1
|
Kul Köprülü T, Balkan J, Gezer B, Erkal Çam B. Glycolytic pathway analysis and gene expression profiles of combination of aloe vera and paclitaxel on non-small cell lung cancer and breast cancer. Med Oncol 2024; 41:277. [PMID: 39400682 DOI: 10.1007/s12032-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
The purpose of this study is to enhance the effectiveness of known anticancer medications using natural compounds. The study investigated the impact of combining AVE with PAX on non-small cell lung cancer (A549) and breast cancer (MCF7). In this study, A549 and MCF7 cells were treated with PAX (5 μM), AVE (24 μg/mL), and a combination of PAX and AVE (5 μM + 24 μg/mL). The glucose consumption rates of the cells were determined by extracellular acidification rate (ECAR) thanks to the SeaHorse XFe24 instrument. In addition, gene expression profiles were determined by performing Total RNA sequencing with the Novaseq 6000 instrument. Finally, the expressions of GAPDH, BAX, and BCL-2 genes involved in the apoptotic pathway were detected by RT-qPCR. The combined application of PAX and AVE reduced the ECAR value in both cell lines. According to the RT-qPCR results, the expression level of the apoptotic gene BAX increased in both cell lines (p < 0.05). Total RNA sequencing revealed that the combination effects of PAX and AVE play a role in the ribosome mechanism, thereby affecting the protein translation system in MCF7 while apoptosis and cell cycle have come to the forefront in A549.
Collapse
Affiliation(s)
- Tuğba Kul Köprülü
- Experimental Medicine Application and Research Center, Validebağ Research Park, University of Health Sciences, Altunizade, Kalfaçeşme Street, Üsküdar, 34622, Istanbul, Turkey.
- Division of Medical Laboratory Techniques, Department of Medical Services and Techniques, University of Health Sciences, Istanbul, Turkey.
| | - Jülide Balkan
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Bahar Gezer
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Burçin Erkal Çam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
2
|
Zhao K, Dai P, Xiao P, Pan Y, Liao L, Liu J, Yang X, Li Z, Ma Y, Liu J, Zhang Z, Li S, Zhang H, Chen S, Cai F, Tan Z. Automated segmentation and source prediction of bone tumors using ConvNeXtv2 Fusion based Mask R-CNN to identify lung cancer metastasis. J Bone Oncol 2024; 48:100637. [PMID: 39430914 PMCID: PMC11488409 DOI: 10.1016/j.jbo.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer, which is a leading cause of cancer-related deaths worldwide, frequently metastasizes to the bones, significantly diminishing patients' quality of life and complicating treatment strategies. This study aims to develop an advanced 3D Mask R-CNN model, enhanced with the ConvNeXt-V2 backbone, for the automatic segmentation of bone tumors and identification of lung cancer metastasis to support personalized treatment planning. Data were collected from two hospitals: Center A (106 patients) and Center B (265 patients). The data from Center B were used for training, while Center A's dataset served as an independent external validation set. High-resolution CT scans with 1 mm slice thickness and no inter-slice gaps were utilized, and the regions of interest (ROIs) were manually segmented and validated by two experienced radiologists. The 3D Mask R-CNN model achieved a Dice Similarity Coefficient (DSC) of 0.856, a sensitivity of 0.921, and a specificity of 0.961 on the training set. On the test set, it achieved a DSC of 0.849, a sensitivity of 0.911, and a specificity of 0.931. For the classification task, the model attained an AUC of 0.865, an accuracy of 0.866, a sensitivity of 0.875, and a specificity of 0.835 on the training set, while achieving an AUC of 0.842, an accuracy of 0.836, a sensitivity of 0.847, and a specificity of 0.819 on the test set. These results highlight the model's potential in improving the accuracy of bone tumor segmentation and lung cancer metastasis detection, paving the way for enhanced diagnostic workflows and personalized treatment strategies in clinical oncology.
Collapse
Affiliation(s)
- Ketong Zhao
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
- Health Management Center, West China Lecheng Hospital of Sichuan University, Qionghai City 571400, Hainan Province, China
| | - Ping Dai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Ping Xiao
- Department of Otorhinolaryngology, Shenzhen Children’s Hospital, Shenzhen 518055, Guangdong Province, China
| | - Yuhang Pan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Litao Liao
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Junru Liu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Xuemei Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhenxing Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Yanjun Ma
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Jianxi Liu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhengbo Zhang
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi 214071, Jiangsu Province, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, Guangdong Province, China
| | - Hailong Zhang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Sheng Chen
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Feiyue Cai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
3
|
Geng W, An J, Dong K, Zhang H, Zhang X, Liu Y, Xu R, Liu Y, Huang X, Song H, Yan W, Sun A, He F, Wang J, Gao H, Tian C. ZNF8 Orchestrates with Smad3 to Promote Lung Metastasis by Recruiting SMYD3 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404904. [PMID: 39225541 PMCID: PMC11515916 DOI: 10.1002/advs.202404904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Most deaths in breast cancer patients are attributed to metastasis, and lung metastasis is associated with a particularly poor prognosis; therefore it is imperative to identify potential target for intervention. The transforming growth factor-β (TGF-β) pathway plays a vital role in breast cancer metastasis, in which Smad3 is the key mediator and performs specific functions by binding with different cofactors. However, Smad3 cofactors involved in lung metastasis have not yet been identified. This study first establishes the interactome of Smad3 in breast cancer cells and identifies ZNF8 as a novel Smad3 cofactor. Furthermore, the results reveal that ZNF8 is closely associated with breast cancer lung metastasis prognosis, and specifically facilitates TGF-β pathway-mediated breast cancer lung metastasis by participating in multiple processes. Mechanistically, ZNF8 binds with Smad3 to enhance the H3K4me3 modification and promote the expression of lung metastasis signature genes by recruiting SMYD3. SMYD3 inhibition by BCI121 effectively prevents ZNF8-mediated lung metastasis. Overall, the study identifies a novel cofactor of TGF-β/Smad3 that promotes lung metastasis in breast cancer and introduces potential therapeutic strategies for the early management of breast cancer lung metastasis.
Collapse
Affiliation(s)
- Wenwen Geng
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Junhua An
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Ke Dong
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Hailu Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Xiuyuan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yuchen Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Rong Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Yifan Liu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Xiaofen Huang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haiyun Song
- Department of PathologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Wei Yan
- The First Medical Center of Chinese PLA General HospitalBeijing100036China
| | - Aihua Sun
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Fuchu He
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| | - Jian Wang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
| | - Haidong Gao
- Department of Breast SurgeryQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
- Laboratory of OncologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandong266000China
| | - Chunyan Tian
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
- College of Life SciencesHebei UniversityBaodingHebei071002China
- Research Unit of Proteomics Dirven Cancer Precision MedicineChinese Academy of Medical SciencesBeijing102206China
| |
Collapse
|
4
|
Bhat V, Piaseczny M, Goodale D, Patel U, Sadri A, Allan AL. Lung-derived soluble factors support stemness/plasticity and metastatic behaviour of breast cancer cells via the FGF2-DACH1 axis. Clin Exp Metastasis 2024; 41:717-731. [PMID: 38581619 PMCID: PMC11499378 DOI: 10.1007/s10585-024-10284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Patients with triple-negative breast cancer (TNBC) have an increased propensity to develop lung metastasis. Our previous studies demonstrated that stem-like ALDHhiCD44+ breast cancer cells interact with lung-derived soluble factors, resulting in enhanced migration and lung metastasis particularly in TNBC models. We have also observed that the presence of a primary TNBC tumor can 'prime' the lung microenvironment in preparation for metastasis. In this study, we hypothesized that soluble lung-derived factors secreted in the presence of a primary TNBC tumor can influence stemness/plasticity of breast cancer cells. Using an ex vivo pulmonary metastasis assay (PuMA), we observed that the lung microenvironment supports colonization and growth of ALDHhiCD44+ TNBC cells, potentially via interactions with lung-derived FGF2. Exposure of TNBC cells to lung-conditioned media (LCM) generated from mice bearing TNBC primary tumors (tbLCM) significantly enhanced the proportion of ALDHhiCD44+ cells compared to control or LCM from tumor-naïve mice (tnLCM). Further analysis using a human cancer stem cell qPCR array revealed that, relative to tnLCM or control, exposure of TNBC cells to tbLCM leads to downregulation of the transcription factor and putative tumor suppressor Dachshund homolog 1 (DACH1), a downstream regulator of FGF2. In addition, inhibition of DACH1 using siRNA or treatment with recombinant FGF2 enhanced the ALDHhiCD44+ phenotype. Taken together, our findings suggest that the FGF2-DACH1 signaling axis supports stemness/plasticity of TNBC cells in the lung microenvironment and lays the foundation for future evaluation of FGF2 as a potential novel therapeutic target for treatment or prevention of breast cancer metastasis to the lung.
Collapse
Affiliation(s)
- Vasudeva Bhat
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - Matthew Piaseczny
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Urvi Patel
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Ashkan Sadri
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
5
|
Zuo R, Gong J, Gao X, Nepovimova E, Zhang J, Jiang S, Kuca K, Wu W, Guo D. Injectable nano-in situ-thermosensitive-hydrogels based on halofuginone and silver for postoperative treatment against triple-negative breast cancer. Int J Pharm 2024; 661:124384. [PMID: 38917957 DOI: 10.1016/j.ijpharm.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/27/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China; Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Du NN, Shao SJ, Feng JM, Wan H, Wu XQ. Evaluation of the clinical efficacy of Ru'ai Shuhou recipe for the prevention of lung metastases from breast cancer: a retrospective study based on propensity score matching. Front Pharmacol 2024; 15:1406862. [PMID: 39156102 PMCID: PMC11327059 DOI: 10.3389/fphar.2024.1406862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Background Breast cancer lung metastasis occurs at a high rate and at an early stage, and is the leading cause of death in breast cancer patients. The aim of this study was to investigate the effect of Ru'ai Shuhou Recipe (RSR) intervention on the occurrence of recurrent metastases, especially lung metastases, in postoperative patients with breast cancer. Materials and Methods A retrospective cohort study was implemented at Shuguang Hospital of Shanghai University of Traditional Chinese Medicine in China between January 2014 to January 2019. Female patients were included according to the propensity score matching (PSM) method and balanced on the basis of general and clinical information such as age, body mass index, neo-adjuvant therapy, and surgical approach. Patients with pathological diagnosis of breast cancer were included in this study. Breast cancer patients were divided into exposed and non-exposed groups according to whether they took RSR-based botanical drugs after surgery. Kaplan-Meier survival analysis and Cox survival analysis to explore the relationship between RSR and 5-year disease-free survival and incidence of lung metastases in breast cancer patients after surgery. Results 360 female patients were assessed and 190 patients were included in the study after PSM (95 in each of the exposed and non-exposed groups). Of the 190 patients after PSM, 55.79% were over 50 years of age. The mean follow-up time was 60.55 ± 14.82 months in the exposed group and 57.12 ± 16.37 months in the non-exposed group. There was no significant baseline characteristics difference between two groups. Kaplan-Meier analysis showed that the 5-year incidence of lung metastases was significantly lower in the exposed group, and the disease-free survival of patients was significantly longer. Cox univariate and multivariate analysis showed that neoadjuvant chemotherapy and lymph node metastasis were independent risk factors for the development of breast cancer lung metastasis, with risk ratios of 17.188 and 5.812, while RSR treatment was an independent protective factor against the development of breast cancer lung metastasis, with a risk ratio of 0.290. Conclusion Standard biomedical treatment combined with RSR intervention can better prevent breast cancer recurrence and metastasis, reduce the incidence of lung metastasis in patients, and improve long-term prognosis.
Collapse
Affiliation(s)
| | | | | | - Hua Wan
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Qing Wu
- Breast Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yan Y, Su L, Huang S, He Q, Lu J, Luo H, Xu K, Yang G, Huang S, Chi H. Circadian rhythms and breast cancer: unraveling the biological clock's role in tumor microenvironment and ageing. Front Immunol 2024; 15:1444426. [PMID: 39139571 PMCID: PMC11319165 DOI: 10.3389/fimmu.2024.1444426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shanshan Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qihui He
- Department of Paediatrics, Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Shen H, Du L, Xu C, Wang B, Zhou Q, Ye R, Kwok RTK, Lam JWY, Xing G, Sun J, Liu TM, Tang BZ. A Near-Infrared-II Excitable Pyridinium Probe with 1000-Fold ON/OFF Ratio for γ-Glutamyltranspeptidase and Cancer Detection. ACS NANO 2024. [PMID: 39058791 DOI: 10.1021/acsnano.4c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.
Collapse
Affiliation(s)
- Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Lidong Du
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Changhuo Xu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials, Engineering, University of Macau, Macau 999078, China
| | - Qingqing Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials, Engineering, University of Macau, Macau 999078, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Tzu-Ming Liu
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
9
|
Huang F, Dai Z, Yu J, Wang K, Chen C, Chen D, Zhang J, Zhao J, Li M, Zhang W, Li X, Qi Y, Wang Y. RBM7 deficiency promotes breast cancer metastasis by coordinating MFGE8 splicing switch and NF-kB pathway. eLife 2024; 13:RP95318. [PMID: 38995840 PMCID: PMC11245308 DOI: 10.7554/elife.95318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.
Collapse
Affiliation(s)
- Fang Huang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhenwei Dai
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinmiao Yu
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mei Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- Department of Prosthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Soochow University Cancer Institute, Suzhou, China
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Li W, Guo Y, Xu Z, Li F, Dong Y, Xu F. Notoginsenoside R1 (NGR1) regulates the AGE-RAGE signaling pathway by inhibiting RUNX2 expression to accelerate ferroptosis in breast cancer cells. Aging (Albany NY) 2024; 16:10446-10461. [PMID: 38885076 PMCID: PMC11236304 DOI: 10.18632/aging.205940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/10/2024] [Indexed: 06/20/2024]
Abstract
Ferroptosis is a new way of cell death, and stimulating the process of cell ferroptosis is a new strategy to treat breast cancer. NGR1 has good anti-cancer activity and is able to slow the progression of breast cancer. However, NGR1 has not been reported in the field related to ferroptosis. By searching the online database for potential targets of NGR1 and the breast cancer disease database, among 11 intersecting genes we focused on Runt-related transcription factor 2 (RUNX2), which is highly expressed in breast cancer, and KEGG pathway enrichment showed that the intersecting genes were mainly enriched in the AGE (advanced glycosylation end products)-RAGE (receptor of AGEs) signaling pathway. After that, we constructed overexpression and down-regulation breast cancer cell lines of RUNX2 in vitro, and tested whether NGR1 treatment induced ferroptosis in breast cancer cells by regulating RUNX2 to inhibit the AGE-RAGE signaling pathway through phenotyping experiments of ferroptosis, Western blot experiments, QPCR experiments, and electron microscopy observation. The results showed that NGR1 was able to inhibit the expression level of RUNX2 and suppress the AGE/PAGE signaling pathway in breast cancer cells. NGR1 was also able to promote the accumulation of Fe2+ and oxidative damage in breast cancer cells by regulating RUNX2 and then down-regulating the expression level of GPX4, FIH1 and up-regulating the expression level of ferroptosis-related proteins such as COX2, ACSL4, PTGS2 and NOX1, which eventually led to the ferroptosis of breast cancer cells.
Collapse
Affiliation(s)
- Wenxin Li
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yan Guo
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhuangyu Xu
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Fubo Li
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yi Dong
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Fan Xu
- Departments of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
11
|
Miao L, Kang Y, Zhang XF. Nanotechnology for the theranostic opportunity of breast cancer lung metastasis: recent advancements and future challenges. Front Bioeng Biotechnol 2024; 12:1410017. [PMID: 38882636 PMCID: PMC11176448 DOI: 10.3389/fbioe.2024.1410017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Lung metastasis of breast cancer is rapidly becoming a thorny problem in the treatment of patients with breast cancer and an obstacle to long-term survival. The main challenges of treatment are the absence of therapeutic targets and drug resistance, which promotes the development of nanotechnology in the diagnosis and treatment process. Taking advantage of the controllability and targeting of nanotechnology, drug-targeted delivery, controlled sustained release, multi-drug combination, improved drug efficacy, and reduced side effects can be realized in the process of the diagnosis and treatment of metastatic breast cancer (MBC). Several nanotechnology-based theranostic strategies have been investigated in breast cancer lung metastases (BCLM): targeted drug delivery, imaging analysis, immunotherapy, gene therapy, and multi-modality combined therapy, and some clinical applications are in the research phase. In this review, we present current nanotechnology-based diagnosis and treatment approaches for patients of incurable breast cancer with lung metastases, and we hope to be able to summarize more effective and promising nano-drug diagnosis and treatment systems that aim to improve the survival of patients with advanced MBC. We describe nanoplatform-based experimental studies and clinical trials targeting the tumor and the tumor microenvironment (TME) for BCLM to obtain more targeted treatment and in the future treatment steps for patients to provide a pioneering strategy.
Collapse
Affiliation(s)
- Lin Miao
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yue Kang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Feng Zhang
- Departemnt of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
12
|
Zhou DD, Zhai XT, Zhang LW, Xie ZH, Wang Y, Zhen YS, Gao RJ, Miao QF. A new TROP2-targeting antibody-drug conjugate shows potent antitumor efficacy in breast and lung cancers. NPJ Precis Oncol 2024; 8:94. [PMID: 38654141 DOI: 10.1038/s41698-024-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
14
|
Duan Y, Zhang W, Ouyang Y, Yang Q, Zhang Q, Zhao S, Chen C, Xu T, Zhang Q, Ran H, Liu H. Proton Sponge Nanocomposites for Synergistic Tumor Elimination via Autophagy Inhibition-Promoted Cell Apoptosis and Macrophage Repolarization-Enhanced Immune Response. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17285-17299. [PMID: 38539044 DOI: 10.1021/acsami.4c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.
Collapse
Affiliation(s)
- Yifan Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yi Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qiang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qiuye Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ting Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
15
|
Zhang T, Guo Y, He X, Hou M, Wang L, An R, Gao L. Effect of lung metastasis on the treatment and prognosis of patients with gestational trophoblastic neoplasia: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2024; 103:636-644. [PMID: 38282348 PMCID: PMC10993365 DOI: 10.1111/aogs.14789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Gestational trophoblastic neoplasia (GTN) is a highly invasive tumor, mainly spreading to the lungs. However, lung metastasis in GTN is usually not considered as an adverse prognostic factor. Therefore, the aim of this study was to summarize the results of previous studies and evaluate the effects of lung metastasis on the treatment and prognosis of GTN. MATERIAL AND METHODS The study was prospectively registered in PROSPERO (CRD42023372371). Electronic databases including PubMed, Embase, the Cochrane Library, Chinese National Knowledge Infrastructure, Wanfang, and China Biomedical Literature Database were used for a systematical search of relevant studies published up to November 21, 2022. The observational studies reporting the clinical outcomes of GTN patients with and without lung metastasis were selected. The incidences of resistance, relapse, and mortality of GTN patients were extracted and successively grouped based on the presence of lung metastasis. The pooled relative risks (RRs) and 95% confidence interval (95% CI) of the eligible studies were calculated. The qualities of included studies were assessed with the Newcastle-Ottawa Scale and the certainty of evidence was graded based on the GRADE. The meta-analysis was performed using Stata 12.0 and GradePro software. RESULTS Five publications with 3629 GTN patients were included. The meta-analysis revealed that the GTN with lung metastasis was strongly correlated with first-line chemoresistance (pooled RR = 1.40, 95% CI: 1.22 to 1.61, p < 0.001), recurrence (pooled RR = 3.03, 95% CI: 1.21 to 7.62, p = 0.018), and disease-specific death (pooled RR = 22.11, 95% CI: 3.37 to 145.08, p = 0.001). Ethnicity was also an important factor and Caucasian GTN patients with lung metastasis showed a higher risk of recurrence as revealed by the subgroup analysis (pooled RR = 5.10, 95% CI: 2.38 to 10.94, p < 0.001). CONCLUSIONS GTN patients with lung metastasis exhibited a higher risk of chemoresistance, relapse, and disease-specific death. Patients with lung metastasis among the Caucasian population had a higher risk of recurrence than Asian populations. Therefore, the presence of lung metastases might be considered as a high-risk factor for prognosis of GTN and deserves more attention in the choice of first-line chemotherapy regimens and follow-up.
Collapse
Affiliation(s)
- Taohong Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Ying Guo
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Xinyi He
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Meng Hou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Lisha Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Ruifang An
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| | - Li Gao
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
16
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
17
|
Li J, Liu Z, Wu X, Lee SMY, Seto SW, Zhang J, Zhou GC, Leung GPH. Anti-metastatic effects of AGS-30 on breast cancer through the inhibition of M2-like macrophage polarization. Biomed Pharmacother 2024; 172:116269. [PMID: 38367549 DOI: 10.1016/j.biopha.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 μM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Pharmacy, Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
18
|
Baek JW, Nam AR, Kim K, Kim PH. Dualistic Effects of PRKAR1A as a Potential Anticancer Target in Cancer Cells and Cancer-Derived Stem Cells. Int J Mol Sci 2024; 25:2876. [PMID: 38474121 DOI: 10.3390/ijms25052876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The integration of innovative medical technologies and interdisciplinary collaboration could improve the treatment of cancer, a globally prevalent and often deadly disease. Despite recent advancements, current cancer therapies fail to specifically address recurrence and target cancer stem cells (CSCs), which contribute to relapse. In this study, we utilized three types of cancer cells, from which three types of CSCs were further derived, to conduct a proteomic analysis. Additionally, shared cell surface biomarkers were identified as potential targets for a comprehensive treatment strategy. The selected biomarkers were evaluated through short hairpin RNA treatment, which revealed contrasting functions in cancer cells and CSCs. Knockdown of the identified proteins revealed that they regulate the epithelial-mesenchymal transition (EMT) and stemness via the ERK signaling pathway. Resistance to anticancer agents was consequently reduced, ultimately enhancing the overall anticancer effects of the treatment. Additionally, the significance of these biomarkers in clinical patient outcomes was confirmed using bioinformatics. Our study suggests a novel cancer treatment strategy that addresses the limitations of current anticancer therapies.
Collapse
Affiliation(s)
- Joong-Won Baek
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - A-Reum Nam
- Department of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
19
|
Li H, Liu R, Long C, Teng Y, Liu Y. A novel machine learning prediction model for metastasis in breast cancer. Cancer Rep (Hoboken) 2024; 7:e2006. [PMID: 38425238 PMCID: PMC10905156 DOI: 10.1002/cnr2.2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis is the common cause of high mortality. Conventional prognostic criteria cannot accurately predict the BC metastasis risk. The machine learning technologies can overcome the disadvantage of conventional models. AIM We developed a model to predict BC metastasis using the random survival forest (RSF) method. METHODS Based on demographic data and routine clinical data, we used RSF-recursive feature elimination to identify the predictive variables and developed a model to predict metastasis using RSF method. The area under the receiver operating characteristic curve (AUROC) and Kaplan-Meier survival (KM) analyses were plotted to validate the predictive effect when C-index was plotted to assess the discrimination and Brier scores was plotted to assess the calibration of the predictive model. RESULTS We developed a metastasis prediction model comprising three variables (pathological stage, aspartate aminotransferase, and neutrophil count) selected by RSF-recursive feature elimination. The model was reliable and stable when assessed by the AUROC (0.932 in training set and 0.905 in validation set) and KM survival analyses (p < .0001). The C-indexes (0.959) and Brier score (0.097) also validated the good predictive ability of this model. CONCLUSIONS This model relies on routine data and examination indicators in real-time clinical practice and exhibits an accurate prediction performance without increasing the cost for patients. Using this model, clinicians can facilitate risk communication and provide precise and efficient individualized therapy to patients with breast cancer.
Collapse
Affiliation(s)
- Huan Li
- Department of Thyroid and Breast SurgeryThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Ren‐Bin Liu
- Department of Thyroid and Breast SurgeryThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chen‐meng Long
- Department of Breast SurgeryLiuzhou Women and Children's Medical CenterLiuzhouChina
| | - Yuan Teng
- Department of Breast SurgeryGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Yu Liu
- Department of Thyroid and Breast SurgeryThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
20
|
Liu S, Zhi W, Zhang L. Efficacy of anlotinib in Chinese patients with metastatic breast cancer: A retrospective observational study. J Cell Mol Med 2024; 28:e18008. [PMID: 37891706 PMCID: PMC10902571 DOI: 10.1111/jcmm.18008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Anlotinib, a multitarget tyrosine kinase inhibitor, can inhibit tumour angiogenesis proliferation, metastasis, promote vascular normalization, increase T cell and NK cell activity and infiltration, remodel tumour microenvironment and synergistic immune enhancement. Our study aimes to evaluate the efficacy of anlotinib in the treatment of advanced metastatic breast cancer (MBC) after multiple lines of therapy. Patients included were treated with anlotinib for advanced MBC in the Affiliated Cancer Hospital of Zhengzhou University from 1 January 2019 to 30 June 2023. The objective remission rate, disease-free progression survival and adverse reactions were analysed. We compared and analysed the efficacy of anlotinib in the treatment of advanced metastatic breast cancer, which showed that ORR was 23.6% and DCR was 69.1%. The DCR of monotherapy was 66.7% and that of combination therapy was 69.6% in MBC patients. The combination therapy, combined with chemotherapy had the best effect (79.3%), combined with immunotherapy came second. In addition, the DCR (88.9%) was higher in MBC patients having received prior antiangiogenic therapy. According to the Kaplan-Meier (K-M) survival estimate analysis, the mPFS was 4.17 months (95% CI, 1.758-6.582 months) in Her-2 positive MBC patients, and 7.83 months (95% CI, 2.416-9.104) in Her-2 negative MBC patients. The mPFS was 5.76 months (95% CI, 3.231-8.298 m) in HR positive MBC patients, 7.83 months (95% CI, 3.182-12.478 m) in TNBC patients. Fatigue (20.0%), hypertension (21.8%) and liver dysfunction (18.2%) were common adverse reactions, followed by bone marrow suppression (16.4%), anorexia (14.5%), hypothyroidism (14.5%) and diarrhoea (14.5%). Altogether, Anlotinib monotherapy or combination therapy provides a viable third (or above)-line therapeutic strategy in patients with metastatic breast cancer. The adverse reactions of anlotinib are well tolerated and controllable.
Collapse
Affiliation(s)
- Shuochuan Liu
- Department of Breast disease, Henan Breast Cancer CenterThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouHenan ProvinceChina
| | - Wenxiang Zhi
- Deprtment of Ultrasonography, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lu Zhang
- Department of Combine Traditional Chinese & WesternThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouHenan ProvinceChina
| |
Collapse
|
21
|
AboulFotouh K, Almanza G, Yu YS, Joyce R, Davenport GJ, Cano C, Williams Iii RO, Zanetti M, Cui Z. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. Int J Pharm 2024; 651:123757. [PMID: 38160992 DOI: 10.1016/j.ijpharm.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Yu-Sheng Yu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Robert Joyce
- FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Gregory J Davenport
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Chris Cano
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Qian X, Xiao M, Liu Y, Li Q, Wang J, Luo Y, Ma F, Xu B, Zhang P. Clinicopathological and survival analysis of primary spindle cell carcinoma of the breast in Chinese patients. Am J Cancer Res 2024; 14:243-252. [PMID: 38323286 PMCID: PMC10839303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024] Open
Abstract
Due to the low prevalence of Spindle cell carcinoma (SpCC) of the breast, the perception of the disease was limited. The aim of our study was to analyze the clinicopathological features, survival outcomes and prognostic factors of SpCC of the breast among Chinese. Patients diagnosed with SpCC of the breast in Cancer Hospital of Chinese Academy of Medical Sciences between 2004 to 2021 were retrospectively analyzed. Additionally, we searched Chinese databases and Pubmed websites for literature on breast SpCC in Chinese patients. The clinicalpathological characteristics, survival outcomes and prognostic factors were evaluated. A total of 160 eligible cases were enrolled, including 23 patients in our center and 137 cases from the literature search. The median age was 52 years old (range, 22-88). 84.8% (101/119) cases were in the early stage (stage I and II). 15.0% (20/133) had axillary lymph node involvement. The majority of patients were HR-HER2- (85.4%, 98/137). 77.5% (79/102) patients received adjuvant chemotherapy. 36.9% (31/84) of patients received adjuvant radiation. Of 126 patients available for a median follow-up with 38 (range, 1-211) months, 58 cases (46.0%, 58/126) recurred, including 31.0% (18/58) who had local recurrence and 69.0% (40/58) who had distant metastasis. The most common distant metastatic site was the lung (41.4%, 24/58). Most patients (91.5%) had recurrence within 3 years. The Kaplan-Meier curves showed that the 3-year and 5-year disease-free survival (DFS) were 55.9% and 46.8%, and the 3-year and 5-year overall survival (OS) were 67.0% and 54.9%, respectively. T stage was an independent prognostic factor for OS (T1-2 vs T3-4, HR=0.362, 95% CI: 0.139-0.945, P=0.038). Although SpCC of the breast was often diagnosed in the early stage with low lymph node involvement, the prognosis was poor. T stage was an indicator of prognosis for OS. Better treatments need to be explored to prevent recurrence and improve survival.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Department of Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou UniversityZhengzhou 450003, Henan, China
| | - Min Xiao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhou 350014, Fujian, China
| | - Yang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen 518116, Guangdong, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
23
|
He J, Liang G, Yu H, Lin C, Shen W. Evaluating the predictive significance of systemic immune-inflammatory index and tumor markers in lung cancer patients with bone metastases. Front Oncol 2024; 13:1338809. [PMID: 38264753 PMCID: PMC10805270 DOI: 10.3389/fonc.2023.1338809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Objective This study aims to develop a predictive model for identifying lung cancer patients at elevated risk for bone metastases, utilizing the Unified Immunoinflammatory Index and various tumor markers. This model is expected to facilitate timely and effective therapeutic interventions, especially in the context of the growing significance of immunotherapy for lung cancer treatment. Methods A retrospective analysis was conducted on 324 lung cancer patients treated between January 2019 and January 2021. After meeting the inclusion criteria, 241 patients were selected, with 56 exhibiting bone metastases. The cohort was divided into a training group (169 patients) and a validation group (72 patients) at a 7:3 ratio. Lasso regression was employed to identify critical variables, followed by logistic regression to construct a Nomogram model for predicting bone metastases. The model's validity was ascertained through internal and external evaluations using the Concordance Index (C-index) and Receiver Operating Characteristic (ROC) curve. Results The study identified several factors influencing bone metastasis in lung cancer, such as the Systemic Immune-Inflammatory Index (SII), Carcinoembryonic Antigen (CEA), Neuron Specific Enolase (NSE), Cyfra21-1, and Neutrophil-to-Lymphocyte Ratio (NLR). These factors were incorporated into the Nomogram model, demonstrating high validation accuracy with C-index scores of 0.936 for internal and 0.924 for external validation. Conclusion The research successfully developed an intuitive and accurate Nomogram prediction model utilizing clinical indicators to predict the risk of bone metastases in lung cancer patients. This tool can be instrumental in aiding clinicians in developing personalized treatment plans, thereby optimizing patient outcomes in lung cancer care.
Collapse
Affiliation(s)
| | | | | | | | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Soltani M, Fotovat R, Sharifi M, Ahmadian Chashmi N, Behmanesh M. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:30-39. [PMID: 38322161 PMCID: PMC10839140 DOI: 10.30476/ijms.2023.94805.2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2024]
Abstract
Background Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines. Methods An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey's HSD test. P<0.05 was considered statistically significant. Results Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mona Soltani
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Fotovat
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Burcu B, Ertas I, Sener A, Demircioglu ZG, Cerekci E, Kaya C. Retrospective Analysis of Parameters Affecting Metastatic Breast Cancer. SISLI ETFAL HASTANESI TIP BULTENI 2023; 57:479-484. [PMID: 38268651 PMCID: PMC10805054 DOI: 10.14744/semb.2023.94803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 01/26/2024]
Abstract
Objectives While metastatic breast cancer (MBC), which is the most common cause of death in women, has been seen as an incurable surgical problem in the past decade, as the heterogeneous nature of breast cancer becomes clear with increasing molecular studies and advances in oncological protocols, life expectancy is increasing. In this study, we aimed to examine the clinicopathological features of the patients we followed up with MBC. Methods Patients who were operated on with the diagnosis of breast cancer in our hospital between 2018 and 2023 and who were later found to have metastases were retrospectively analyzed from the database. The age of the patients, the histological and molecular type, stage and grade of the tumor, the time from diagnosis to metastasis, the location of metastasis, the duration of treatment and follow-up were investigated. Patients who were operated on in other centers and/or were out of follow-up were excluded from the study. For the statistical analysis of the findings, number cruncher statistical system (NCSS) 2020 statistical software (NCSS LLC, Kaysville, Utah, USA) was used at a significance level of 0.05. Results Metastasis was detected in 77.1% (n=37) of a total of 48 female patients, and recurrence was found in 22.9% (n=11). The mean age of the patients was 57 years. There was no statistically significant difference between the patients in terms of demographics. When evaluated according to the TNM stage, 24.3% (n=9) of the patients were in the early stage and 75.7% (n=28) were in the locally advanced stage; the number of locally advanced patients was found to be higher than the early stage. In histology examination, 27.1% (n=13) of the patients were luminal A, 31.3% (n=15) luminal B, 16.7% (n=8) HER2 positive, and 25% (n=12) triple negative. Ki67 was higher than 14% in 64.6% (n=31) patients. Breast conserving surgery was performed in 41.6% (n=20) of the patients, and mastectomy was performed in 58.3% (n=28) patients. Metastasis in 34.2% (n=13) of the cases within 1-2 years, in 42.1% (n=16) within 2-5 years, and in 23.7% (n=9) after 5 years took place. Sites of metastasis were bone (37.7%, n=28), liver (28.9%, n=11), brain (10.5%, n=4), and lung (7.9%, n=3). More than one metastasis site was observed in 21.05% (n=8) of patients with metastases. There was no statistically significant difference between luminal A, luminal B, HER 2 groups and triple-negative breast cancer in terms of metastasis time and location (p>0.05). Adjuvant hormone therapy was more common in the luminal A group, whereas neoadjuvant therapy was more common in the HER2+ group. A total of 20 deaths were observed in 48 patients (41.7%). The median disease-free survival was 64 months. Conclusion Despite all the developments in metastatic breast cancer, the 5-year survival rate is 27%. Targeted personalized therapies may be promising when the mechanism of metastasis and specific pathways in breast cancer emerge.
Collapse
Affiliation(s)
- Busra Burcu
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ibrahim Ertas
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Aziz Sener
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep Gul Demircioglu
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Esma Cerekci
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Cemal Kaya
- Department of General Surgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
26
|
Hu L, Zeng Y, Xin L, Yang J. SND1, a novel co-activator of HIF1α, promotes tumor initiation in PyMT-induced breast tumor. FEBS J 2023; 290:5759-5772. [PMID: 37622244 DOI: 10.1111/febs.16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The multifunctional protein staphylococcal nuclease domain-containing protein 1 (SND1) is conserved and has been implicated in several aspects of tumor development, such as proliferation, epithelial-mesenchymal transition, and immune evasion. Despite this, the precise role of SND1 in the initiation and metastasis of mammary gland tumors remains largely unexplored. In this study, we utilized a mouse model of breast tumors induced by polyomavirus middle T antigen (PyMT) to demonstrate that the knockout of SND1 significantly delayed the onset of primary mammary tumor formation induced by PyMT. Histological staining and cytometric analysis were conducted to confirm the reduction of tumor-initiating cells and lung metastasis following depletion of SND1. Additionally, our findings demonstrate that enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a crucial epigenetic modifier implicated in PyMT-induced breast tumors, serves as an essential mediator of SND1-promoted primary mammary tumor formation. Mechanistic investigations revealed that SND1 functions as a transcriptional co-activator of hypoxia-inducible factor 1 subunit alpha (HIF1α), thereby regulating the downstream target gene EZH2 and promoting tumorigenesis. Overall, this study provides novel insights into the role of SND1 as a co-activator of HIF1α in the acceleration of PyMT-induced spontaneous breast tumor formation through the promotion of EZH2 transcription. The findings provide novel insights into the relationship between SND1 and the formation of tumor-initiating cells.
Collapse
Affiliation(s)
- Lihong Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, China
| | - Yufeng Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Tianjin, China
- Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, China
| |
Collapse
|
27
|
Yin Y, Tong L, Wan Z, Sui Y, Li F, Huang Q, Zhao X. CYP4B1 polymorphisms and the risk of breast cancer in Chinese women: a case-control study. BMC Cancer 2023; 23:1177. [PMID: 38041008 PMCID: PMC10693087 DOI: 10.1186/s12885-023-11477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the malignant diseases threatening the life and health of women worldwide. The CYP4B1 gene was abnormally expressed in BC and was associated with the prognosis of BC patients. This study aimed to explore the relationship between CYP4B1 single nucleotide polymorphisms (SNPs) and BC risk in Chinese women. METHODS A case-control study of 1,143 women (571 patients and 572 healthy individuals) was conducted. Rs2297813 G/T, rs12142787 G/A, and rs3766197 C/T in CYP4B1 were selected and genotyped by MassARRAY system. The relationships between these SNPs and the risk of BC were assessed by logistic regression analysis. In addition, multi-factor dimensionality reduction (MDR) was used to analyze SNP-SNP interactions. RESULTS CYP4B1 rs2297813 had a risk-increasing effect on BC in women with body mass index (BMI) ≤ 24 kg/m2 (OR = 1.72, p = 0.026). CYP4B1 rs12142787 was associated with an increased BC risk in smokers (AA: OR = 1.32, p = 0.045). Among non-drinkers, rs2297813 (OR = 1.69, p = 0.009) and rs12142787 (OR = 1.51, p = 0.020) were related to an increased incidence of BC. CYP4B1 rs3766197 (OR = 1.61p = 0.031) was associated with a higher risk of advanced stages (III/IV stage) of BC. Besides, the contributions of CYP4B1 rs2297813 (OR = 1.55, p = 0.021) and rs12142787 (OR = 1.53, p = 0.033) to BC risk might be associated with more than one birth in patients with BC. The three-locus model consisting of rs2297813, rs12142787, and rs3766197 was regarded as the best predictive model for BC risk. CONCLUSION CYP4B1 SNPs were associated with BC risk in Chinese women, especially in patients with BMI ≤ 24 kg/m2, smokers, non-drinkers, patients in advanced stages (III/IV stage), and patients who reproduced once. These findings shed light on the relationship between CYP4B1 SNPs and BC risk in Chinese women.
Collapse
Affiliation(s)
- Yanhai Yin
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No.76, Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
- Department of Nuclear Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570208, China
| | - Liangqian Tong
- Department of Nuclear Medicine, Central South University Xiangya School Affiliated Haikou Hospital, Haikou, Hainan, 570208, China
| | - Zhenling Wan
- Department of Pathology, Hainan Women and Children Medical Center, Haikou, Hainan, 570208, China
| | - Yanfang Sui
- Department of Rehabilitation Medicine, Central South University Xiangya School Affiliated Haikou Hospital, Haikou, Hainan, 570208, China
| | - Fen Li
- Department of Nuclear Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570208, China
| | - Qian Huang
- Department of Nuclear Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570208, China
| | - Xinhan Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, No.76, Yanta West Road, Xi'an City, 710061, Shaanxi Province, China.
| |
Collapse
|
28
|
Zhang Y, Li S, Cui X, Wang Y. microRNA-944 inhibits breast cancer cell proliferation and promotes cell apoptosis by reducing SPP1 through inactivating the PI3K/Akt pathway. Apoptosis 2023; 28:1546-1563. [PMID: 37486406 DOI: 10.1007/s10495-023-01870-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer is a common malignancy in women with poor prognosis. This study aimed to investigate the molecular mechanism of microRNA-944 (miR-944) mediated secreted phosphoprotein-1 (SPP1) in breast cancer progression and its regulatory effect on the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Differential gene analysis was performed to identify key genes associated with breast cancer development by screening breast cancer-related microarray data. The expression of miR-944 and SPP1 and their relationship were determined in clinical samples and cells. sh-SPP1, oe-SPP1, LY294002 or miR-944 mimic were transfected into MCF-7 cells to investigate the role of miR-944 mediated SPP1 in breast cancer development and its regulatory effect on the PI3K/Akt pathway. Finally, the tumorigenicity of breast cancer cells was observed in nude mice. Through bioinformatics analysis, we identified SPP1 as a key gene in breast cancer, and miR-944 as an upstream miRNA of SPP1. In breast cancer tissues and cells, the expression of miR-944 was decreased while that of SPP1 was increased. miR-944 negatively regulated the expression of SPP1. In breast cancer cells, SPP1 activated the PI3K/Akt pathway to promote cell proliferation and inhibit apoptosis. In vitro cell experiments showed that the downregulation of miR-944 promoted the high expression of SPP1, which then activated the PI3K/Akt signaling pathway, promoting breast cancer cell proliferation. In vivo experiments further confirmed the anti-cancer role of miR-944 mediated SPP1 in breast cancer. Our study highlights the role of miR-944 mediated SPP1 in inhibiting breast cancer progression by blocking the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Thyroid and Breast Surgery, the People's Hospital of Liaoning Province, Shengyang, Liaoning, 110001, China
| | - Shan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiangguo Cui
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110022, China.
| | - Yiliang Wang
- Department of Anesthesiology, the First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shengyang, Liaoning, 110001, China.
| |
Collapse
|
29
|
Zhang H, Wang J, Li F. Modulation of natural killer cell exhaustion in the lungs: the key components from lung microenvironment and lung tumor microenvironment. Front Immunol 2023; 14:1286986. [PMID: 38022613 PMCID: PMC10657845 DOI: 10.3389/fimmu.2023.1286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer is the leading cause of tumor-induced death worldwide and remains a primary global health concern. In homeostasis, due to its unique structure and physiological function, the lung microenvironment is in a state of immune tolerance and suppression, which is beneficial to tumor development and metastasis. The lung tumor microenvironment is a more complex system that further enhances the immunosuppressive features in the lungs. NK cells are abundantly located in the lungs and play crucial roles in lung tumor surveillance and antitumor immunity. However, the immunosuppressive microenvironment promotes significant challenges to NK cell features, leading to their hypofunction, exhaustion, and compromised antitumor activity. Thus, understanding the complex interactions among the lung microenvironment, lung tumor microenvironment, and NK cell exhaustion is critical for the development of effective cancer immunotherapeutic strategies. The present review will discuss NK cell hypofunction and exhaustion within the lung microenvironment and lung tumor microenvironment, focusing on lung tissue-specific factors, including key cytokines and unique environmental components, that modulate NK cell activation and function. Understanding the functional mechanisms of key factors would help to design strategies to reverse NK cell exhaustion and restore their antitumor function within the lung tumor microenvironment.
Collapse
Affiliation(s)
- Hongxia Zhang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Jian Wang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fengqi Li
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
30
|
Lu Q, Sun H, Yu Q, Tang D. Circ_PRDM5/miR-25-3p/ANKRD46 axis is associated with cell malignant behaviors in subjects with breast cancer evaluated by ultrasound. J Biochem Mol Toxicol 2023; 37:e23469. [PMID: 37485755 DOI: 10.1002/jbt.23469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Circular RNAs (circRNAs) are key RNA molecules in cancer biology. CircRNA PR/SET domain 5 (circ_PRDM5, hsa_circ_0005654) was downregulated in breast cancer (BC) tissues. This study is designed to investigate the functional mechanism of circ_PRDM5 in BC. Ultrasound examinations were performed to evaluate BC patients and normal individuals. Circ_PRDM5, miR-25-3p, and Ankyrin repeat domain 46 (ANKRD46) level detection was carried out by reverse transcription-quantitative polymerase chain reaction. 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay was used for cell viability examination. Cell proliferation was evaluated by ethynyl-2'-deoxyuridine assay and colony formation assay. The protein levels were examined using western blot. Cell migration and invasion abilities were assessed via transwell assay. Target interaction was analyzed via dual-luciferase reporter assay. The role of circ_PRDM5 in vivo was explored via xenograft tumor assay. Circ_PRDM5 expression was downregulated in BC tissues and cells. Overexpression of circ_PRDM5 suppressed proliferation and motility but enhanced apoptosis of BC cells. Circ_PRDM5 served as a sponge of miR-25-3p. Circ_PRDM5 impeded BC cell malignant development via sponging miR-25-3p. Circ_PRDM5 induced ANKRD46 upregulation by targeting miR-25-3p. Inhibition of miR-25-3p retarded BC progression by increasing the ANKRD46 level. Circ_PRDM5 repressed BC tumorigenesis in vivo through mediating the miR-25-3p/ANKRD46 axis. This study evidenced that circ_PRDM5 inhibited cell progression and tumor growth in BC via interacting with mir-25-3p/ANKRD46 network.
Collapse
Affiliation(s)
- Qin Lu
- The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Huihui Sun
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qian Yu
- Huai'an Maternal and Child Health Hospital, Huai'an, Jiangsu, China
| | - Dongdong Tang
- Huaiyin Hospital of Huai'an City, Huai'an, Jiangsu, China
| |
Collapse
|
31
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
32
|
Kim DK, Kang SJ, Rhee WJ. Perilla-Leaf-Derived Extracellular Vesicles Selectively Inhibit Breast Cancer Cell Proliferation and Invasion. Int J Mol Sci 2023; 24:15633. [PMID: 37958616 PMCID: PMC10647566 DOI: 10.3390/ijms242115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer is a common type of cancer characterized by high mortality rates. However, chemotherapy is not selective and often leads to side-effects. Therefore, there is a need for the development of highly efficient drugs. Recent studies have shown that some extracellular vesicles (EVs) derived from cell cultures possess anti-cancer activity and hold great potential as cancer therapeutics. However, the use of mammalian cell cultures for EV production results in low productivity and high costs. To address this issue, extracellular vesicles derived from perilla leaves (Perex) were isolated and investigated for their anti-cancer activity in various cancer cells. Initially, a high concentration of Perex with a low level of impurities was successfully purified through a combination of ultrafiltration and size-exclusion chromatography. Perex exhibited potent anti-cancer activities, inhibiting the proliferation, migration, and invasion of MDA-MB-231 cancer cells, which have high levels of caveolin-1 compared to other cancer and normal cells. This selective attack on cancer cells with high levels of caveolin-1 reduces unwanted side-effects on normal cells. Considering its high productivity, low production cost, selective anti-cancer activity, and minimal side-effects, Perex represents a promising candidate for the therapeutic treatment of breast cancer.
Collapse
Affiliation(s)
- Do Kyung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (D.K.K.); (S.J.K.)
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
33
|
Ibragimova MK, Tsyganov MM, Kravtsova EA, Tsydenova IA, Litviakov NV. Organ-Specificity of Breast Cancer Metastasis. Int J Mol Sci 2023; 24:15625. [PMID: 37958607 PMCID: PMC10650169 DOI: 10.3390/ijms242115625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) remains one of the most common malignancies among women worldwide. Breast cancer shows metastatic heterogeneity with priority to different organs, which leads to differences in prognosis and response to therapy among patients. The main targets for metastasis in BC are the bone, lung, liver and brain. The molecular mechanism of BC organ-specificity is still under investigation. In recent years, the appearance of new genomic approaches has led to unprecedented changes in the understanding of breast cancer metastasis organ-specificity and has provided a new platform for the development of more effective therapeutic agents. This review summarises recent data on molecular organ-specific markers of metastasis as the basis of a possible therapeutic approach in order to improve the diagnosis and prognosis of patients with metastatically heterogeneous breast cancer.
Collapse
Affiliation(s)
- Marina K. Ibragimova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Matvey M. Tsyganov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Ekaterina A. Kravtsova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Irina A. Tsydenova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
| | - Nikolai V. Litviakov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634009, Russia; (M.M.T.); (E.A.K.); (I.A.T.); (N.V.L.)
- Biological Institute, National Research Tomsk State University, Tomsk 634050, Russia
- Faculty of Medicine and Biology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
34
|
Sulaiman MI, Alabsi W, Szabo L, Hay M, Polt R, Largent-Milnes TM, Vanderah TW. PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease. Int J Mol Sci 2023; 24:15007. [PMID: 37834455 PMCID: PMC10573977 DOI: 10.3390/ijms241915007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pain is the most significant impairment and debilitating challenge for patients with bone metastasis. Therefore, the primary objective of current therapy is to mitigate and prevent the persistence of pain. Thus, cancer-induced bone pain is described as a multifaceted form of discomfort encompassing both inflammatory and neuropathic elements. We have developed a novel non-addictive pain therapeutic, PNA6, that is a derivative of the peptide Angiotensin-(1-7) and binds the Mas receptor to decrease inflammation-related cancer pain. In the present study, we provide evidence that PNA6 attenuates inflammatory, chemotherapy-induced peripheral neuropathy (CIPN) and cancer pain confined to the long bones, exhibiting longer-lasting efficacious therapeutic effects. PNA6, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-Lact)-amide, was successfully synthesized using solid phase peptide synthesis (SPPS). PNA6 significantly reversed inflammatory pain induced by 2% carrageenan in mice. A second murine model of platinum drug-induced painful peripheral neuropathy was established using oxaliplatin. Mice in the oxaliplatin-vehicle treatment groups demonstrated significant mechanical allodynia compared to the oxaliplatin-PNA6 treatment group mice. In a third study modeling a complex pain state, E0771 breast adenocarcinoma cells were implanted into the femur of female C57BL/6J wild-type mice to induce cancer-induced bone pain (CIBP). Both acute and chronic dosing of PNA6 significantly reduced the spontaneous pain behaviors associated with CIBP. These data suggest that PNA6 is a viable lead candidate for treating chronic inflammatory and complex neuropathic pain.
Collapse
Affiliation(s)
- Maha I. Sulaiman
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
| | - Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Lajos Szabo
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (L.S.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA; (M.I.S.); (T.M.L.-M.)
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
35
|
Honda M, Iima M, Kataoka M, Fukushima Y, Ota R, Ohashi A, Toi M, Nakamoto Y. Biomarkers Predictive of Distant Disease-free Survival Derived from Diffusion-weighted Imaging of Breast Cancer. Magn Reson Med Sci 2023; 22:469-476. [PMID: 35922924 PMCID: PMC10552669 DOI: 10.2463/mrms.mp.2022-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate whether intravoxel incoherent motion (IVIM) and/or non-Gaussian diffusion parameters are associated with distant disease-free survival (DDFS) in patients with invasive breast cancer. METHODS From May 2013 to March 2015, 101 patients (mean age 60.0, range 28-88) with invasive breast cancer were evaluated prospectively. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at a b value of 0 s/mm2 [ADC0] and kurtosis [K]) were estimated using a diffusion-weighted imaging series of 16 b values up to 2500 s/mm2. Shifted ADC values (sADC200-1500) and standard ADC values (ADC0-800) were also calculated. The Kaplan-Meier method was used to generate survival analyses for DDFS, which were compared using the log-rank test. Univariable Cox proportional hazards models were used to assess any associations between each parameter and distant metastasis-free survival. RESULTS The median observation period was 80 months (range, 35-92 months). Among the 101 patients, 12 (11.9%) developed distant metastasis, with a median time to metastasis of 79 months (range, 10-92 months). Kaplan-Meier analysis showed that DDFS was significantly shorter in patients with K > 0.98 than in those with K ≤ 0.98 (P = 0.04). Cox regression analysis showed a marginal statistical association between K and distant metastasis-free survival (P = 0.05). CONCLUSION Non-Gaussian diffusion may be associated with prognosis in invasive breast cancer. A higher K may be a marker to help identify patients at an elevated risk of distant metastasis, which could guide subsequent treatment.
Collapse
Affiliation(s)
- Maya Honda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Diagnostic Radiology, Kansai Electric Power Hospital, Osaka, Osaka, Japan
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Kyoto, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yasuhiro Fukushima
- Department of Applied Medical Imaging, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Rie Ota
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Akane Ohashi
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
36
|
Liu Y, Zhu H, Yuan J, Wu G. A nomogram for predicting breast cancer based on hematologic and ultrasound parameters. Am J Transl Res 2023; 15:5602-5612. [PMID: 37854218 PMCID: PMC10579033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The aim of this study was to investigate the ultrasound and hematological indicators, subsequently utilizing them to predict breast cancer and construct predictive models and columnar plots. METHODS The clinical data of 200 patients with breast tumors receiving ultrasound and blood tests at Henan Provincial People's Hospital from January 2020 to January 2023 were collected. Patients were divided into training and validation sets at a 6:4 ratio using R language. Variables were screened using logistic regression, and a nomogram predicting breast cancer probability was constructed based on the training set. The predictive performance of the nomogram was evaluated in the validation set through receiver operating characteristic, calibration and decision curves. Model robustness was validated by bootstrap resampling. RESULTS Regression analysis revealed that maximum blood flow velocity within the breast mass ≥ 16.395 m/s, perfusion index ≥ 1.505, cancer antigen 15-3 ≥ 39.620 U/m, cancer antigen 125 ≥ 42.30 U/ml, carcinoembryonic antigen ≥ 6.520 ng/ml, Adler blood flow classification II & III, breast calcification present, and diameter of the lump > 2 cm were independent risk factors for breast cancer. Based on these ultrasonic parameters and blood indicators, the developed nomogram demonstrated excellent discrimination in both the training set (AUC = 0.917) and validation set (AUC = 0.844). The calibration plot showed high consistency between the nomogram-predicted and the actual results. Decision curve analysis indicated higher net benefit of this model. CONCLUSIONS The nomogram developed in this study demonstrated solid predictive abilities for breast malignancy, indicating potential clinical value pending further research.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Ultrasonography, Henan Provincial People's Hospital Zhengzhou 450003, Henan, China
| | - Haohui Zhu
- Department of Ultrasonography, Henan Provincial People's Hospital Zhengzhou 450003, Henan, China
| | - Jianjun Yuan
- Department of Ultrasonography, Henan Provincial People's Hospital Zhengzhou 450003, Henan, China
| | - Gang Wu
- Department of Ultrasonography, Henan Provincial People's Hospital Zhengzhou 450003, Henan, China
| |
Collapse
|
37
|
Huang W, Shi S, Lv H, Ju Z, Liu Q, Chen T. Tellurium-driven maple leaf-shaped manganese nanotherapeutics reshape tumor microenvironment via chemical transition in situ to achieve highly efficient radioimmunotherapy of triple negative breast cancer. Bioact Mater 2023; 27:560-573. [PMID: 37223423 PMCID: PMC10200799 DOI: 10.1016/j.bioactmat.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The therapeutic efficacy of radioimmunotherapy against triple negative breast cancer (TNBC) is largely limited by the complicated tumor microenvironment (TME) and its immunosuppressive state. Thus developing a strategy to reshape TME is expected to achieve highly efficient radioimmunotherapy. Therefore, we designed and synthesized a tellurium (Te)-driven maple leaf manganese carbonate nanotherapeutics (MnCO3@Te) by gas diffusion method, but also provided a chemical catalytic strategy in situ to augment ROS level and activate immune cells for improving cancer radioimmunotherapy. As expected, with the help of H2O2 in TEM, MnCO3@Te heterostructure with reversible Mn3+/Mn2+ transition could catalyze the intracellular ROS overproduction to amplify radiotherapy. In addition, by virtue of the ability to scavenge H+ in TME by carbonate group, MnCO3@Te directly promote the maturation of dendritic cells and macrophage M1 repolarization by stimulator of interferon genes (STING) pathway activation, resulting in remodeling immuno-microenvironment. As a result, MnCO3@Te synergized with radiotherapy and immune checkpoint blockade therapy effectively inhibited the breast cancer growth and lung metastasis in vivo. Collectively, these findings indicate that MnCO3@Te as an agonist, successfully overcome radioresistance and awaken immune systems, showing promising potential for solid tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Wei Huang
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
| | - Sujiang Shi
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Haoran Lv
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Qinghua Liu
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Nephrology, The First Affiliated Hospital, NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Sun Yat-sen University, Guangzhou, China
| | - Tianfeng Chen
- Jieyang Medical Research Center, Jieyang People's Hospital, Tianfu Road 107, Rongcheng District, Jieyang, Guangdong, 522000, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
38
|
Guan Y, Sun Y, Liu Z, Zhang Y, Cao M, Wang W, Tao J, Yao Y. INSM1 promotes breast carcinogenesis by regulating C-MYC. Am J Cancer Res 2023; 13:3500-3516. [PMID: 37693125 PMCID: PMC10492136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/28/2023] [Indexed: 09/12/2023] Open
Abstract
Insulinoma-associated protein-1 (INSM1), which is highly expressed in various neuroendocrine tumors, functions as a zinc finger transcription factor capable of regulating the biological behavior of tumor cells. However, its specific role in breast cancer remains unclear. This study aims to investigate the role and mechanism of INSM1 in breast cancer. A total of 158 cohorts were recruited to examine the expression of INSM1 in breast cancer tissues and their corresponding adjacent normal tissues using immunohistochemistry. Follow-up data, along with clinical and pathological information, were collected to analyze the correlation between INSM1 expression and survival outcomes in breast cancer patients. Additionally, we investigated the impact of INSM1 on breast cancer cell proliferation, migration, and aggregation. To further explore the regulatory effect of INSM1 knockdown on breast cancer tumor growth, we utilized a xenograft mouse model. The results revealed that INSM1 was significantly overexpressed in breast cancer patients and correlated with prognosis. Knockdown of INSM1 notably impaired the malignant biological effects of breast cancer cells and inhibited the growth of xenograft tumors in nude mice. Importantly, our data also suggests an interaction between INSM1 and S-phase kinase-associated protein 2 (SKP2), which in turn regulates C-MYC, thereby affecting the p-ERK pathway. Our study provides the first evidence demonstrating the contribution of INSM1 to tumor formation and growth in breast cancer. Furthermore, we found that INSM1 positively regulates C-MYC and the p-ERK pathway by interacting with SKP2 during breast cancer development. Collectively, these findings highlight INSM1 as a promising target for breast cancer treatment.
Collapse
Affiliation(s)
- Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Zheying Liu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
- Department of Clinical Medicine, Southeast Univeristy SchoolNanjing 210008, Jiangsu, China
| | - Yin Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Wei Wang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing UniversityNanjing 210008, Jiangsu, China
| |
Collapse
|
39
|
Zhang X, Wang C, Yu J, Bu J, Ai F, Wang Y, Lin J, Zhu X. Extracellular vesicles in the treatment and diagnosis of breast cancer: a status update. Front Endocrinol (Lausanne) 2023; 14:1202493. [PMID: 37534210 PMCID: PMC10393036 DOI: 10.3389/fendo.2023.1202493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites. These bioactive cargoes have been found to play crucial roles in breast cancer initiation and progression. Moreover, EV cargoes play pivotal roles in converting mammary cells to carcinogenic cells and metastatic foci by extensively inducing proliferation, angiogenesis, pre-metastatic niche formation, migration, and chemoresistance. The present update review mainly discusses EVs cargoes released from breast cancer cells and tumor-derived EVs in the breast cancer microenvironment, focusing on proliferation, metastasis, chemoresistance, and their clinical potential as effective biomarkers.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fulv Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Huang Z, Bu D, Yang N, Huang W, Zhang L, Li X, Ding BS. Integrated analyses of single-cell transcriptomics identify metastasis-associated myeloid subpopulations in breast cancer lung metastasis. Front Immunol 2023; 14:1180402. [PMID: 37483625 PMCID: PMC10361816 DOI: 10.3389/fimmu.2023.1180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Lung metastasis of breast cancer is closely associated with patient morbidity and mortality, which correlates with myeloid cells in the lung microenvironment. However, the heterogeneity and specificity of metastasis-associated myeloid cells have not been fully established in lung metastasis. Here, by integrating and analyzing single-cell transcriptomics, we found that myeloid subpopulations (Tppp3 + monocytes, Isg15 + macrophages, Ifit3 + neutrophils, and Il12b + DCs) play critical roles in the formation and development of the metastatic niche. Gene enrichment analyses indicate that several tumor-promoting pathways should be responsible for the process, including angiogenesis (Anxa1 and Anxa2 by Tppp3 + monocytes), immunosuppression (Isg15 and Cxcl10 by Isg15 + macrophages; Il12b and Ccl22 by Il12b + DCs), and tumor growth and metastasis (Isg15 and Isg20 by Ifit3 + neutrophils). Furthermore, we have validated these subpopulations in lung microenvironment of MMTV-PyVT transgenic mice and verified their association with poor progression of human breast cancer. Also, our results elucidated a crosstalk network among four myeloid subpopulations by cell-cell communication analysis. This study, therefore, highlights the crucial role of myeloid cells in lung metastasis and provides insights into underlying molecular mechanisms, which pave the way for therapeutic interventions in breast cancer metastasis to lung.
Collapse
|
41
|
Shaw VR, Byun J, Pettit RW, Han Y, Hsiou DA, Nordstrom LA, Amos CI. A comprehensive analysis of lung cancer highlighting epidemiological factors and psychiatric comorbidities from the All of Us Research Program. Sci Rep 2023; 13:10852. [PMID: 37407606 PMCID: PMC10322929 DOI: 10.1038/s41598-023-37585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Investigating epidemiological and clinical parameters can contribute to an improved understanding of disease development and management. In this cross-sectional, case-control study, we used the All of Us database to compare healthcare access, family history, smoking-related behaviors, and psychiatric comorbidities in light smoking controls, matched smoking controls, and primary and secondary lung cancer patients. We found a decreased odds of primary lung cancer patients versus matched smoking controls reporting inability to afford follow-up or specialist care. Additionally, we found a significantly increased odds of secondary lung cancer patients having comorbid anxiety and insomnia when compared to matched smoking controls. Our study provides a profile of the psychiatric disease burden in lung cancer patients and reports key epidemiological factors in patients with primary and secondary lung cancer. By using two controls, we were able to separate smoking behavior from lung cancer and identify factors that were mediated by heavy smoking alone or by both smoking and lung cancer.
Collapse
Affiliation(s)
- Vikram R Shaw
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David A Hsiou
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luke A Nordstrom
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
42
|
Rao Z, Lu C, Fan H, Du F, Zhu Y, Xia Y, Wang Z, Ning P. Engineered Macrophages-Based uPA-Scavenger Load Gemcitabine to Prompt Robust Treating Cancer Metastasis. Adv Healthc Mater 2023; 12:e2203356. [PMID: 36929306 DOI: 10.1002/adhm.202203356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Indexed: 03/18/2023]
Abstract
The majority of cancer patients die of metastasis rather than primary tumors, and most patients may have already completed the cryptic metastatic process at the time of diagnosis, making them intractable for therapeutic intervention. The urokinase-type plasminogen activator (uPA) system is proved to drive cancer metastasis. However, current blocking agents such as uPA inhibitors or antibodies are far from satisfactory due to poor pharmacokinetics and especially have to face multiplex mechanisms of metastasis. Herein, an effective strategy is proposed to develop a uPA-scavenger macrophage (uPAR-MΦ), followed by loading chemotherapeutics with nanoparticles (GEM@PLGA) to confront cancer metastasis. Interestingly, significant elimination of uPA by uPAR-MΦ is demonstrated by transwell analysis on tumor cells in vitro and enzyme-linked immunosorbent assay detection in peripheral blood of mice with metastatic tumors, contributing to significant inhibition of migration of tumor cells and occurrence of metastatic tumor lesions in mice. Moreover, uPAR-MΦ loaded with GEM@PLGA shows a robust antimetastasis effect and significantly prolonged survival in 4T1-tumor-bearing mice models. This work provides a novel living drug platform for realizing a potent treatment strategy to patients suffering from cancer metastasis, which can be further expanded to handle other tumor metastasis markers mediating cancer metastasis.
Collapse
Affiliation(s)
- Zhiping Rao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Chuanchuan Lu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Hongyu Fan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Yutong Zhu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| | - Zhiming Wang
- Department of Medical Oncology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P. R. China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi, 710071, P. R. China
| |
Collapse
|
43
|
Qayoom H, Alkhanani M, Almilaibary A, Alsagaby SA, Mir MA. Mechanistic elucidation of Juglanthraquinone C targeting breast Cancer: A network Pharmacology-based investigation. Saudi J Biol Sci 2023; 30:103705. [PMID: 37425621 PMCID: PMC10329161 DOI: 10.1016/j.sjbs.2023.103705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Despite the recent treatment options like surgery, chemotherapy etc. the lethality of breast cancer is alarming. Natural compounds are considered a better treatment option against breast carcinoma because of their lower side effects and specificity in targeting important proteins involved in the aberrant activation of pathways in breast cancer. A recently discovered compound called Juglanthraquinone C, which is found in the bark of the Juglans mandshurica Maxim (Juglandaceae) tree has shown promising cytotoxicity in hepatocellular carcinoma. However, not much data is available on the molecular mechanisms followed by this compound. Therefore, we aimed to investigate the molecular mechanism followed by Juglanthraquinone C against breast cancer. We used the network pharmacology technique to analyse the mechanism of action of Juglanthraquinone C in breast cancer and validated our study by applying various computational tools such as UALCAN, cBioportal, TIMER, docking and simulation. The results showed the compound and breast cancer target network shared 31 common targets. Moreover, we observed that Juglanthraquinone C targets multiple deregulated genes in breast cancer such as TP53, TGIF1, IGF1R, SMAD3, JUN, CDC42, HBEGF, FOS and signaling pathways such as PI3K-Akt pathway, TGF-β signaling pathway, MAPK pathway and HIPPO signaling pathway. A docking examination revealed that the investigated drug had a high affinity for the primary target TGIF1 protein. A stable protein-ligand combination was generated by the best hit molecule, according to molecular dynamics modeling. The main aim of this study was to examine Juglanthraquinone C's significance as a prospective breast cancer treatment and to better understand the molecular mechanism this substance uses in breast cancer since there is a need to discover new therapeutics to decrease the load on current therapeutics which also are currently ineffective due to several side effects and development of drug resistance.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Mustfa Alkhanani
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, KSA
| | - Abdullah Almilaibary
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, 31991, KSA
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah 11932, KSA
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
44
|
Hao Y, Zhang F, Ma Y, Luo Y, Zhang Y, Yang N, Liu M, Liu H, Li J. Potential biomarkers for the early detection of bone metastases. Front Oncol 2023; 13:1188357. [PMID: 37404755 PMCID: PMC10315674 DOI: 10.3389/fonc.2023.1188357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
The clinical manifestations of bone metastases are diversified while many sites remain asymptomatic at early stage. As the early diagnosis method is not perfect and the early symptoms of tumor bone metastasis are not typical, bone metastasis is not easy to be detected. Therefore, the search for bone metastasis-related markers is effective for timely detection of tumor bone metastases and the development of drugs to inhibit bone metastases. As a result, bone metastases can only be diagnosed when symptoms are found, increasing the risk of developing skeletal-related event (SREs), which significantly impairs the patient's quality of life. Therefore, the early diagnosis of bone metastases is of great importance for the treatment and prognosis of cancer patients. Changes of bone metabolism indexes appear earlier in bone metastases, but the traditional biochemical indexes of bone metabolism lack of specificity and could be interfered by many factors, which limits their application in the study of bone metastases. Some new biomarkers of bone metastases have good diagnostic value, such as proteins, ncRNAs, circulating tumor cells (CTCs). Therefore, this study mainly reviewed the initial diagnostic biomarkers of bone metastases which were expected to provide references for the early detection of bone metastases.
Collapse
Affiliation(s)
- Yang Hao
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Feifan Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Yan Ma
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yage Luo
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yongyong Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Ning Yang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
45
|
Cheng Y, Zhong X, Nie X, Gu H, Wu X, Li R, Wu Y, Lv K, Leung GPH, Fu C, Lee SMY, Zhang J, Li J. Glycyrrhetinic acid suppresses breast cancer metastasis by inhibiting M2-like macrophage polarization via activating JNK1/2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154757. [PMID: 37011418 DOI: 10.1016/j.phymed.2023.154757] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Breast cancer metastasis is leading cause of cancer death among women worldwide. Tumor-associated macrophages (TAMs) have been considered as potential targets for treating breast cancer metastasis because they promote tumor growth and development. Glycyrrhetinic acid (GA) is one of the most important phytochemicals of licorice which has shown promising anti-cancer efficacies in pre-clinical trials. However, the regulatory effect of GA on the polarization of TAMs remains elusive. PURPOSE To investigate the role of GA in regulating the polarization of M2 macrophages and inhibiting breast cancer metastasis, and to further explore its underlying mechanisms of action. STUDY DESIGN IL-4 / IL-13-treated RAW 264.7 and THP-1 cells were used as the M2-polarized macrophages in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were applied to study the effect of GA on breast cancer growth and metastasis in vivo. RESULTS In vitro studies showed that GA significantly inhibited IL-4 / IL 13-induced M2-like polarization in RAW 264.7 and THP-1 macrophages without affecting M1-like polarization. GA strongly decreased the expression of M2 macrophage markers CD206 and Arg-1, and reduced the levels of the pro-angiogenic molecules VEGF, MMP9, MMP2 and IL-10 in M2 macrophages. GA also increased the phosphorylation of JNK1/2 in M2 macrophages. Moreover, GA significantly suppressed M2 macrophage-induced cell proliferation and migration in 4T1 cancer cells and HUVECs. Interestingly, the inhibitory effects of GA on M2 macrophages were abolished by a JNK inhibitor. Animal studies showed that GA significantly suppressed tumor growth, angiogenesis, and lung metastasis in BALB/c mice bearing breast tumor. In tumor tissues, GA reduced the number of M2 macrophages but elevated the proportion of M1 macrophages, accompanied by activation of JNK signaling. Similar results were found in the tail vein breast cancer metastasis model. CONCLUSION This study demonstrated for the first time that GA could effectively suppress breast cancer growth and metastasis by inhibiting macrophage M2 polarization via activating JNK1/2 signaling. These findings indicate that GA could be served as the lead compound for the future development of anti-breast cancer drug.
Collapse
Affiliation(s)
- Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Huan Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kongpeng Lv
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jingjing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Huang YC, Hou MF, Tsai YM, Pan YC, Tsai PH, Lin YS, Chang CY, Tsai EM, Hsu YL. Involvement of ACACA (acetyl-CoA carboxylase α) in the lung pre-metastatic niche formation in breast cancer by senescence phenotypic conversion in fibroblasts. Cell Oncol (Dordr) 2023; 46:643-660. [PMID: 36607556 PMCID: PMC10205862 DOI: 10.1007/s13402-022-00767-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Reprogramming of metabolism is strongly associated with the development of cancer. However, the role of metabolic reprogramming in the remodeling of pre-metastatic niche (PMN), a key step in metastasis, is still unknown. We aimed to investigate the metabolic alternation during lung PMN formation in breast cancer. METHODS We assessed the transcriptomes and lipidomics of lung of MMTV-PyVT mice by microarray and liquid chromatography-tandem mass mass spectrometry before lung metastasis. The validation of gene or protein expressions was performed by quantitative real-time polymerase chain reaction or immunoblot and immunohistochemistry respectively. The lung fibroblasts were isolated from mice and then co-cultured with breast cancer to identify the influence of cancer on the change of lung fibroblasts in PMN. RESULTS We demonstrated changes in the lipid profile and several lipid metabolism genes in the lungs of breast cancer-bearing MMTV-PyVT mice before cancer spreading. The expression of ACACA (acetyl-CoA carboxylase α) was downregulated in the lung fibroblasts, which contributed to changes in acetylation of protein's lysine residues and the synthesis of fatty acid. The downregulation of ACACA in lung fibroblasts triggered a senescent and inflammatory phenotypic shift of lung fibroblasts in both in vivo and in vitro models. The senescence-associated secretory phenotype of lung fibroblasts enabled the recruitment of immunosuppressive granulocytic myeloid-derived suppressor cells into the lungs through the production of CXCL1 in the lungs. Knock-in of ACACA prevented lung metastasis in the MMTV-PyVT mouse model, further supporting that ACACA was involved in the remodeling of the lung PMN. CONCLUSIONS Taken together, these data revealed a mechanism by which ACACA downregulation directed the formation of an immunosuppressive lung PMN in breast cancer.
Collapse
Affiliation(s)
- Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ming-Feng Hou
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chung Pan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Pei-Hsun Tsai
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Shiuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
47
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
48
|
Zhao H, Wang L, Ji X, Zhang L, Li C. Biology of breast cancer brain metastases and novel therapies targeting the blood brain barrier: an updated review. Med Oncol 2023; 40:181. [PMID: 37202575 DOI: 10.1007/s12032-023-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Brain metastasis (BM) is a critical cause of morbidity and mortality in patients with breast cancer (BC). Compared with other cancer cells, BC cells (BCs) exhibit special features in the metastatic process. However, the underlying mechanisms are still unclear, especially the crosstalk between tumour cells and the microenvironment. To date, novel therapies for BM, including targeted therapy and antibody‒drug conjugates, have been developed. Due to an improved understanding of the blood‒brain barrier (BBB) and blood-tumour barrier (BTB), the development and testing of therapeutic agents in clinical phases have substantially increased. However, these therapies face a major challenge due to the low penetration of the BBB or BTB. As a result, researchers have increasingly focused on finding ways to promote drug penetration through these barriers. This review provides an updated overview of breast cancer brain metastases (BCBM) and summarizes the newly developed therapies for BCBM, especially drugs targeting the BBB or BTB.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Xiaolin Ji
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China
| | - Lijian Zhang
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Postdoctoral Research Station of Neurosurgery, Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| | - Chunhui Li
- Clinical Medicine College, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, China.
| |
Collapse
|
49
|
Li XY, Shi LX, Shi NN, Chen WW, Qu XW, Li QQ, Duan XJ, Li XT, Li QS. Multiple stimulus-response berberine plus baicalin micelles with particle size-charge-release triple variable properties for breast cancer therapy. Drug Dev Ind Pharm 2023; 49:189-206. [PMID: 36971392 DOI: 10.1080/03639045.2023.2195501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE The aim was to develop a nanoscale drug delivery system with enzyme responsive and acid sensitive particle size and intelligent degradation aiming to research the inhibitory effect on breast cancer. SIGNIFICANCE The delivery system addressed the problems of tissue targeting, cellular internalization, and slow drug release at the target site, which could improve the efficiency of drug delivery and provide a feasible therapeutic approach for breast cancer. METHODS The acid sensitive functional material DSPE-PEG2000-dyn-PEG-R9 was synthesized by Michael addition reaction. Then, the berberine plus baicalin intelligent micelles were prepared by thin-film hydration. Subsequently, we characterized the physical and chemical properties of berberine plus baicalin intelligent micelles, evaluated its anti-tumor effects in vivo and in vitro. RESULTS The target molecule was successfully synthesized, and the intelligent micelles showed excellent chemical and physical properties, delayed drug release and high encapsulation efficiency. In vitro and in vivo experiments also confirmed that the intelligent micelles could effectively target tumor sites, penetrate tumor tissues, enrich in tumor cells, inhibit tumor cell proliferation, inhibit tumor cell invasion and migration, and induce tumor cell apoptosis. CONCLUSION Berberine plus baicalin intelligent micelles have excellent anti-tumor effects and no toxicity to normal tissues, which provides a new potential drug delivery strategy for the treatment of breast cancer.
Collapse
|
50
|
Malla R, Adem M, Chakraborty A. Complexity and diversity of FOXP3 isoforms: Novel insights into the regulation of the immune response in metastatic breast cancer. Int Immunopharmacol 2023; 118:110015. [PMID: 36931171 DOI: 10.1016/j.intimp.2023.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
FOXP3 is a key transcription factor in the regulation of immune responses, and recent studies have uncovered the complexity and diversity of FOXP3 isoforms in various cancers, including metastatic breast cancers (mBCs). It has dual role in the tumor microenvironment of mBCs. This review aims to provide novel insights into the complexity and diversity of FOXP3 isoforms in the regulation of the immune response in breast cancer. We discuss the molecular mechanisms underlying the function of FOXP3 isoforms, including their interaction with other proteins, regulation of gene expression, and impact on the immune system. We also highlight the importance of understanding the role of FOXP3 isoforms in breast cancer and the potential for using them as therapeutic targets. This review highlights the crucial role of FOXP3 isoforms in the regulation of the immune response in breast cancer and underscores the need for further research to fully comprehend their complex and diverse functions.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidhyalayam, Tirupati 517502, Andhra Pradesh, India
| | - Anindita Chakraborty
- Radiation Biology Laboratory, UGC-DAE-CSR, Kolkata Centere, Kolkata 700098, West Bengal, India
| |
Collapse
|