1
|
Di Lorenzo R, Chimienti G, Picca A, Trisolini L, Latronico T, Liuzzi GM, Pesce V, Leeuwenburgh C, Lezza AMS. Resveratrol impinges on retrograde communication without inducing mitochondrial biogenesis in aged rat soleus muscle. Exp Gerontol 2024; 194:112485. [PMID: 38876448 DOI: 10.1016/j.exger.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy.
| | - Lucia Trisolini
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Tiziana Latronico
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Maria Liuzzi
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32611, USA.
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
2
|
Dai K, Wang Z, Gao B, Li L, Gu F, Tao X, You W, Wang Z. APE1 regulates mitochondrial DNA damage repair after experimental subarachnoid haemorrhage in vivo and in vitro. Stroke Vasc Neurol 2024; 9:230-242. [PMID: 37612054 PMCID: PMC11221324 DOI: 10.1136/svn-2023-002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.
Collapse
Affiliation(s)
- Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Marzetti E, Calvani R, Coelho-Júnior HJ, Landi F, Picca A. Mitochondrial Quantity and Quality in Age-Related Sarcopenia. Int J Mol Sci 2024; 25:2052. [PMID: 38396729 PMCID: PMC10889427 DOI: 10.3390/ijms25042052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia, the age-associated decline in skeletal muscle mass and strength, is a condition with a complex pathophysiology. Among the factors underlying the development of sarcopenia are the progressive demise of motor neurons, the transition from fast to slow myosin isoform (type II to type I fiber switch), and the decrease in satellite cell number and function. Mitochondrial dysfunction has been indicated as a key contributor to skeletal myocyte decline and loss of physical performance with aging. Several systems have been implicated in the regulation of muscle plasticity and trophism such as the fine-tuned and complex regulation between the stimulator of protein synthesis, mechanistic target of rapamycin (mTOR), and the inhibitor of mTOR, AMP-activated protein kinase (AMPK), that promotes muscle catabolism. Here, we provide an overview of the molecular mechanisms linking mitochondrial signaling and quality with muscle homeostasis and performance and discuss the main pathways elicited by their imbalance during age-related muscle wasting. We also discuss lifestyle interventions (i.e., physical exercise and nutrition) that may be exploited to preserve mitochondrial function in the aged muscle. Finally, we illustrate the emerging possibility of rescuing muscle tissue homeostasis through mitochondrial transplantation.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
4
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Aimaretti E, Chimienti G, Rubeo C, Di Lorenzo R, Trisolini L, Dal Bello F, Moradi A, Collino M, Lezza AMS, Aragno M, Pesce V. Different Effects of High-Fat/High-Sucrose and High-Fructose Diets on Advanced Glycation End-Product Accumulation and on Mitochondrial Involvement in Heart and Skeletal Muscle in Mice. Nutrients 2023; 15:4874. [PMID: 38068732 PMCID: PMC10708161 DOI: 10.3390/nu15234874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Diets with an elevated content of fat, sucrose, or fructose are recognized models of diet-induced metabolic alterations, since they induce metabolic derangements, oxidative stress, and chronic low-grade inflammation associated with local and systemic accumulation of advanced glycation end-products (AGEs). This study used four-week-old C57BL/6 male mice, randomly assigned to three experimental dietary regimens: standard diet (SD), high-fat high-sucrose diet (HFHS), or high fructose diet (HFr), administered for 12 weeks. Plasma, heart, and tibialis anterior (TA) skeletal muscle were assayed for markers of metabolic conditions, inflammation, presence of AGEs, and mitochondrial involvement. The HFHS diet induced a tissue-specific differential response featuring (1) a remarkable adaptation of the heart to HFHS-induced heavy oxidative stress, demonstrated by an increased presence of AGEs and reduced mitochondrial biogenesis, and efficaciously counteracted by a conspicuous increase in mitochondrial fission and PRXIII expression; (2) the absence of TA adaptation to HFHS, revealed by a heavy reduction in mitochondrial biogenesis, not counteracted by an increase in fission and PRXIII expression. HFr-induced mild oxidative stress elicited tissue-specific responses, featuring (1) a decrease in mitochondrial biogenesis in the heart, likely counteracted by a tendency for increased fission and (2) a mild reduction in mitochondrial biogenesis in TA, likely counteracted by a tendency for increased fusion, showing the adaptability of both tissues to the diet.
Collapse
Affiliation(s)
- Eleonora Aimaretti
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Chiara Rubeo
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Lucia Trisolini
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, CNR, 70125 Bari, Italy;
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10125 Turin, Italy;
| | - Atefeh Moradi
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Massimo Collino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy;
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| | - Manuela Aragno
- Unit of Experimental Medicine & Clinical Pathology, Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (E.A.); (C.R.); (A.M.); (M.A.)
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (R.D.L.)
| |
Collapse
|
6
|
Kang MH, Kim YJ, Lee JH. Mitochondria in reproduction. Clin Exp Reprod Med 2023; 50:1-11. [PMID: 36935406 PMCID: PMC10030209 DOI: 10.5653/cerm.2022.05659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.
Collapse
Affiliation(s)
- Min-Hee Kang
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
7
|
Chuang TH, Chen CY, Kuan CS, Lai HH, Hsieh CL, Lee MJ, Liang YT, Chang YJ, Chen CY, Chen SU. Reduced mitochondrial DNA content correlate with poor clinical outcomes in cryotransfers with day 6 single euploid embryos. Front Endocrinol (Lausanne) 2023; 13:1066530. [PMID: 36686452 PMCID: PMC9846089 DOI: 10.3389/fendo.2022.1066530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate whether the mitochondrial DNA (mtDNA) content of a single biopsy at trophoblast correlates with the developmental potential and reproductive outcomes of blastocyst. Methods A retrospective analysis applied the dataset of 1,675 embryos with preimplantation genetic testing for aneuploidy (PGT-A) from 1,305 individuals, and 1,383 embryos involved cryotransfers of single euploid embryo between January 2015 and December 2019. The studied cohort was divided for algorithm establishment on the NGS platform (n=40), correlation of biological features (n=1,635), and correlation of reproductive outcomes (n=1,340). Of the algorithm derived from the NGS platform, the reliability and repeatability were validated via qPCR assay and inter-run controls, respectively. Of the correlation across biological features, stratification analyses were applied to evaluate the effect from a single contributor. Eventually, the correlation between the mtDNA ratios and reproductive outcomes was adjusted according to the significant effector(s). Results The mtDNA ratios showed statistically different between embryos with different days of blastocyst formation ([Day 5]: 1.06 vs. [Day 6]: 0.66, p=0.021), and between embryos with different expansion stages ([Expansion 5]: 1.05 vs. [Expansion 6]: 0.49, p=0.012). None or weakly correlated with the maternal age, morphology, ploidy, and gender. Analyzed by the different days of blastocyst formation with fixed expansion score as 5 in the euploid single embryo transfers (eSET), the day 6 eSET showed significantly lower reduced mtDNA ratio (n=139) in failure groups of fetal heartbeat (p=0.004), ongoing pregnancy (p=0.007), and live birth (p=0.01); however, no correlation between mtDNA ratios and pregnancy outcomes was observed in the day 5 eSET (n=1,201). Conclusions The study first demonstrated that mtDNA ratio was dependent on the days of blastocyst formation while expansion stage was fixed. Lower mtDNA ratios were observed in the day 6 eSET with adverse outcomes. The present stratification analyses reveal that the timeline of embryo is an important covariate to the mtDNA content.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Chih-Yen Chen
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Meng-Ju Lee
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
8
|
Combined physical exercise reverses the reduced expression of Bmal1 in the liver of aged mice. Life Sci 2022; 312:121175. [PMID: 36414092 DOI: 10.1016/j.lfs.2022.121175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Aging can modify the morphology and function of the liver, such as generating a decrease in the mitochondria content, autophagy, and cell senescence. Although exercise training has several beneficial effects on hepatic metabolism, its actions on autophagy processes, mitochondrial function, and cellular senescence need to be more widely explored. The present study verified the effects of aging and exercise on hepatic circadian markers, autophagy, and mitochondria activity in 24-month-old mice with a combined exercise training protocol. In addition, we used public datasets from human livers in several conditions and BMAL1 knockout mice. C57BL/6 mice were distributed into Control (CT, young, 6-month-old mice), sedentary old (Old Sed, sedentary, 24-month-old mice), and exercised old (Old Ex, 24-month-old mice submitted to a combined exercise training protocol). The exercise training protocol consisted of three days of endurance exercise - treadmill running, and two days of resistance exercise - climbing a ladder, for three weeks. At the end of the protocol, the liver was removed and prepared for histological analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunoblotting technique, and oxygen consumption. Heatmaps were built using a human dataset and Bmal1 knockout samples. In summary, the Old Sed had reduced strength, coordination, and balance, as well as a decrease in Bmal1 expression and the presence of degenerated liver cells. Still, this group upregulated the transcription factors related to mitochondrial biogenesis. The Old Ex group had increased strength, coordination, and balance, improved glucose sensitivity, as well as restored Bmal1 expression and the mitochondrial transcription factors. The human datasets indicated that mitochondrial markers and autophagy strongly correlate with specific liver diseases but not aging. We can speculate that mitochondrial and autophagy molecular markers alterations may depend on long-term training.
Collapse
|
9
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Chimienti G, Orlando A, Russo F, D’Attoma B, Aragno M, Aimaretti E, Lezza AMS, Pesce V. The Mitochondrial Trigger in an Animal Model of Nonalcoholic Fatty Liver Disease. Genes (Basel) 2021; 12:1439. [PMID: 34573421 PMCID: PMC8471525 DOI: 10.3390/genes12091439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading liver chronic disease featuring hepatic steatosis. Mitochondrial β-oxidation participates in the derangement of lipid metabolism at the basis of NAFLD, and mitochondrial oxidative stress contributes to the onset of the disease. We evaluated the presence and effects of mitochondrial oxidative stress in the liver from rats fed a high-fat plus fructose (HF-F) diet inducing NAFLD. Supplementation with dehydroepiandrosterone (DHEA), a multitarget antioxidant, was tested for efficacy in delaying NAFLD. A marked mitochondrial oxidative stress was originated by all diets, as demonstrated by the decrease in Superoxide Dismutase 2 (SOD2) and Peroxiredoxin III (PrxIII) amounts. All diets induced a decrease in mitochondrial DNA content and an increase in its oxidative damage. The diets negatively affected mitochondrial biogenesis as shown by decreased peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), and the COX-IV subunit from the cytochrome c oxidase complex. The reduced amounts of Beclin-1 and lipidated LC3 II form of the microtubule-associated protein 1 light chain 3 (LC3) unveiled the diet-related autophagy's decrease. The DHEA supplementation did not prevent the diet-induced changes. These results demonstrate the relevance of mitochondrial oxidative stress and the sequential dysfunction of the organelles in an obesogenic diet animal model of NAFLD.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (A.M.S.L.)
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (A.O.); (F.R.); (B.D.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (A.O.); (F.R.); (B.D.)
| | - Benedetta D’Attoma
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (A.O.); (F.R.); (B.D.)
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Torino, Italy; (M.A.); (E.A.)
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Torino, Italy; (M.A.); (E.A.)
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (A.M.S.L.)
| | - Vito Pesce
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (A.M.S.L.)
| |
Collapse
|
11
|
Chew K, Zhao L. Interactions of Mitochondrial Transcription Factor A with DNA Damage: Mechanistic Insights and Functional Implications. Genes (Basel) 2021; 12:genes12081246. [PMID: 34440420 PMCID: PMC8393399 DOI: 10.3390/genes12081246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria have a plethora of functions in eukaryotic cells, including cell signaling, programmed cell death, protein cofactor synthesis, and various aspects of metabolism. The organelles carry their own genomic DNA, which encodes transfer and ribosomal RNAs and crucial protein subunits in the oxidative phosphorylation system. Mitochondria are vital for cellular and organismal functions, and alterations of mitochondrial DNA (mtDNA) have been linked to mitochondrial disorders and common human diseases. As such, how the cell maintains the integrity of the mitochondrial genome is an important area of study. Interactions of mitochondrial proteins with mtDNA damage are critically important for repairing, regulating, and signaling mtDNA damage. Mitochondrial transcription factor A (TFAM) is a key player in mtDNA transcription, packaging, and maintenance. Due to the extensive contact of TFAM with mtDNA, it is likely to encounter many types of mtDNA damage and secondary structures. This review summarizes recent research on the interaction of human TFAM with different forms of non-canonical DNA structures and discusses the implications on mtDNA repair and packaging.
Collapse
|
12
|
Chimienti G, Picca A, Fracasso F, Russo F, Orlando A, Riezzo G, Leeuwenburgh C, Pesce V, Lezza AMS. The Age-Sensitive Efficacy of Calorie Restriction on Mitochondrial Biogenesis and mtDNA Damage in Rat Liver. Int J Mol Sci 2021; 22:ijms22041665. [PMID: 33562258 PMCID: PMC7915472 DOI: 10.3390/ijms22041665] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Calorie restriction (CR) is the most efficacious treatment to delay the onset of age-related changes such as mitochondrial dysfunction. However, the sensitivity of mitochondrial markers to CR and the age-related boundaries of CR efficacy are not fully elucidated. We used liver samples from ad libitum-fed (AL) rats divided in: 18-month-old (AL-18), 28-month-old (AL-28), and 32-month-old (AL-32) groups, and from CR-treated (CR) 28-month-old (CR-28) and 32-month-old (CR-32) counterparts to assay the effect of CR on several mitochondrial markers. The age-related decreases in citrate synthase activity, in TFAM, MFN2, and DRP1 protein amounts and in the mtDNA content in the AL-28 group were prevented in CR-28 counterparts. Accordingly, CR reduced oxidative mtDNA damage assessed through the incidence of oxidized purines at specific mtDNA regions in CR-28 animals. These findings support the anti-aging effect of CR up to 28 months. Conversely, the protein amounts of LonP1, Cyt c, OGG1, and APE1 and the 4.8 Kb mtDNA deletion content were not affected in CR-28 rats. The absence of significant differences between the AL-32 values and the CR-32 counterparts suggests an age-related boundary of CR efficacy at this age. However, this only partially curtails the CR benefits in counteracting the generalized aging decline and the related mitochondrial involvement.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (F.F.); (V.P.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go F. Vito 8, 00168 Rome, Italy;
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 11330 Stockholm, Sweden
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (F.F.); (V.P.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.R.); (A.O.); (G.R.)
| | - Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.R.); (A.O.); (G.R.)
| | - Giuseppe Riezzo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.R.); (A.O.); (G.R.)
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32611, USA;
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (F.F.); (V.P.)
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (G.C.); (F.F.); (V.P.)
- Correspondence: ; Tel.: +39-080-5443309
| |
Collapse
|
13
|
Picca A, Saini SK, Mankowski RT, Kamenov G, Anton SD, Manini TM, Buford TW, Wohlgemuth SE, Xiao R, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Hood DA, Marzetti E, Leeuwenburgh C. Altered Expression of Mitoferrin and Frataxin, Larger Labile Iron Pool and Greater Mitochondrial DNA Damage in the Skeletal Muscle of Older Adults. Cells 2020; 9:E2579. [PMID: 33276460 PMCID: PMC7760001 DOI: 10.3390/cells9122579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction and iron (Fe) dyshomeostasis are invoked among the mechanisms contributing to muscle aging, possibly via a detrimental mitochondrial-iron feed-forward loop. We quantified the labile Fe pool, Fe isotopes, and the expression of mitochondrial Fe handling proteins in muscle biopsies obtained from young and older adults. The expression of key proteins of mitochondrial quality control (MQC) and the abundance of the mitochondrial DNA common deletion (mtDNA4977) were also assessed. An inverse association was found between total Fe and the heavier Fe isotope (56Fe), indicating an increase in labile Fe abundance in cells with greater Fe content. The highest levels of labile Fe were detected in old participants with a Short Physical Performance Battery (SPPB) score ≤ 7 (low-functioning, LF). Protein levels of mitoferrin and frataxin were, respectively, higher and lower in the LF group relative to young participants and older adults with SPPB scores ≥ 11 (high-functioning, HF). The mtDNA4977 relative abundance was greater in old than in young participants, regardless of SPPB category. Higher protein levels of Pink1 were detected in LF participants compared with young and HF groups. Finally, the ratio between lipidated and non-lipidated microtubule-associated protein 1A/1B-light chain 3 (i.e., LC3B II/I), as well as p62 protein expression was lower in old participants regardless of SPPB scores. Our findings indicate that cellular and mitochondrial Fe homeostasis is perturbed in the aged muscle (especially in LF older adults), as reflected by altered levels of mitoferrin and frataxin, which, together with MQC derangements, might contribute to loss of mtDNA stability.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (F.L.); (R.B.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, SE-171 77 Stockholm, Sweden
| | - Sunil K. Saini
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - Robert T. Mankowski
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - George Kamenov
- Department of Geological Sciences, University of Florida, Gainesville, FL 32605, USA;
| | - Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - Todd M. Manini
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Stephanie E. Wohlgemuth
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (F.L.); (R.B.)
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, SE-171 77 Stockholm, Sweden
| | - Hélio José Coelho-Júnior
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (F.L.); (R.B.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Bernabei
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (F.L.); (R.B.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - David A. Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (F.L.); (R.B.)
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL 32611, USA; (S.K.S.); (R.T.M.); (S.D.A.); (T.M.M.); (S.E.W.); (R.X.); (C.L.)
| |
Collapse
|
14
|
Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW, Singh KK. Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Res Rev 2020; 63:101168. [PMID: 32896666 PMCID: PMC9375691 DOI: 10.1016/j.arr.2020.101168] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks of aging. Consistently mitochondrial DNA (mtDNA) copy number and function decline with age in various tissues. There is increasing evidence to support that mitochondrial dysfunction drives ovarian aging. A decreased mtDNA copy number is also reported during ovarian aging. However, the mitochondrial mechanisms contributing to ovarian aging and infertility are not fully understood. Additionally, investigations into mitochondrial therapies to rejuvenate oocyte quality, select viable embryos and improve mitochondrial function may help enhance fertility or extend reproductive longevity in the future. These therapies include the use of mitochondrial replacement techniques, quantification of mtDNA copy number, and various pharmacologic and lifestyle measures. This review aims to describe the key evidence and current knowledge of the role of mitochondria in ovarian aging and identify the emerging potential options for therapy to extend reproductive longevity and improve fertility.
Collapse
Affiliation(s)
- Jasmine L Chiang
- Division of Reproductive Endocrinology & Infertility, University of Alabama at Birmingham, 1700 6(th)Avenue South, Birmingham, AL, 35233, United States
| | - Pallavi Shukla
- Department of Genetics, University of Alabama at Birmingham, Kaul Genetics Building Room 630, 720 20(th)Street South, Birmingham, AL, 35294, United States; Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (NIRRH), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Kelly Pagidas
- Department of Reproductive Medicine, TCM University, 9 Jason Drive, Lincoln, RI, 02865, United States
| | - Noha S Ahmed
- Department of Genetics, University of Alabama at Birmingham, Kaul Genetics Building Room 630, 720 20(th)Street South, Birmingham, AL, 35294, United States; Department of Dermatology, Zagazig University, 44519 Shaibet an Nakareyah, Zagazig 2, Ash Sharqia Governorate, Egypt
| | - Srinivasu Karri
- Department of Genetics, University of Alabama at Birmingham, Kaul Genetics Building Room 630, 720 20(th)Street South, Birmingham, AL, 35294, United States
| | - Deidre D Gunn
- Division of Reproductive Endocrinology & Infertility, University of Alabama at Birmingham, 1700 6(th)Avenue South, Birmingham, AL, 35233, United States
| | - William W Hurd
- Division of Reproductive Endocrinology & Infertility, University of Alabama at Birmingham, 1700 6(th)Avenue South, Birmingham, AL, 35233, United States
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Kaul Genetics Building Room 630, 720 20(th)Street South, Birmingham, AL, 35294, United States; UAB Department of Genetics, Center for Women's Reproductive Health, Kaul Genetics Building University of Alabama at Birmingham, Room 620, 720 20(th)Street South, Birmingham, AL, 35294, United States.
| |
Collapse
|
15
|
Pesce V, Lezza AMS. mtDNA and Mitochondrial Stress Signaling in Human Diseases: A Special Issue. Int J Mol Sci 2020; 21:ijms21072617. [PMID: 32283804 PMCID: PMC7178107 DOI: 10.3390/ijms21072617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
The completion of the Special Issue dedicated to "mtDNA and mitochondrial stress signaling in human diseases" requests a final overall look to highlight the most valuable findings among the many presented data [...].
Collapse
Affiliation(s)
- Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy;
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy;
- Correspondence: ; Tel.: +39-080-5443309
| |
Collapse
|
16
|
Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9423593. [PMID: 32308810 PMCID: PMC7139858 DOI: 10.1155/2020/9423593] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is associated with the development of cardiovascular diseases. Cardiac aging plays a central role in cardiovascular diseases. There is accumulating evidence linking cardiac aging to mtDNA damage, including mtDNA mutation and decreased mtDNA copy number. Current wisdom indicates that mtDNA is susceptible to damage by mitochondrial reactive oxygen species (mtROS). This review presents the cellular and molecular mechanisms of cardiac aging, including autophagy, chronic inflammation, mtROS, and mtDNA damage, and the effects of mitochondrial biogenesis and oxidative stress on mtDNA. The importance of nucleoid-associated proteins (Pol γ), nuclear respiratory factors (NRF1 and NRF2), the cGAS-STING pathway, and the mitochondrial biogenesis pathway concerning the development of mtDNA damage during cardiac aging is discussed. Thus, the repair of damaged mtDNA provides a potential clinical target for preventing cardiac aging.
Collapse
|
17
|
Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9825061. [PMID: 31781358 PMCID: PMC6875274 DOI: 10.1155/2019/9825061] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Biological aging is an inevitable and independent risk factor for a wide array of chronic diseases including cardiovascular and metabolic diseases. Ample evidence has established a pivotal role for interrupted mitochondrial homeostasis in the onset and development of aging-related cardiovascular anomalies. A number of culprit factors have been suggested in aging-associated mitochondrial anomalies including oxidative stress, lipid toxicity, telomere shortening, metabolic disturbance, and DNA damage, with recent findings revealing a likely role for compromised mitochondrial dynamics and mitochondrial quality control machinery such as autophagy. Mitochondria undergo consistent fusion and fission, which are crucial for mitochondrial homeostasis and energy adaptation. Autophagy, in particular, mitochondria-selective autophagy, namely, mitophagy, refers to a highly conservative cellular process to degrade and clear long-lived or damaged cellular organelles including mitochondria, the function of which gradually deteriorates with increased age. Mitochondrial homeostasis could be achieved through a cascade of independent but closely related processes including fusion, fission, mitophagy, and mitochondrial biogenesis. With improved health care and increased human longevity, the ever-rising aging society has imposed a high cardiovascular disease prevalence. It is thus imperative to understand the role of mitochondrial homeostasis in the regulation of lifespan and healthspan. Targeting mitochondrial homeostasis should offer promising novel therapeutic strategies against aging-related complications, particularly cardiovascular diseases.
Collapse
|