effect of continuous long-term illumination with visible light in different spectral ranges on mammalian cells. Sci Rep 2024; 14:9444. [PMID: 38658667 PMCID: PMC11043379 DOI: 10.1038/s41598-024-60014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Ezgi Dikici
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Zhang Y, Remy M, Leste-Lasserre T, Durrieu MC. Manipulating Stem Cell Fate with Disordered Bioactive Cues on Surfaces: The Role of Bioactive Ligand Selection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18474-18489. [PMID: 38581548 DOI: 10.1021/acsami.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The development of 2D or 3D bioactive platforms for rapidly isolating pure populations of cells from adult stem cells holds promise for advancing the understanding of cellular mechanisms, drug testing, and tissue engineering. Over the years, methods have emerged to synthesize bioactive micro- and nanostructured 2D materials capable of directing stem cell fate. We introduce a novel method for randomly micro- or nanopatterning any protein/peptide onto both 2D and 3D scaffolds via spray technology. Our goal is to investigate the impact of arranging bioactive micropatterns (ordered vs disordered) on surfaces to guide human mesenchymal stem cell (hMSC) differentiation. The spray technology efficiently coats materials with controlled, cost-effective bioactive micropatterns in various sizes and shapes. BMP-2 mimetic peptides were covalently grafted, individually or in combination with RGD peptides, onto activated polyethylene terephthalate (PET) surfaces through a spraying process, incorporating nano/microscale parameters like size, shape, and composition. The study explores different peptide distributions on surfaces and various peptide combinations. Four surfaces were homogeneously functionalized with these peptides (M1 to M4 with various densities of peptides), and six surfaces with disordered micro- and nanopatterns of peptides (S0 to S5 with different sizes of peptide patterns) were synthesized. Fluorescence microscopy assessed peptide distribution, followed by hMSC culture for 2 weeks, and evaluated osteogenic differentiation via immunocytochemistry and RT-qPCR for osteoblast and osteocyte markers. Cells on uniformly peptide-functionalized surfaces exhibited cuboidal forms, while those on surfaces with disordered patterns tended toward columnar or cuboidal shapes. Surfaces S4 and S5 showed dendrite-like formations resembling an osteocyte morphology. S5 showed significant overexpression of osteoblast (OPN) and osteocyte markers (E11, DMP1, and SOST) compared to control surfaces and other micropatterned surfaces. Notably, despite sharing an equivalent quantity of peptides with a homogeneous functionalized surface, S5 displayed a distinct distribution of peptides, resulting in enhanced osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Yujie Zhang
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | - Murielle Remy
- CNRS, Bordeaux INP, CBMN, Univ. Bordeaux, UMR 5248, Pessac33600,France
| | | | | |
Collapse
|
6
|
Wirsig K, Bacova J, Richter RF, Hintze V, Bernhardt A. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio 2024; 25:101006. [PMID: 38445011 PMCID: PMC10912908 DOI: 10.1016/j.mtbio.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jana Bacova
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Richard F. Richter
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Institute of Material Science, TUD University of Technology, Budapester Str. 27, 01069, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
7
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Sarazin BA, Liu B, Goldman E, Whitefield AN, Lynch ME. Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model. Heliyon 2023; 9:e20248. [PMID: 37767467 PMCID: PMC10520780 DOI: 10.1016/j.heliyon.2023.e20248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer predominantly metastasizes to the skeleton. Mechanical loading is reliably anabolic in bone, and also inhibits bone metastatic tumor formation and bone loss in vivo. To study the underlying mechanisms, we developed a 3D culture model for osteocytes, the primary bone mechanosensor. We verified that MLO-Y4s responded to perfusion by reducing their rankl and rankl:opg gene expression. We next cultured MLO-Y4s with tumor-conditioned media (TCM) collected from human breast cancer cells (MDA-MB-231s) and a corresponding bone-homing subclone to test the impacts on osteocytes' mechanosensation. We found that TCM from the bone-homing subclone was more detrimental to MLO-Y4 growth and viability, and it abrogated loading-induced changes to rankl:opg. Our studies demonstrate that MLO-Y4s, including their mechanoresponse to perfusion, were more negatively impacted by soluble factors from bone-homing breast cancer cells compared to those from parental cells.
Collapse
Affiliation(s)
- Blayne A. Sarazin
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Boyuan Liu
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Elaine Goldman
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Ashlyn N. Whitefield
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Maureen E. Lynch
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
9
|
Pagani S, Salerno M, Filardo G, Locs J, van Osch GJ, Vecstaudza J, Dolcini L, Borsari V, Fini M, Giavaresi G, Columbaro M. Human Osteoblasts' Response to Biomaterials for Subchondral Bone Regeneration in Standard and Aggressive Environments. Int J Mol Sci 2023; 24:14764. [PMID: 37834212 PMCID: PMC10573262 DOI: 10.3390/ijms241914764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Osteochondral lesions, when not properly treated, may evolve into osteoarthritis (OA), especially in the elderly population, where altered joint function and quality are usual. To date, a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold (OC) has demonstrated good clinical results, although suboptimal subchondral bone regeneration still limits its efficacy. This study was aimed at evaluating the in vitro osteogenic potential of this scaffold, functionalized with two different strategies: the addition of Bone Morphogenetic Protein-2 (BMP-2) and the incorporation of strontium (Sr)-ion-enriched amorphous calcium phosphate (Sr-ACP) granules. Human osteoblasts were seeded on the functionalized scaffolds (OC+BMP-2 and OC+Sr-ACP, compared to OC) under stress conditions reproduced with the addition of H2O2 to the culture system, as well as in normal conditions, and evaluated in terms of morphology, metabolic activity, gene expression, and matrix synthesis. The OC+BMP-2 scaffold supported a better osteoblast morphology and stimulated scaffold colonization, cell activity, and extracellular matrix secretion, especially in the stressed culture environment but also in normal culture conditions, with increased expression of genes related to osteoblast differentiation. In conclusion, the incorporation of BMP-2 into the Col/Col-Mg-HAp scaffold also represents an improvement of the osteochondral scaffold in more challenging conditions, supporting further preclinical studies to optimize it for use in clinical practice.
Collapse
Affiliation(s)
- Stefania Pagani
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007 Riga, Latvia; (J.L.); (J.V.)
| | | | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (S.P.); (V.B.); (G.G.)
| | - Marta Columbaro
- Electron Microscopy Platform, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
10
|
Munir A, Reseland JE, Tiainen H, Haugen HJ, Sikorski P, Christiansen EF, Reinholt FP, Syversen U, Solberg LB. Osteocyte-Like Cells Differentiated From Primary Osteoblasts in an Artificial Human Bone Tissue Model. JBMR Plus 2023; 7:e10792. [PMID: 37701151 PMCID: PMC10494512 DOI: 10.1002/jbm4.10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 09/14/2023] Open
Abstract
In vitro models of primary human osteocytes embedded in natural mineralized matrix without artificial scaffolds are lacking. We have established cell culture conditions that favored the natural 3D orientation of the bone cells and stimulated the cascade of signaling needed for primary human osteoblasts to differentiate into osteocytes with the characteristically phenotypical dendritic network between cells. Primary human osteoblasts cultured in a 3D rotating bioreactor and incubated with a combination of vitamins A, C, and D for up to 21 days produced osteospheres resembling native bone. Osteocyte-like cells were identified as entrapped, stellate-shaped cells interconnected through canaliculi embedded in a structured, mineralized, collagen matrix. These cells expressed late osteoblast and osteocyte markers such as osteocalcin (OCN), podoplanin (E11), dentin matrix acidic phosphoprotein 1 (DMP1), and sclerostin (SOST). Organized collagen fibrils, observed associated with the cell hydroxyapatite (HAp) crystals, were found throughout the spheroid and in between the collagen fibrils. In addition to osteocyte-like cells, the spheroids consisted of osteoblasts at various differentiation stages surrounded by a rim of cells resembling lining cells. This resemblance to native bone indicates a model system with potential for studying osteocyte-like cell differentiation, cross-talk between bone cells, and the mineralization process in a bonelike structure in vitro without artificial scaffolds. In addition, natural extracellular matrix may allow for the study of tissue-specific biochemical, biophysical, and mechanical properties. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Arooj Munir
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Janne Elin Reseland
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Hanna Tiainen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Håvard Jostein Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Pawel Sikorski
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | | | - Unni Syversen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Lene Bergendal Solberg
- Department of PathologyOslo University HospitalOsloNorway
- Division of Orthopedic SurgeryOslo University HospitalOsloNorway
| |
Collapse
|
11
|
Lin CY, Song X, Seaman K, You L. Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation. Curr Osteoporos Rep 2022; 20:478-492. [PMID: 36149593 DOI: 10.1007/s11914-022-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant cell type in bone. These unique cells act primarily as mechanosensors and play crucial roles in the functional adaptation of bone tissue. This review aims to summarize the recent microfluidic studies on mechanically stimulated osteocytes in regulating other cell types. RECENT FINDINGS Microfluidics is a powerful technology that has been widely employed in recent years. With the advantages of microfluidic platforms, researchers can mimic multicellular environments and integrate dynamic systems to study osteocyte regulation under mechanical stimulation. Microfluidic platforms have been developed to investigate mechanically stimulated osteocytes in the direct regulation of multiple cell types, including osteoclasts, osteoblasts, and cancer cells, and in the indirect regulation of cancer cells via endothelial cells. Overall, these microfluidic studies foster the development of treatment approaches targeting osteocytes under mechanical stimulation.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Prouvé E, Rémy M, Feuillie C, Molinari M, Chevallier P, Drouin B, Laroche G, Durrieu MC. Interplay of matrix stiffness and stress relaxation in directing osteogenic differentiation of mesenchymal stem cells. Biomater Sci 2022; 10:4978-4996. [PMID: 35801706 DOI: 10.1039/d2bm00485b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study is to investigate the impact of the stiffness and stress relaxation of poly(acrylamide-co-acrylic acid) hydrogels on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Varying the amount of the crosslinker and the ratio between the monomers enabled the obtainment of hydrogels with controlled mechanical properties, as characterized using unconfined compression and atomic force microscopy (AFM). Subsequently, the surface of the hydrogels was functionalized with a mimetic peptide of the BMP-2 protein, in order to favor the osteogenic differentiation of hMSCs. Finally, hMSCs were cultured on the hydrogels with different stiffness and stress relaxation: 15 kPa - 15%, 60 kPa - 15%, 140 kPa - 15%, 100 kPa - 30%, and 140 kPa - 70%. The cells on hydrogels with stiffnesses from 60 kPa to 140 kPa presented a star-like shape, typical of osteocytes, which has only been reported by our group for two-dimensional substrates. Then, the extent of hMSC differentiation was evaluated by using immunofluorescence and by quantifying the expression of both osteoblast markers (Runx-2 and osteopontin) and osteocyte markers (E11, DMP1, and sclerostin). It was found that a stiffness of 60 kPa led to a higher expression of osteocyte markers as compared to stiffnesses of 15 and 140 kPa. Finally, the strongest expression of osteoblast and osteocyte differentiation markers was observed for the hydrogel with a high relaxation of 70% and a stiffness of 140 kPa.
Collapse
Affiliation(s)
- Emilie Prouvé
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada.,Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Murielle Rémy
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Cécile Feuillie
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Michael Molinari
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Bernard Drouin
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1V 0A6, Canada. .,Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Marie-Christine Durrieu
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, 33600 Pessac, France.
| |
Collapse
|
13
|
Wirsig K, Kilian D, von Witzleben M, Gelinsky M, Bernhardt A. Impact of Sr 2+ and hypoxia on 3D triple cultures of primary human osteoblasts, osteocytes and osteoclasts. Eur J Cell Biol 2022; 101:151256. [PMID: 35839696 DOI: 10.1016/j.ejcb.2022.151256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
An in vitro bone triple culture involving human primary osteoblasts, osteocytes and osteoclasts enables the investigation of bone healing factors, drugs or biomaterials in a model system for native bone tissue. The present study analyses the impact of Sr2+ as well as hypoxic cultivation (5% O2 content or chemically induced by Co2+) on bone cells. The three cell types were cultivated together in the presence of 100 µM Sr2+, hypoxic conditions or in the presence of 75 µM Co2+. After cultivation the cell types were separated and analysed on mRNA and protein level individually. In response to Sr2+ osteoblasts showed a downregulation of IBSP expression and a stimulation of ALP activity. Osteocyte gene marker expression of PDPN, MEPE, RANKL, OPG, osteocalcin and likewise the amount of secreted osteocalcin was reduced in the presence of Sr2+. Activity of osteoclast-specific enzymes TRAP and CAII was enhanced compared to the Sr2+ free control. Hypoxic conditions induced by both 5% O2 or a Co2+ treatment led to decreased DNA content of all bone cells and downregulated expression of osteoblast markers ALPL and IBSP as well as osteocyte markers PDPN, RANKL and OPG. In addition, Co2+ induced hypoxia decreased gene and protein expression of osteocalcin in osteocytes. In response to the Co2+ treatment, the TRAP gene expression and activity was increased. This study is the first to analyse the effects of Sr2+ or hypoxia on triple cultures with primary human bone cells. The investigated in vitro bone model might be suitable to reduce animal experiments in early stages of biomaterial and drug development.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Max von Witzleben
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint, and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany.
| |
Collapse
|
14
|
Allahyari Z, Casillo SM, Perry SJ, Peredo AP, Gholizadeh S, Gaborski TR. Disrupted Surfaces of Porous Membranes Reduce Nuclear YAP Localization and Enhance Adipogenesis through Morphological Changes. ACS Biomater Sci Eng 2022; 8:1791-1798. [PMID: 35363465 DOI: 10.1021/acsbiomaterials.1c01472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The disrupted surface of porous membranes, commonly used in tissue-chip and cellular coculture systems, is known to weaken cell-substrate interactions. Here, we investigated whether disrupted surfaces of membranes with micron and submicron scale pores affect yes-associated protein (YAP) localization and differentiation of adipose-derived stem cells. We found that these substrates reduce YAP nuclear localization through decreased cell spreading, consistent with reduced cell-substrate interactions, and in turn enhance adipogenesis while decreasing osteogenesis.
Collapse
Affiliation(s)
- Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Stephanie M Casillo
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Spencer J Perry
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Ana P Peredo
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Shayan Gholizadeh
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
15
|
Chen Y, Li ZH, Zhou MR, Wu XC, Zhu ZH, Zhang JP, Xu JG, Ding DF. A comparative analysis of the osteogenic capacity of osteoblasts from newborn and two-week-old rats. Acta Histochem 2022; 124:151858. [PMID: 35121379 DOI: 10.1016/j.acthis.2022.151858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AIM To compare the proliferation and osteogenic differentiation of osteoblasts between newborn rats (1d group) and two-week-old rats (14d group) and to clarify the mechanism underlying these effects. METHOD The endogenous expression of osteogenic marker genes was detected by qPCR, including ALP, OCN, Col1a1, and Runx2. The osteoblasts proliferation was evaluated by EdU assay and Western Blotting [PCNA and Cyclin D1]. ALP activities in osteoblasts were detected using a PNPP kit, ALP staining and qPCR. Mineralized nodule formation and intracellular calcium levels were assessed by Alizarin Red staining and calcium colorimetric assay respectively while OCN, Col1a1 and Runx2 levels in osteoblasts were analyzed by immunostaining. Osteogenesis-associated pathways including Wnt/β-Catenin, Akt/PPAR and Smad were analyzed via Western Blotting. RESULT Endogenous ALP, OCN, Col1a1, and Runx2 expression levels were significantly higher in osteoblasts from 14d group than those from 1d group. After treatment with osteogenic induction medium, osteoblast proliferation, ALP activity, mineralized nodule formation, and intracellular calcium levels were markedly increased in osteoblasts from 1d group, with similar results also being observed for the expression of OCN, Col1a1, and Runx2. Wnt3a, β-catenin, p-Akt, p-Smad1/5/8, and p-Smad5 protein levels were also higher in osteoblasts from 1d group relative to those from 14d group, while the expression of PPARγ was lower. CONCLUSION The superior osteogenic differentiation capacity in osteoblasts was associated with the higher activation levels of Wnt/β-Catenin, Akt/PPAR and Smad signaling pathways, and the enhanced proliferative activity in osteoblasts from 1d group.
Collapse
|
16
|
Impact of degradable magnesium implants on osteocytes in single and triple cultures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112692. [DOI: 10.1016/j.msec.2022.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 11/21/2022]
|
17
|
Zhou J, Li L, Cui D, Xie X, Yang W, Yan F. Effects of gold nanoparticles combined with human β-defensin 3 on the alveolar bone loss of periodontitis in rat. Biomed Eng Online 2021; 20:115. [PMID: 34819109 PMCID: PMC8611896 DOI: 10.1186/s12938-021-00954-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomaterials of biomedicine and tissue engineering have been proposed for the treatment of periodontitis in recent years. This study aimed to investigate the effects of gold nanoparticles (AuNPs) combined with human β-defensin 3 (hBD3) on the repair of the alveolar bones of experimental periodontitis in rats. METHODS A model of experimental periodontitis was established by ligation of the maxillary second molars with silk thread in rats, which were treated with or without AuNPs combined with hBD3. Micro-computerized tomography (micro-CT) scanning, enzyme-linked immunosorbent assay, and histological and immunohistochemical staining, including alkaline phosphatase (ALP), osteoprotegerin (OPG), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB ligand (RANKL), were used to analyze the samples. RESULTS Micro-CT demonstrated that the alveolar bone resorption was significantly reduced after the treatment with AuNPs combined with hBD3. Levels of TNF-α and IL-6 were decreased markedly compared with the ligation group. H&E and Masson staining showed that AuNPs combined with hBD3 group had less inflammatory cell infiltration, collagen fibrosis and fracture, but higher calcification in the new bone tissue. Moreover, the administration of AuNPs combined with hBD3 increased the expression levels of ALP and OPG (related to bone formation) while decreasing the expression levels of TRAP and RANKL (related to bone resorption) expression. CONCLUSIONS AuNPs combined with hBD3 had a protective effect on the progression of experimental periodontitis in rats and played a certain role in suppressing osteoclastogenesis and alleviating the inflammatory destruction of periodontitis along with the promotion of bone repair.
Collapse
Affiliation(s)
- Jing Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Xiaoting Xie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
18
|
Kang IH, Baliga UK, Wu Y, Mehrotra S, Yao H, LaRue AC, Mehrotra M. Hematopoietic stem cell-derived functional osteoblasts exhibit therapeutic efficacy in a murine model of osteogenesis imperfecta. Stem Cells 2021; 39:1457-1477. [PMID: 34224636 DOI: 10.1002/stem.3432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Uday K Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M, Suzuki S, Handa K, Saito M. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells 2021; 10:2687. [PMID: 34685667 PMCID: PMC8534498 DOI: 10.3390/cells10102687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Bone tissue engineering (BTE) is a process of combining live osteoblast progenitors with a biocompatible scaffold to produce a biological substitute that can integrate into host bone tissue and recover its function. Mesenchymal stem cells (MSCs) are the most researched post-natal stem cells because they have self-renewal properties and a multi-differentiation capacity that can give rise to various cell lineages, including osteoblasts. BTE technology utilizes a combination of MSCs and biodegradable scaffold material, which provides a suitable environment for functional bone recovery and has been developed as a therapeutic approach to bone regeneration. Although prior clinical trials of BTE approaches have shown promising results, the regeneration of large bone defects is still an unmet medical need in patients that have suffered a significant loss of bone function. In this present review, we discuss the osteogenic potential of MSCs in bone tissue engineering and propose the use of immature osteoblasts, which can differentiate into osteoblasts upon transplantation, as an alternative cell source for regeneration in large bone defects.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Yoshio Yahata
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Akira Kitagawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Nagoya 463-8560, Japan;
| | - Yusuke Kakiuchi
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Masato Nakano
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Shigeto Suzuki
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- Department of Oral Science, Division of Oral Biochemistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| |
Collapse
|
20
|
Cooper ID, Brookler KH, Crofts CAP. Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines 2021; 9:1165. [PMID: 34572351 PMCID: PMC8472634 DOI: 10.3390/biomedicines9091165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) and/or cardiovascular disease (CVD), conditions of hyperinsulinaemia, have lower levels of osteocalcin and bone remodelling, and increased rates of fragility fractures. Unlike osteoporosis with lower bone mineral density (BMD), T2DM bone fragility "hyperinsulinaemia-osteofragilitas" phenotype presents with normal to increased BMD. Hyperinsulinaemia and insulin resistance positively associate with increased BMD and fragility fractures. Hyperinsulinaemia enforces glucose fuelling, which decreases NAD+-dependent antioxidant activity. This increases reactive oxygen species and mitochondrial fission, and decreases oxidative phosphorylation high-energy production capacity, required for osteoblasto/cytogenesis. Osteocytes directly mineralise and resorb bone, and inhibit mineralisation of their lacunocanalicular space via pyrophosphate. Hyperinsulinaemia decreases vitamin D availability via adipocyte sequestration, reducing dendrite connectivity, and compromising osteocyte viability. Decreased bone remodelling and micropetrosis ensues. Trapped/entombed magnesium within micropetrosis fossilisation spaces propagates magnesium deficiency (MgD), potentiating hyperinsulinaemia and decreases vitamin D transport. Vitamin D deficiency reduces osteocalcin synthesis and favours osteocyte apoptosis. Carbohydrate restriction/fasting/ketosis increases beta-oxidation, ketolysis, NAD+-dependent antioxidant activity, osteocyte viability and osteocalcin, and decreases excess insulin exposure. Osteocalcin is required for hydroxyapatite alignment, conferring bone structural integrity, decreasing fracture risk and improving metabolic/endocrine homeodynamics. Patients presenting with fracture and normal BMD should be investigated for T2DM and hyperinsulinaemia.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Kenneth H. Brookler
- Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Catherine A. P. Crofts
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand;
| |
Collapse
|
21
|
Dou A, Zhang Y, Wang Y, Liu X, Guo Y. Reelin depletion alleviates multiple myeloma bone disease by promoting osteogenesis and inhibiting osteolysis. Cell Death Discov 2021; 7:219. [PMID: 34433809 PMCID: PMC8387418 DOI: 10.1038/s41420-021-00608-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Extracellular matrix glycoprotein Reelin is associated with tumor metastasis and prognosis in various malignancies. However, its effects on multiple myeloma (MM) are not fully understood. Here, we investigated the regulatory effects of Reelin on MM and its underlying pathogenic mechanisms. Lentivirus plasmid containing short hairpin RNA targeting Reelin (LV3-Reln) was transfected into SP2/0 cells to knockdown Reelin expression. Flow cytometry assay analyzed cell cycle and apoptosis while Transwell assay evaluated invasiveness. BALB/c mice were inoculated with LV3-Reln-transfected SP2/0 cells to establish MM model. Primary myeloma cells and osteoblasts/osteoclast were isolated from tumor tissue and limb long bones respectively. ELISA examined serum biomarkers and immunohistochemistry detected immunoglobulin light chain expression. Morphological changes and osteoclast/osteoblast differentiation were observed by histological staining. mRNA and proteins expression were determined by qPCR and WB. In vitro studies showed that Reelin depletion regulated osteolysis and osteogenesis balance, cell cycle, invasiveness, and apoptosis in SP2/0 cells. In LV3-Reln mice, tumor growth and invasiveness were suppressed, meanwhile, reduced osteoclast activation and enhanced osteoblast activity were observed. Reelin knockdown alleviated extramedullary morbidity and inhibited spleen immune cell apoptosis by down-regulating CDK5, IL-10, and Cyto-C expression. Furthermore, reduced Reelin expression restrained osteoclast differentiation while promoted osteogenesis in the bone of LV3-Reln mice. This was further supported by down-regulation of osteolytic specific mRNAs and proteins (Trap, Mmp9, Ctsk, Clcn7) and up-regulation of osteogenic specific ones (COL-1, Runx2, β-Catenin). Reelin exerted important impacts on myeloma development through rebalancing osteolysis and osteogenesis, thus might be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Aixia Dou
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Guo
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Itskovich Y, Meikle MC, Cannon RD, Farella M, Coates DE, Milne TJ. Differential behaviour and gene expression in 3D cultures of femoral- and calvarial-derived human osteoblasts under a cyclic compressive mechanical load. Eur J Oral Sci 2021; 129:e12818. [PMID: 34289176 DOI: 10.1111/eos.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
The aim of the study was to compare the response of calvarial and femoral osteoblasts cultured in a 3D hydrogel environment to cyclic compressive mechanical loading. Human foetal femoral and calvarial osteoblasts were encapsulated in a semi-synthetic thiol-modified hyaluronan gelatin polyethylene glycol diacrylate (PEGDA) cross-linked HyStemC hydrogel. Constructs were subjected to a cyclic compressive strain of 33.4 kPa force every second for 5 s every hour for 6 h per day using FlexCell BioPress culture plates and compared to non-compressed constructs. Cell viability, mineralisation, and morphological changes were observed over 21 days. BMP2, ALP, COL1A1, COL2A1, and OCN gene expression levels were quantified. Encapsulated osteoblast numbers increased and formed hydroxyapatite over a 21-day period. Cell viability decreased under a cyclical strain when compared to cells under no strain. Femoral osteoblasts under strain expressed increased levels of BMP2 (53.9-fold) and COL1A1 (5.1-fold) mRNA compared to no strain constructs. Surprisingly, no BMP2 mRNA was detected in calvarial osteoblasts. Osteoblasts derived from endochondral (femoral) and intra-membranous (calvarial) processes behaved differently in 3D-constructs. We therefore recommend that site-specific osteoblasts be used for future bone engineering and bone replacement materials and further research undertaken to elucidate how site-specific osteoblasts respond to cyclic compressive loads.
Collapse
Affiliation(s)
- Yana Itskovich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Murray C Meikle
- King's College Dental Institute, University of London, London, UK
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Bernhardt A, Skottke J, von Witzleben M, Gelinsky M. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Int J Mol Sci 2021; 22:7316. [PMID: 34298935 PMCID: PMC8307867 DOI: 10.3390/ijms22147316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, D-01307 Dresden, Germany; (J.S.); (M.v.W.); (M.G.)
| | | | | | | |
Collapse
|
24
|
Whelan IT, Moeendarbary E, Hoey DA, Kelly DJ. Biofabrication of vasculature in microphysiological models of bone. Biofabrication 2021; 13. [PMID: 34034238 DOI: 10.1088/1758-5090/ac04f7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/25/2021] [Indexed: 11/12/2022]
Abstract
Bone contains a dense network of blood vessels that are essential to its homoeostasis, endocrine function, mineral metabolism and regenerative functions. In addition, bone vasculature is implicated in a number of prominent skeletal diseases, and bone has high affinity for metastatic cancers. Despite vasculature being an integral part of bone physiology and pathophysiology, it is often ignored or oversimplified inin vitrobone models. However, 3D physiologically relevant vasculature can now be engineeredin vitro, with microphysiological systems (MPS) increasingly being used as platforms for engineering this physiologically relevant vasculature. In recent years, vascularised models of bone in MPSs systems have been reported in the literature, representing the beginning of a possible technological step change in how bone is modelledin vitro. Vascularised bone MPSs is a subfield of bone research in its nascency, however given the impact of MPSs has had inin vitroorgan modelling, and the crucial role of vasculature to bone physiology, these systems stand to have a substantial impact on bone research. However, engineering vasculature within the specific design restraints of the bone niche is significantly challenging given the different requirements for engineering bone and vasculature. With this in mind, this paper aims to serve as technical guidance for the biofabrication of vascularised bone tissue within MPS devices. We first discuss the key engineering and biological considerations for engineering more physiologically relevant vasculaturein vitrowithin the specific design constraints of the bone niche. We next explore emerging applications of vascularised bone MPSs, and conclude with a discussion on the current status of vascularised bone MPS biofabrication and suggest directions for development of next generation vascularised bone MPSs.
Collapse
|
25
|
Prouvé E, Drouin B, Chevallier P, Rémy M, Durrieu MC, Laroche G. Evaluating Poly(Acrylamide-co-Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2021; 21:e2100069. [PMID: 33870650 DOI: 10.1002/mabi.202100069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study is to investigate polyacrylamide-based hydrogels stress relaxation and the subsequent impact on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different hydrogels are synthesized by varying the amount of cross-linker and the ratio between the monomers (acrylamide and acrylic acid), and characterized by compression tests. It has been found that hydrogels containing 18% of acrylic acid exhibit an average relaxation of 70%, while pure polyacrylamide gels show an average relaxation of 15%. Subsequently, hMSCs are cultured on two different hydrogels functionalized with a mimetic peptide of the bone morphogenetic protein-2 to enable cell adhesion and favor their osteogenic differentiation. Phalloidin staining shows that for a constant stiffness of 55 kPa, a hydrogel with a low relaxation (15%) leads to star-shaped cells, which is typical of osteocytes, while a hydrogel with a high relaxation (70%) presents cells with a polygonal shape characteristic of osteoblasts. Immunofluorescence labeling of E11, strongly expressed in early osteocytes, also shows a dramatically higher expression for cells cultured on the hydrogel with low relaxation (15%). These results clearly demonstrate that, by fine-tuning hydrogels stress relaxation, hMSCs differentiation can be directed toward osteoblasts, and even osteocytes, which is particularly rare in vitro.
Collapse
Affiliation(s)
- Emilie Prouvé
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada.,Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Bernard Drouin
- Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Pascale Chevallier
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| | - Murielle Rémy
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Marie-Christine Durrieu
- Institute of Chemistry and Biology of Membranes and Nano-objects (UMR 5248 CBMN), Bordeaux University, Allée Geoffroy St Hilaire - Bât B14, Pessac, 33600, France.,CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France.,Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât B14, Pessac, 33600, France
| | - Gaétan Laroche
- Department of mining, metallurgy, and materials engineering, Surface Engineering Laboratory, Research Center on Advanced Materials, Laval University, 1065 Avenue de la médecine, Québec, G1V 0A6, Canada.,Research Center of the University Hospital of Québec, Regenerative Medicine axis, St-François d'Assise Hospital, Laval University, 10 rue de l'Espinay, Québec, G1L 3L5, Canada
| |
Collapse
|
26
|
Nguyen HD, Sun X, Yokota H, Lin CC. Probing Osteocyte Functions in Gelatin Hydrogels with Tunable Viscoelasticity. Biomacromolecules 2021; 22:1115-1126. [PMID: 33543929 PMCID: PMC10548335 DOI: 10.1021/acs.biomac.0c01476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone is an attractive site for metastatic cancer cells and has been considered as "soil" for promoting tumor growth. However, accumulating evidence suggests that some bone cells (e.g., osteocytes) can actually suppress cancer cell migration and invasion via direct cell-cell contact and/or through cytokine secretion. Toward designing a biomimetic niche for supporting 3D osteocyte culture, we present here a gelatin-based hydrogel system with independently tunable matrix stiffness and viscoelasticity. In particular, we synthesized a bifunctional macromer, gelatin-norbornene-boronic acid (i.e., GelNB-BA), for covalent cross-linking with multifunctional thiol linkers [e.g., four-arm poly(ethylene glycol)-thiol or PEG4SH] to form thiol-NB hydrogels. The immobilized BA moieties in the hydrogel readily formed reversible boronate ester bonds with 1,3-diols on physically entrapped poly(vinyl alcohol) (PVA). Adjusting the compositions of GelNB-BA, PEG4SH, and PVA afforded hydrogels with independently tunable elasticity and viscoelasticity. With this new dynamic hydrogel platform, we investigated matrix mechanics-induced growth and cytokine secretion of encapsulated MLO-A5 pre-osteocytes. We discovered that more compliant or viscoelastic gels promoted A5 cell growth. On the other hand, cells encapsulated in stiffer gels secreted higher amounts of pro-inflammatory cytokines and chemokines. Finally, conditioned media (CM) collected from the encapsulated MLO-A5 cells (i.e., A5-CM) strongly inhibited breast cancer cell proliferation, invasion, and expression of tumor-activating genes. This new biomimetic hydrogel platform not only serves as a versatile matrix for investigating mechano-sensing in osteocytes but also provides a means to produce powerful anti-tumor CM.
Collapse
Affiliation(s)
- Han D. Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xun Sun
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
28
|
Marx-Stoelting P, Solano MDLM, Aoyama H, Adams RH, Bal-Price A, Buschmann J, Chahoud I, Clark R, Fang T, Fujiwara M, Gelinsky M, Grote K, Horimoto M, Bennekou SH, Kellner R, Kuwagata M, Leist M, Lang A, Li W, Mantovani A, Makris SL, Paumgartten F, Perron M, Sachana M, Schmitt A, Schneider S, Schönfelder G, Schulze F, Shiota K, Solecki R. 25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reprod Toxicol 2020; 100:155-162. [PMID: 33278556 DOI: 10.1016/j.reprotox.2020.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
25 years after the first Berlin Workshop on Developmental Toxicity this 10th Berlin Workshop aimed to bring together international experts from authorities, academia and industry to consider scientific, methodologic and regulatory aspects in risk assessment of developmental toxicity and to debate alternative strategies in testing developmental effects in the future. Proposals for improvement of the categorization of developmental effects were discussed as well as the update of the DevTox database as valuable tool for harmonization. The development of adverse outcome pathways relevant to developmental neurotoxicity (DNT) was debated as a fundamental improvement to guide the screening and testing for DNT using alternatives to animal methods. A further focus was the implementation of an in vitro mechanism-based battery, which can support various regulatory applications associated with the assessment of chemicals and mixtures. More interdisciplinary and translation research should be initiated to accelerate the development of new technologies to test developmental toxicity. Technologies in the pipeline are (i) high throughput imaging techniques, (ii) models for DNT screening tests, (iii) use of computer tomography for assessment of thoracolumbar supernumerary ribs in animal models, and (iv) 3D biofabrication of bone development and regeneration tissue models. In addition, increased collaboration with the medical community was suggested to improve the relevance of test results to humans and identify more clinically relevant endpoints. Finally, the participants agreed that this conference facilitated better understanding innovative approaches that can be useful for the identification of developmental health risks due to exposure to chemical substances.
Collapse
Affiliation(s)
| | | | | | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Ibrahim Chahoud
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Ruth Clark
- Ruth Clark Associates Ltd., United Kingdom
| | - Tian Fang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | | | - Konstanze Grote
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | | | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Annemarie Lang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Weihua Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | - Susan L Makris
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, D.C., USA
| | | | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticides Programs, Washington, D.C, USA
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, Paris, France
| | - Anne Schmitt
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Frank Schulze
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Roland Solecki
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
29
|
Abstract
The aim of this review was to compile a list of tools currently available to study bone cells and in particular osteocytes. As the interest (and importance) in osteocyte biology has greatly expanded over the past decade, new tools and techniques have become available to study these elusive cells, RECENT FINDINGS: Osteocytes are the main orchestrators of bone remodeling. They control both osteoblasts and osteoclast activities via cell-to cell communication or through secreted factors. Osteocytes are also the mechanosensors of the bone and they orchestrate skeletal adaptation to loads. Recent discoveries have greatly expanded our knowledge and understanding of these cells and new models are now available to further uncover the functions of osteocytes. Novel osteocytic cell lines, primary cultures, and 3D scaffolds are now available to investigators to further unravel the functions and roles of these cells.
Collapse
Affiliation(s)
- Paola Divieti Pajevic
- Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, 700 Albany Street, W201E, Boston, MA, 02118, USA.
| |
Collapse
|
30
|
Kwak TJ, Lee E. Rapid multilayer microfabrication for modeling organotropic metastasis in breast cancer. Biofabrication 2020; 13. [PMID: 32998119 DOI: 10.1088/1758-5090/abbd28] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is one of the most insidious forms of breast cancer with high rates of metastasis, resulting in major mortalities in breast cancer patients. To better understand and treat TNBC metastasis, investigation of TNBC interactions with blood vasculatures is crucial. Among multiple metastatic processes, a step of TNBC exit from the blood vessels ('extravasation') in the pre-metastatic organs determines the final site of the metastasis. Here, we present a rapid multilayer microfabrication method of transferring a three-dimensional (3D) overhang pattern to a substrate with a sacrificial layer to reconstitute a 3D blood vessel surrounded by the extracellular matrix containing organ-specific parenchymal cells. Bones and lungs are the most common sites of breast cancer metastasis. We modeled organotropic bone and lung metastasis in TNBC by introducing subpopulations of TNBC metastases into a vessel lumen surrounded by osteoblasts, bone marrow derived mesenchymal stem cells, and lung fibroblasts. We found that bone-like microenviroment with osteoblasts and mesenchymal stem cells promoted extravasation of the bone-tropic TNBC cells, whereas the lung-like microenviroment promoted extravasation of the lung-tropic TNBC cells. Given that these organ-specific parenchymal cells do not impact vascular permeability, our results suggest that the parenchymal cells dictate selective extravasation of the bone-tropic or lung-tropic TNBC cells in our system.
Collapse
Affiliation(s)
- Tae Joon Kwak
- Biomedical Engineering, Cornell University, 309A Weill hall, Cornell University, Ithaca, Ithaca, New York, 14853, UNITED STATES
| | - Esak Lee
- Cornell University, Ithaca, New York, 14853-0001, UNITED STATES
| |
Collapse
|
31
|
Isolation of Murine and Human Osteocytes. Methods Mol Biol 2020. [PMID: 32979194 DOI: 10.1007/978-1-0716-0989-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Osteocytes are thought to be the mechanosensors of bone by sensing mechanical loads imposed upon the bone and transmitting these signals to the other bone cells to initiate bone modeling and remodeling. The location of osteocytes deep within bone is ideal for their function. However, this location makes the study of osteocytes in vivo technically difficult. There are several methods for obtaining and culturing primary osteocytes for in vitro experiments and ex vivo observation. In this chapter, several proven methods are discussed including the isolation of avian osteocytes from chicks and osteocytes from calvaria and long bones of young mice. A detailed protocol for the isolation of osteocytes from hypermineralized bone of mature and aged animals is provided. In addition, a modified version of this protocol that can be used to isolate osteocytes from human trabecular bone is described.
Collapse
|
32
|
Chen K, Zhou Q, Kang H, Yan Y, Qian N, Li C, Wang F, Yang K, Deng L, Qi J. High Mineralization Capacity of IDG-SW3 Cells in 3D Collagen Hydrogel for Bone Healing in Estrogen-Deficient Mice. Front Bioeng Biotechnol 2020; 8:864. [PMID: 32984264 PMCID: PMC7488085 DOI: 10.3389/fbioe.2020.00864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/06/2020] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering with 3D scaffold is a simple and effective method for bone healing after large-scale bone loss. So far, bone marrow-derived mesenchymal stem cells (BMSCs) are mostly used in the treatment of bone healing in animal models due to their self-renewal capability and osteogenic potential. Due to the fact that the main functional cells in promoting osteoid mineralization and bone remodeling were osteocytes, we chose an osteoblast-to-osteocyte transition cell line, IDG-SW3, which are not proliferative under physiological conditions, and compared the healing capability of these cells to that of BMSCs in bone defect. In vitro, IDG-SW3 cells revealed a stronger mineralization capacity when grown in 3D collagen gel, compared to that of BMSCs. Although both BMSC and IDG-SW3 can generate stable calcium-phosphate crystal similar to hydroxyapatite (HA), the content was much more enriched in IDG-SW3-mixed collagen gel. Moreover, the osteoclasts co-cultured with IDG-SW3-mixed collagen gel were easier to be activated, indicating that the IDG-SW3 grafting could promote the bone remodeling more efficiently in vivo. Last, in order to reduce the self-healing capability, we assessed the healing capability between the IDG-SW3 cells and BMSCs in osteoporotic mice. We found that the collagen hydrogel mixed with IDG-SW3 cells has a better healing pattern than what was seen in hydrogel mixed with BMSCs. Therefore, these results demonstrated that by promoting osteoblast-to-osteocyte transition, the therapeutic effect of BMSCs in bone defect repair could be improved.
Collapse
Affiliation(s)
- Kaizhe Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Kang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yufei Yan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Yang Y, Wang M, Yang S, Lin Y, Zhou Q, Li H, Tang T. Bioprinting of an osteocyte network for biomimetic mineralization. Biofabrication 2020; 12:045013. [DOI: 10.1088/1758-5090/aba1d0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108:22-45. [PMID: 32251782 DOI: 10.1016/j.actbio.2020.03.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Bone is an extremely dynamic tissue, undergoing continuous remodeling for its whole lifetime, but its regeneration or augmentation due to bone loss or defects are not always easy to obtain. Bone tissue engineering (BTE) is a promising approach, and its success often relies on a "smart" scaffold, as a support to host and guide bone formation through bone cell precursors. Bone homeostasis is maintained by osteoblasts (OBs) and osteoclasts (OCs) within the basic multicellular unit, in a consecutive cycle of resorption and formation. Therefore, a functional scaffold should allow the best possible OB/OC cooperation for bone remodeling, as happens within the bone extracellular matrix in the body. In the present work OB/OC co-culture models, with and without scaffolds, are reviewed. These experimental systems are intended for different targets, including bone remodeling simulation, drug testing and the assessment of biomaterials and 3D scaffolds for BTE. As a consequence, several parameters, such as cell type, cell ratio, culture medium and inducers, culture times and setpoints, assay methods, etc. vary greatly. This review identifies and systematically reports the in vitro methods explored up to now, which, as they allow cellular communication, more closely resemble bone remodeling and/or the regeneration process in the framework of BTE. STATEMENT OF SIGNIFICANCE: Bone is a dynamic tissue under continuous remodeling, but spontaneous healing may fail in the case of excessive bone loss which often requires valid alternatives to conventional treatments to restore bone integrity, like bone tissue engineering (BTE). Pre-clinical evaluation of scaffolds for BTE requires in vitro testing where co-cultures combining innovative materials with osteoblasts (OBs) and osteoclasts (OCs) closely mimic the in vivo repair process. This review considers the direct and indirect OB/OC co-cultures relevant to BTE, from the early mouse-cell models to the recent bone regenerative systems. The co-culture modeling of bone microenvironment provides reliable information on bone cell cross-talk. Starting from improved knowledge on bone remodeling, bone disease mechanisms may be understood and new BTE solutions are designed.
Collapse
|
35
|
Nasello G, Alamán-Díez P, Schiavi J, Pérez MÁ, McNamara L, García-Aznar JM. Primary Human Osteoblasts Cultured in a 3D Microenvironment Create a Unique Representative Model of Their Differentiation Into Osteocytes. Front Bioeng Biotechnol 2020; 8:336. [PMID: 32391343 PMCID: PMC7193048 DOI: 10.3389/fbioe.2020.00336] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 01/12/2023] Open
Abstract
Microengineered systems provide an in vitro strategy to explore the variability of individual patient response to tissue engineering products, since they prefer the use of primary cell sources representing the phenotype variability. Traditional in vitro systems already showed that primary human osteoblasts embedded in a 3D fibrous collagen matrix differentiate into osteocytes under specific conditions. Here, we hypothesized that translating this environment to the organ-on-a-chip scale creates a minimal functional unit to recapitulate osteoblast maturation toward osteocytes and matrix mineralization. Primary human osteoblasts were seeded in a type I collagen hydrogel, to establish the role of lower (2.5 × 105 cells/ml) and higher (1 × 106 cells/ml) cell density on their differentiation into osteocytes. A custom semi-automatic image analysis software was used to extract quantitative data on cellular morphology from brightfield images. The results are showing that cells cultured at a high density increase dendrite length over time, stop proliferating, exhibit dendritic morphology, upregulate alkaline phosphatase (ALP) activity, and express the osteocyte marker dental matrix protein 1 (DMP1). On the contrary, cells cultured at lower density proliferate over time, do not upregulate ALP and express the osteoblast marker bone sialoprotein 2 (BSP2) at all timepoints. Our work reveals that microengineered systems create unique conditions to capture the major aspects of osteoblast differentiation into osteocytes with a limited number of cells. We propose that the microengineered approach is a functional strategy to create a patient-specific bone tissue model and investigate the individual osteogenic potential of the patient bone cells.
Collapse
Affiliation(s)
- Gabriele Nasello
- Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain.,Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Pilar Alamán-Díez
- Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain
| | - Jessica Schiavi
- Mechanobiology and Medical Device Research Group (MMDRG), National University of Ireland Galway, Galway, Ireland
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain
| | - Laoise McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), National University of Ireland Galway, Galway, Ireland
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
36
|
Bernhardt A, Österreich V, Gelinsky M. Three-Dimensional Co-culture of Primary Human Osteocytes and Mature Human Osteoclasts in Collagen Gels. Tissue Eng Part A 2019; 26:647-655. [PMID: 31774039 DOI: 10.1089/ten.tea.2019.0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts are pivotal cells for bone remodeling and their activity is coordinated by osteocytes that reside inside the bone matrix. In vitro co-cultures of osteocytes and osteoclasts are therefore advantageous to analyze the crosstalk between these cell species. In this study, primary osteocytes were isolated from human bone in a multistep isolation process and embedded into three-dimensional collagen gels. Mature human osteoclasts were generated by differentiation of human peripheral blood mononuclear cells (PBMCs). Different surfaces were tested for osteoclast formation: suspension dishes, collagen gels, and normal tissue culture polystyrene. After detachment from the surfaces, osteoclasts showed typical morphology and gene expression of osteoclast markers. Osteoclasts that were differentiated on collagen exhibited the highest osteoclast marker expression. Cocultivation of mature osteoclasts with osteocytes was performed in a transwell system, with osteocytes, embedded in collagen gels at the apical side and osteoclasts on the basal side of a porous polyethylen terephtalate membrane, which allowed the separate gene expression analysis for osteocytes and osteoclasts. After 7 days of co-culture both cell species showed their typical morphology, which is multinucleated giant cells for osteoclasts and star-shaped cells with dendritic extensions for osteocytes. Furthermore, osteoclast markers tartrate-resistant acid phosphatase, carbonic anhydrase II, and cathepsin K were detected both on gene expression and protein level in single and co-cultures. Osteocytes showed gene expression of typical osteocyte markers E11, sclerostin, dentin matrix protein 1, osteocalcin, and receptor activator of nuclear factor-κ ligand both in single and co-culture. Impact statement This study is the first to establish an in vitro bone model that contains both primary human osteocytes and primary human osteoclasts. Previous studies applied rodent osteocyte cell lines to examine the influence of osteocytes on osteoclast function. This model mimics the clinical situation better since osteocytes are postmitotic cells whose function might be different in primary state compared with a proliferating cell line. Furthermore, the co-culture model can be the basis for in vitro triple culture models involving osteoblasts as the third bone cell species.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet und Universitaetsklinikum, Dresden, Germany
| | - Violetta Österreich
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet und Universitaetsklinikum, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet und Universitaetsklinikum, Dresden, Germany
| |
Collapse
|
37
|
Sun D, Yang L, Cao H, Shen ZY, Song HL. Study of the protective effect on damaged intestinal epithelial cells of rat multilineage-differentiating stress-enduring (Muse) cells. Cell Biol Int 2019; 44:549-559. [PMID: 31642560 PMCID: PMC7003933 DOI: 10.1002/cbin.11255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022]
Abstract
In this study, we determined whether multilineage‐differentiating stress‐enduring (Muse) cells exist in rat bone marrow and elucidated their effects on protection against the injury of intestinal epithelial cells associated with inflammation. Rat Muse cells were separated from bone marrow mesenchymal stem cells (BMMSCs) by trypsin‐incubation stress. The group of cells maintained the characteristics of BMMSCs; however, there were high positive expression levels of stage‐specific embryonic antigen‐3 (SSEA‐3; 75.6 ± 2.8%) and stage‐specific embryonic antigen‐1 (SSEA‐1; 74.8 ± 3.1%), as well as specific antigens including Nanog, POU class 5 homeobox 1 (OCT 3/4), and SRY‐box 2 (SOX 2). After inducing differentiation, α‐fetoprotein (endodermal), α‐smooth muscle actin and neurofilament medium polypeptide (ectodermal) were positive in Muse cells. Injuries of intestinal epithelial crypt cell‐6 (IEC‐6) and colorectal adenocarcinoma 2 (Caco‐2) cells as models were induced by tumor necrosis factor‐α stimulation in vitro. Muse cells exhibited significant protective effects on the proliferation and intestinal barrier structure, the underlying mechanisms of which were related to reduced levels of interleukin‐6 (IL‐6) and interferon‐γ (IFN‐γ), and the restoration of transforming growth factor‐β (TGF‐β) and IL‐10 in the inflammation microenvironment. In summary, there were minimal levels of pluripotent stem cells in rat bone marrow, which exhibit similar properties to human Muse cells. Rat Muse cells could provide protection against damage to intestinal epithelial cells depending on their anti‐inflammatory and immune regulatory functionality. Their functional impact was more obvious than that of BMMSCs.
Collapse
Affiliation(s)
- Dong Sun
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Liu Yang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China.,Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China
| | - Huan Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, 300070, P.R. China.,NHC Key Laboratory of Critical Care Medicine, Tianjin, 300192, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China.,Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, 300192, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin, 300192, P.R. China.,Tianjin Key Laboratory of Organ Transplantation, Tianjin, 300192, P.R. China
| |
Collapse
|
38
|
Jonitz-Heincke A, Sellin ML, Seyfarth A, Peters K, Mueller-Hilke B, Fiedler T, Bader R, Klinder A. Analysis of Cellular Activity Short-Term Exposure to Cobalt and Chromium Ions in Mature Human Osteoblasts. MATERIALS 2019; 12:ma12172771. [PMID: 31466377 PMCID: PMC6747798 DOI: 10.3390/ma12172771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/19/2023]
Abstract
In aseptic loosening of endoprosthetic implants, metal particles, as well as their corrosion products, have been shown to elicit a biological response. Due to different metal alloy components, the response may vary depending on the nature of the released corrosion product. Our study aimed to compare the biological effects of different ions released from metal alloys. In order to mimic the corrosion products, different metal salts (CoCl2, NiCl2 and CrCl3 × 6H2O) were dissolved and allowed to equilibrate. Human osteoblasts were incubated with concentrations of 10 µM to 500 µM metal salt solutions under cell culture conditions, whereas untreated cells served as negative controls. Cells exposed to CoCr28Mo6 particles served as positive controls. The cell activity and expression of osteogenic differentiation and pro-osteolytic mediators were determined. Osteoblastic activity revealed concentration- and material-dependent influences. Collagen 1 synthesis was reduced after treatment with Co(2+) and Ni(2+). Additionally, exposure to these ions (500 µM) resulted in significantly reduced OPG protein synthesis, whereas RANKL as well as IL-6 and IL-8 secretion were increased. TLR4 mRNA was significantly induced by Co(2+) and CoCr28Mo6 particles. The results demonstrate the pro-osteolytic capacity of metal ions in osteoblasts. Compared to CoCr28Mo6 particles, the results indicated that metal ions intervene much earlier in inflammatory processes.
Collapse
Affiliation(s)
- Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Marie-Luise Sellin
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Anika Seyfarth
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Brigitte Mueller-Hilke
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Tomas Fiedler
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| |
Collapse
|