1
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Zhang W, Wang S, Liu Z, Qian P, Li Y, Wu J. Legumain-deficient macrophages regulate inflammation and lipid metabolism in adipose tissues to protect against diet-induced obesity. Mol Cell Endocrinol 2024; 592:112283. [PMID: 38815795 DOI: 10.1016/j.mce.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Adipose tissue macrophages (ATMs) are key players in the development of obesity and associated metabolic inflammation, which contributes to systemic metabolic dysfunction, and understanding the interaction between macrophages and adipocytes is crucial for developing novel macrophage-based strategies against obesity. Here, we found that Legumain (Lgmn), a well-known lysosomal cysteine protease, is expressed mainly in the ATMs of obese mice. To further define the potential role of Lgmn-expressing macrophages in the generation of an aberrant metabolic state, LgmnF/F; LysMCre mice, which do not express Lgmn in macrophages, were maintained on a high-fat diet (HFD), and metabolic parameters were assessed. Macrophage-specific Lgmn deficiency protects mice against HFD-induced obesity, diminishes the quantity of proinflammatory macrophages in obese adipose tissues, and alleviates hepatic steatosis and insulin resistance. By analysing the transcriptome and proteome of murine visceral white adipose tissue (vWAT) after HFD feeding, we determined that macrophage Lgmn deficiency causes changes in lipid metabolism and the inflammatory response. Furthermore, the reciprocity of macrophage-derived Lgmn with integrin α5β1 in adipocytes was tested via colocalization analyses. It is further demonstrated in macrophage and adipocyte coculture system that macrophage derived Lgmn bound to integrin α5β1 in adipocytes, therefore attenuating PKA activation, downregulating lipolysis-related proteins and eventually exacerbating obesity development. Overall, our study identified Lgmn as a previously unrecognized regulator involved in the interaction between ATMs and adipocytes contributing to diet-induced obesity and suggested that Lgmn is a potential target for treating metabolic disorders.
Collapse
Affiliation(s)
- Wanyu Zhang
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ping Qian
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Li
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Shen Z, Zhao M, Lu J, Chen H, Zhang Y, Chen S, Wang Z, Wang M, Liu X, Fu G, Huang H. Integrated multi-omic high-throughput strategies across-species identified potential key diagnostic, prognostic, and therapeutic targets for atherosclerosis under high glucose conditions. Mol Cell Biochem 2024:10.1007/s11010-024-05097-8. [PMID: 39223351 DOI: 10.1007/s11010-024-05097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is a well-known risk factor for atherosclerosis (AS), but the underlying molecular mechanism remains unknown. The dysregulated immune response is an important reason. High glucose is proven to induce foam cell formation under lipidemia situations in clinical patients. Exploring the potential regulatory programs of accelerated foam cell formation stimulated by high glucose is meaningful. Macrophage-derived foam cells were induced in vitro, and high-throughput sequencing was performed. Coexpression gene modules were constructed using weighted gene co-expression network analysis (WGCNA). Highly related modules were identified. Hub genes were identified by multiple integrative strategies. The potential roles of selected genes were further validated in bulk-RNA and scRNA datasets of human plaques. By transfection of the siRNA, the role of the screened gene during foam cell formation was further explored. Two modules were found to be both positively related to high glucose and ox-LDL. Further enrichment analyses confirmed the association between the brown module and AS. The high correlation between the brown module and macrophages was identified and 4 hub genes (Aldoa, Creg1, Lgmn, and Pkm) were screened. Further validation in external bulk-RNA and scRNA revealed the potential diagnostic and therapeutic value of selected genes. In addition, the survival analysis confirmed the prognostic value of Aldoa while knocking down Aldoa expression alleviated the foam cell formation in vitro. We systematically investigated the synergetic effects of high glucose and ox-LDL during macrophage-derived foam cell formation and identified that ALDOA might be an important diagnostic, prognostic, and therapeutic target in these patients.
Collapse
Affiliation(s)
- Zhida Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Jiangting Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Yicheng Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Songzan Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Zhaojing Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Meihui Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianglan Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| | - He Huang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
- Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, China.
| |
Collapse
|
4
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Gregersen I, Narverud I, Christensen JJ, Hovland A, Øyri LKL, Ueland T, Retterstøl K, Bogsrud MP, Aukrust P, Halvorsen B, Holven KB. Plasma legumain in familial hypercholesterolemia: associations with statin use and cardiovascular risk markers. Scand J Clin Lab Invest 2024; 84:24-29. [PMID: 38319290 DOI: 10.1080/00365513.2024.2309617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Legumain is known to be regulated in atherosclerotic disease and may have both pro- and anti-atherogenic properties. The study aimed to explore legumain in individuals with familial hypercholesterolemia (FH), a population with increased cardiovascular risk. Plasma legumain was measured in 251 subjects with mostly genetically verified FH, of which 166 were adults (≥18 years) and 85 were children and young adults (<18 years) and compared to 96 normolipidemic healthy controls. Plasma legumain was significantly increased in the total FH population compared to controls (median 4.9 versus 3.3 pg/mL, respectively, p < 0.001), whereof adult subjects with FH using statins had higher levels compared to non-statin users (5.7 versus 3.9 pg/mL, respectively, p < 0.001). Children and young adults with FH (p = 0.67) did not have plasma legumain different from controls at the same age. Further, in FH subjects, legumain showed a positive association with apoB, and markers of inflammation and platelet activation (i.e. fibrinogen, NAP2 and RANTES). In the current study, we show that legumain is increased in adult subjects with FH using statins, whereas there was no difference in legumain among children and young adults with FH compared to controls. Legumain was further associated with cardiovascular risk markers in the FH population. However the role of legumain in regulation of cardiovascular risk in these individuals is still to be determined.
Collapse
Affiliation(s)
- Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingunn Narverud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jacob Juel Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anders Hovland
- Nordland Heart Center, Norway
- Nord University, Bodø, Norway
| | - Linn K L Øyri
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Oslo University Hospital, Nydalen, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Nydalen, Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Pan C, Xu J, Gao Q, Li W, Sun T, Lu J, Shi Q, Han Y, Gao G, Li J. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitromodeling of arterial disorders initiation. Biofabrication 2023; 15:045017. [PMID: 37579751 DOI: 10.1088/1758-5090/aceffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
As the main precursor of arterial disorders, endothelial dysfunction preferentially occurs in regions of arteries prone to generating turbulent flow, particularly in branched regions of vasculatures. Although various diseased models have been engineered to investigate arterial pathology, producing a multiple-layered vascular model with branched geometries that can recapitulate the critical physiological environments of human arteries, such as intercellular communications and local turbulent flows, remains challenging. This study develops a sequentially suspended three-dimensional bioprinting (SSB) strategy and a visible-light-curable decellularized extracellular matrix bioink (abbreviated as 'VCD bioink') to construct a biomimetic human arterial model with tunable geometries. The engineered multiple-layered arterial models with compartmentalized vascular cells can exhibit physiological functionality and pathological performance under defined physiological flows specified by computational fluid dynamics simulation. Using different configurations of the vascular models, we investigated the independent and synergetic effects of cellular crosstalk and abnormal hemodynamics on the initiation of endothelial dysfunction, a hallmark event of arterial disorder. The results suggest that the arterial model constructed using the SSB strategy and VCD bioinks has promise in establishing diagnostic/analytic platforms for understanding the pathophysiology of human arterial disorders and relevant abnormalities, such as atherosclerosis, aneurysms, and ischemic diseases.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingwen Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qing Shi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
7
|
Khan SU, Khan IM, Khan MU, Ud Din MA, Khan MZ, Khan NM, Liu Y. Role of LGMN in tumor development and its progression and connection with the tumor microenvironment. Front Mol Biosci 2023; 10:1121964. [PMID: 36825203 PMCID: PMC9942682 DOI: 10.3389/fmolb.2023.1121964] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera IsmailKhan, Pakistan
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera IsmailKhan, Pakistan
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China,*Correspondence: Ibrar Muhammad Khan, ; Yong Liu,
| |
Collapse
|
8
|
Solberg R, Lunde NN, Forbord KM, Okla M, Kassem M, Jafari A. The Mammalian Cysteine Protease Legumain in Health and Disease. Int J Mol Sci 2022; 23:ijms232415983. [PMID: 36555634 PMCID: PMC9788469 DOI: 10.3390/ijms232415983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function. This review summarizes the current knowledge about legumain functions in health and disease, including kidney homeostasis, hematopoietic homeostasis, bone remodeling, cardiovascular and cerebrovascular diseases, fibrosis, aging and senescence, neurodegenerative diseases and cancer. In addition, this review addresses the effects of some marketed drugs on legumain. Expanding our knowledge on legumain will delineate the importance of this enzyme in regulating physiological processes and disease conditions.
Collapse
Affiliation(s)
- Rigmor Solberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| | - Ngoc Nguyen Lunde
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Karl Martin Forbord
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Meshail Okla
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Abbas Jafari
- Department of Endocrinology and Metabolism, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: (R.S.); (A.J.); Tel.: +47-22-857-514 (R.S.); +45-35-337-423 (A.J.)
| |
Collapse
|
9
|
Pan L, Sun A. Response by Pan and Sun to Letter Regarding Article, "Legumain Is an Endogenous Modulator of Integrin αvβ3 Triggering Vascular Degeneration, Dissection, and Rupture". Circulation 2022; 146:e144-e145. [PMID: 36095064 DOI: 10.1161/circulationaha.122.060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lihong Pan
- Institutes of Biomedical Science and Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Institutes of Biomedical Science and Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Liao J, Chen G, Liu X, Wei ZZ, Yu SP, Chen Q, Ye K. C/EBPβ/AEP signaling couples atherosclerosis to the pathogenesis of Alzheimer's disease. Mol Psychiatry 2022; 27:3034-3046. [PMID: 35422468 PMCID: PMC9912845 DOI: 10.1038/s41380-022-01556-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Atherosclerosis (ATH) and Alzheimer's disease (AD) are both age-dependent inflammatory diseases, associated with infiltrated macrophages and vascular pathology and overlapping molecules. C/EBPβ, an Aβ or inflammatory cytokine-activated transcription factor, and AEP (asparagine endopeptidase) are intimately implicated in both ATH and AD; however, whether C/EBPβ/AEP signaling couples ATH to AD pathogenesis remains incompletely understood. Here we show that C/EBPβ/AEP pathway mediates ATH pathology and couples ATH to AD. Deletion of C/EBPβ or AEP from primary macrophages diminishes cholesterol load, and inactivation of this pathway reduces foam cell formation and lesions in aorta in ApoE-/- mice, fed with HFD (high-fat-diet). Knockout of ApoE from 3xTg AD mouse model augments serum LDL and increases lesion areas in the aorta. Depletion of C/EBPβ or AEP from 3xTg/ApoE-/- mice substantially attenuates these effects and elevates cerebral blood flow and vessel length, improving cognitive functions. Strikingly, knockdown of ApoE from the hippocampus of 3xTg mice decreases the cerebral blood flow and vessel length and aggravates AD pathologies, leading to cognitive deficits. Inactivation of C/EBPβ/AEP pathway alleviates these events and restores cognitive functions. Hence, our findings demonstrate that C/EBPβ/AEP signaling couples ATH to AD via mediating vascular pathology.
Collapse
Affiliation(s)
- Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Guiqin Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Pan C, Gao Q, Kim BS, Han Y, Gao G. The Biofabrication of Diseased Artery In Vitro Models. MICROMACHINES 2022; 13:mi13020326. [PMID: 35208450 PMCID: PMC8874977 DOI: 10.3390/mi13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models.
Collapse
Affiliation(s)
- Chen Pan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Korea
- Correspondence: (B.-S.K.); (G.G.)
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (B.-S.K.); (G.G.)
| |
Collapse
|
12
|
Chen H, Ma Y, Wang Y, Luo H, Xiao Z, Chen Z, Liu Q, Xiao Y. Progress of Pathogenesis in Pediatric Multifocal Atrial Tachycardia. Front Pediatr 2022; 10:922464. [PMID: 35813391 PMCID: PMC9256911 DOI: 10.3389/fped.2022.922464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Multifocal atrial tachycardia (MAT) is defined as irregular P-P, R-R, and P-R intervals, isoelectric baseline between P waves, and ventricular rate over 100 beats/min. Although the prognosis of pediatric MAT in most patients is favorable, adverse outcomes of MAT have been reported, such as cardiogenic death (3%), respiratory failure (6%), or persistent arrhythmia (7%), due to delayed diagnosis and poorly controlled MAT. Previous studies demonstrated that pediatric MAT is associated with multiple enhanced automatic lesions located in the atrium or abnormal automaticity of a single lesion located in the pulmonary veins via multiple pathways to trigger electrical activity. Recent studies indicated that pediatric MAT is associated with the formation of a re-entry loop, abnormal automaticity, and triggering activity. The occurrence of pediatric MAT is affected by gestational disease, congenital heart disease, post-cardiac surgery, pulmonary hypertension, and infectious diseases, which promote MAT via inflammation, redistribution of the autonomic nervous system, and abnormal ion channels. However, the pathogenesis of MAT needs to be explored. This review is aimed to summarize and analyze the pathogenesis in pediatric MAT.
Collapse
Affiliation(s)
- Huaiyang Chen
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| | - Yingxu Ma
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Haiyan Luo
- Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| | - Zhi Chen
- Hunan Children's Hospital, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Academy of Pediatrics, University of South China, Changsha, China.,Hunan Children's Hospital, Changsha, China
| |
Collapse
|
13
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
14
|
Wei W, Chen S, Huang J, Tong Y, Zhang J, Qiu X, Zhang W, Chen H, Huang R, Cai J, Tu M. Serum Legumain Is Associated with Peripheral Artery Disease in Patients with Type 2 Diabetes. J Diabetes Res 2021; 2021:5651469. [PMID: 34961842 PMCID: PMC8710170 DOI: 10.1155/2021/5651469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Legumain is related to carotid atherosclerotic plaques and may be a new biomarker of carotid atherosclerosis. However, the association between legumain and peripheral artery disease (PAD) of lower extremity has been less studied. This study is aimed at exploring the potential link between legumain and PAD in patients with type 2 diabetes mellitus (T2DM). METHODS A cross-sectional study was conducted on 483 hospitalized T2DM patients. The serum legumain level was measured by a sandwich enzyme-linked immunosorbent assay. PAD was evaluated by color Doppler sonography. The association between legumain and PAD was tested by logistic regression. The predictive power of legumain for PAD was evaluated with the receiver-operating-characteristic (ROC) curve. RESULTS Overall, 201 (41.6%) patients suffered from PAD. Patients with PAD had significantly higher serum legumain level than those without PAD [11.9 (6.3, 17.9) μg/L vs. 7.6 (3.2, 14.2) μg/L, p < 0.001]. Logistic regression showed that a higher serum legumain level was independently associated with a greater risk of PAD in T2DM patients [adjusted odds ratio (aOR): 1.03; 95% confidence interval (CI): 1.01-1.06]. The area under the ROC curve was 0.634 (95% CI, 0.585 to 0.684). CONCLUSION High serum legumain level was significantly correlated with an increased risk of PAD in T2DM patients.
Collapse
Affiliation(s)
- Wen Wei
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shujin Chen
- Department of Ultrasonography, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jianqing Huang
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Yan Tong
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jushun Zhang
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Xiuping Qiu
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Wenrui Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hangju Chen
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Rong Huang
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jin Cai
- Department of Endocrinology, Fujian Longyan First Hospital, Fujian Medical University, Fuzhou 350004, China
| | - Mei Tu
- Department of Endocrinology, Fujian Longyan First Hospital, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| |
Collapse
|
15
|
Rong T, He M, Hua Y, Chen D, Chen M. Associations of Interleukin 10, Matrix Metallopeptidase 9, and Legumain with Blood Pressure Variability and Neurologic Outcomes in Patients with Ischemic Stroke. Int J Gen Med 2020; 13:1595-1602. [PMID: 33364822 PMCID: PMC7751781 DOI: 10.2147/ijgm.s285003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Timely diagnosis and treatment are crucial to improve prognosis of ischemic stroke, making exploring factors associated with prognosis essential. Blood pressure variability (BPV) was reported to be associated with neurologic outcome, and basic researches on cardiovascular diseases found abnormal expression patterns of several factors including interleukin 10 (IL-10), matrix metallopeptidase 9 (MMP-9), and legumain which might be related to abnormal BPV but yet to prove in ischemic stroke. The study aimed to investigate whether IL-10, MMP-9, and legumain are associated with BPV and neurologic outcome of patients with ischemic stroke. Patients and Methods Newly diagnosed ischemic stroke patients admitted to the department of neurology, Shidong Hospital of Yangpu District in Shanghai between July 2017 and January 2019 were enrolled. IL-10, MMP-9, and legumain were detected and BPV was assessed within 72 hours after admission. All the patients were followed for neurologic outcomes at discharge and 6 months after admission based on the Modified Rankin Scale (MRS). Correlations of IL-10, MMP-9, and legumain with BPV were examined by Spearman correlation coefficient, and their associations with neurologic outcomes were evaluated by multivariable linear regression. Results A total of 349 patients with ischemic stroke were enrolled with an average age of 72.97±11.47 years. Compared with non-progressive ischemic stroke, patients with progressive ischemic stroke had significantly higher IL-10, MMP-9, and legumain on admission. MMP-9 was found to be positively correlated with BPV while no significant correlation was found for IL-10 and legumain with BPV. MMP-9 was associated with progressive ischemic stroke [β=0.23 (95% CI 0.11-0.35) per SD increase for MRS at discharge, and β=0.32 (95% CI 0.20-0.43) per SD increase for MRS at 6 months after admission]. Conclusion Increased MMP-9 was associated with increased BPV and progressive ischemic stroke for patients with ischemic stroke, which might partially explain the effect of BPV on neurologic outcomes.
Collapse
Affiliation(s)
- Tianyi Rong
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| | - Min He
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| | - Yun Hua
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| | - Deyan Chen
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| | - Miao Chen
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200438, People's Republic of China
| |
Collapse
|
16
|
Gregersen I, Michelsen AE, Lunde NN, Åkerblom A, Lakic TG, Skjelland M, Ryeng Skagen K, Becker RC, Lindbäck J, Himmelmann A, Solberg R, Johansen HT, James SK, Siegbahn A, Storey RF, Kontny F, Aukrust P, Ueland T, Wallentin L, Halvorsen B. Legumain in Acute Coronary Syndromes: A Substudy of the PLATO (Platelet Inhibition and Patient Outcomes) Trial. J Am Heart Assoc 2020; 9:e016360. [PMID: 32809893 PMCID: PMC7660754 DOI: 10.1161/jaha.120.016360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The cysteine protease legumain is increased in patients with atherosclerosis, but its causal role in atherogenesis and cardiovascular disease is still unclear. The aim of the study was to investigate the association of legumain with clinical outcome in a large cohort of patients with acute coronary syndrome. Methods and Results Serum levels of legumain were analyzed in 4883 patients with acute coronary syndrome from a substudy of the PLATO (Platelet Inhibition and Patient Outcomes) trial. Levels were analyzed at admission and after 1 month follow-up. Associations between legumain and a composite of cardiovascular death, spontaneous myocardial infarction or stroke, and its individual components were assessed by multivariable Cox regression analyses. At baseline, a 50% increase in legumain level was associated with a hazard ratio (HR) of 1.13 (95% CI, 1.04-1.21), P=0.0018, for the primary composite end point, adjusted for randomized treatment. The association remained significant after adjustment for important clinical and demographic variables (HR, 1.10; 95% CI, 1.02-1.19; P=0.013) but not in the fully adjusted model. Legumain levels at 1 month were not associated with the composite end point but were negatively associated with stroke (HR, 0.62; 95% CI, 0.44-0.88; P=0.0069), including in the fully adjusted model (HR, 0.57; 95% CI, 0.37-0.88; P=0.0114). Conclusions Baseline legumain was associated with the primary outcome in patients with acute coronary syndrome, but not in the fully adjusted model. The association between high levels of legumain at 1 month and decreased occurrence of stroke could be of interest from a mechanistic point of view, illustrating the potential dual role of legumain during atherogenesis and acute coronary syndrome. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00391872.
Collapse
Affiliation(s)
- Ida Gregersen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| | - Ngoc Nguyen Lunde
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Axel Åkerblom
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Tatevik G Lakic
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Mona Skjelland
- Department of Neurology Oslo University Hospital Rikshospitalet Oslo Norway
| | | | - Richard C Becker
- Division of Cardiovascular Health and Disease Heart, Lung and Vascular Institute Academic Health Center Cincinnati OH
| | - Johan Lindbäck
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | | | - Rigmor Solberg
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Harald T Johansen
- Section of Pharmacology and Pharmaceutical Biosciences Department of Pharmacy University of Oslo Norway
| | - Stefan K James
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Frederic Kontny
- Department of Cardiology Stavanger University Hospital Stavanger Norway.,Drammen Heart Center Drammen Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,Section of Clinical Immunology and Infectious Diseases Oslo University Hospital Rikshospitalet Oslo Norway.,K.G. Jebsen TREC The Faculty of Health Sciences The Arctic University of Tromsø Tromsø Norway
| | - Thor Ueland
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway.,K.G. Jebsen TREC The Faculty of Health Sciences The Arctic University of Tromsø Tromsø Norway
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Bente Halvorsen
- Research Institute for Internal Medicine Oslo University Hospital Rikshospitalet Oslo Norway.,Institute of Clinical Medicine Faculty of Medicine University of Oslo Norway
| |
Collapse
|
17
|
Watanabe T, Sato K. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutr Metab Cardiovasc Dis 2020; 30:889-895. [PMID: 32409274 DOI: 10.1016/j.numecd.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention with respect to atherosclerosis, since both KP-10 and GPR54 are expressed at high levels in atheromatous plaques and restenotic lesions after wire-injury. The present review introduces the emerging roles of the KP-10/GPR54 system in atherosclerosis. DATA SYNTHESIS KP-10 suppresses migration and proliferation of human umbilical vein endothelial cells (HUVECs), and induces senescence in HUVECs. KP-10 increases adhesion of human monocytes to HUVECs. KP-10 also stimulates expression of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin genes in HUVECs. KP-10 enhances oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 suppresses angiotensin II-induced migration and proliferation, however, it enhances apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1/2, p38, Bax, and caspase-3. Four-week-infusion of KP-10 into Apoe-/- mice accelerates development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation, also, it decreases intraplaque vascular smooth muscle cell content. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely attenuated upon infusion of P234, a GPR54 antagonist, in Apoe-/- mice. CONCLUSION These findings suggest that KP-10 may contribute to acceleration of progression and to the instability of atheromatous plaques, leading to rupture of plaques. This GPR54 antagonist may be useful for the prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan.
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
18
|
de Jager SC, Hoefer IE. Legumain in cardiovascular disease: Culprit or ally? Atherosclerosis 2020; 296:66-67. [PMID: 32014264 DOI: 10.1016/j.atherosclerosis.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Saskia C de Jager
- Laboratory for Experimental Cardiology, UMC Utrecht, Utrecht, the Netherlands
| | - Imo E Hoefer
- Central Diagnostic Laboratory, UMC Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Lunde NN, Bosnjak T, Solberg R, Johansen HT. Mammalian legumain – A lysosomal cysteine protease with extracellular functions? Biochimie 2019; 166:77-83. [DOI: 10.1016/j.biochi.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
|
20
|
Fang Y, Duan C, Chen S, Xie P, Ai W, Wang L, Liu R, Fang H. Increased Legumain/Smad3 expression in atherosclerotic plaque of rat thoracic aorta. Biomed Pharmacother 2019; 119:109353. [PMID: 31521890 DOI: 10.1016/j.biopha.2019.109353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the role of legumain in the formation and stability of atherosclerotic plaque, as well as to explore the association between legumain with Smad3 pathway in a rat atherosclerosis model. METHODS Rat with thoracic aorta atherosclerosis was established and received treatment with statin (n = 15 each) or controls (n = 10). Serum level of legumain was determined by enzyme-linked immunosorbent assay. Legumain and Smad3 aortic expression levels were assessed by immunohistochemistry and fluorescence microscopy. Protein and mRNA levels were analyzed using Western blot analysis and reverse transcriptase coupled polymerase chain reaction, respectively. RESULTS The atherosclerotic group showed higher serum legumain level than control and statin group. Expression of legumain and Smad3 in macrophages and foam cells was increased in atherosclerotic group compared to control and statin group. The protein and mRNA levels of legumain and Smad3 were significantly attenuated by statin treatment (p < 0.05). For all groups, legumain expression was correlated linearly with Smad3 at mRNA (coefficient: 0.94) and protein (coefficient: 097) level. CONCLUSIONS Legumain and Smad3 expression is highly expressed in mainly atherosclerotic plaque macrophages and linearly related, which is attenuated by statin therapy, suggesting legumain a potential Smad3 pathway-related marker of atherosclerosis.
Collapse
Affiliation(s)
- Yeqing Fang
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China; Shenzhen Nanshan Medical Group Headquarters, Shenzhen, 518052, China
| | - Chengcheng Duan
- Department of Cardiology, Shajing Hospital, Guangzhou Medical University, Shenzhen, 518104, China
| | - Shaoyuan Chen
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China
| | - Peiyi Xie
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China
| | - Wen Ai
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China
| | - Lei Wang
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China
| | - Rongzhi Liu
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China
| | - Hongcheng Fang
- Department of Cardiology, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen, 518052, China.
| |
Collapse
|