1
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024:e00464. [PMID: 39438166 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
He L, Li M, Zhang Y, Li Q, Fang S, Chen G, Xu X. Neuroinflammation Plays a Potential Role in the Medulla Oblongata After Moderate Traumatic Brain Injury in Mice as Revealed by Nontargeted Metabonomics Analysis. J Neurotrauma 2024; 41:e2026-e2038. [PMID: 38695184 DOI: 10.1089/neu.2023.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Moderate traumatic brain injury (mTBI) involves a series of complex pathophysiological processes in not only the area in direct contact with mechanical violence but also in other brain regions far from the injury site, which may be important factors influencing subsequent neurological dysfunction or death. The medulla oblongata (MO) is a key area for the maintenance of basic respiratory and circulatory functions, whereas the pathophysiological processes after mTBI have rarely drawn the attention of researchers. In this study, we established a closed-head cortical contusion injury model, identified 6 different time points that covered the acute, subacute, and chronic phases, and then used nontargeted metabolomics to identify and analyze the changes in differential metabolites (DMs) and metabolic pathways in the MO region. Our results showed that the metabolic profile of the MO region underwent specific changes over time: harmaline, riboflavin, and dephospho-coenzyme A were identified as the key DMs and play important roles in reducing inflammation, enhancing antioxidation, and maintaining homeostasis. Choline and glycerophospholipid metabolism was identified as the key pathway related to the changes in MO metabolism at different phases. In addition, we confirmed increases in the levels of inflammatory factors and the activation of astrocytes and microglia by Western blot and immunofluorescence staining, and these findings were consistent with the nontargeted metabolomic results. These findings suggest that neuroinflammation plays a central role in MO neuropathology after mTBI and provide new insights into the complex pathophysiologic mechanisms involved after mTBI.
Collapse
Affiliation(s)
- Liangchao He
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Mingming Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Yonghao Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Shiyong Fang
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Guang Chen
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
4
|
Che Y, Wu W, Qian X, Sheng Z, Zhang W, Zheng J, Chen J, Wang Y. The neuroprotection of controlled decompression after traumatic epidural intracranial hypertension through suppression of autophagy via PI3K/Akt signaling pathway. Heliyon 2024; 10:e23753. [PMID: 38226265 PMCID: PMC10788442 DOI: 10.1016/j.heliyon.2023.e23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/25/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Acute intracranial hypertension (AIH) is a common and tricky symptom that inflicts upon patients after traumatic brain injury (TBI). A variety of clinical options have been applied for the management of AIH, such as physiotherapy, medication, surgery and combination therapy. Specifically, controlled decompression (CDC) alleviates the extent of brain injury and reduces the incidence of a series of post-TBI complications, thereby enhancing the prognosis of patients suffering from acute intracranial hypertension. The objective of the present project is to illuminate the potential molecular mechanism that underlies the neuroprotective effects of CDC in a rat model of traumatic epidural intracranial hypertension (TEIH). Herein, we observed the functional recovery, the degree of brain edema, the level of apoptosis, the expressions of neuronal cell autophagy-related signaling pathway proteins (including Akt, p-Akt, LC3 and Beclin-1) in rat TEIH model at 24 h post-surgery. The results showed in comparison with rapid decompression (RDC), CDC reduced the degree of brain edema, diminished the level of cellular apoptosis and enhanced neurological function, and whereas the neuroprotective effect of CDC could be reversed by rapamycin (Rap). The expressions of Beclin-1 and LC3 in CDC group were significantly lower than those of RDC group, and the expression levels of these two proteins were significantly elevated after the addition of Rap. The expression of p-Akt in CDC group was considerably enhanced than RDC group. After the addition of LY294002, a PI3K/Akt pathway inhibitor, p-Akt protein expression was reduced, and the neuroprotective effect of the rats was markedly inhibited. Taken together, our data demonstrate the superior neuroprotective effect of CDC with regard to alleviating early brain edema, improving the neurological status, suppressing apoptosis and inhibiting neuronal autophagy via triggering PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Che
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Wei Wu
- Department of Laboratory, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Xiao Qian
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Zhengwei Sheng
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Wang Zhang
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Jie Zheng
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Junhui Chen
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| | - Yuhai Wang
- Wuxi Clinical College of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
6
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|
7
|
Wang Q, Mergia E, Koesling D, Mittmann T. Nitric Oxide/Cyclic Guanosine Monophosphate Signaling via Guanylyl Cyclase Isoform 1 Mediates Early Changes in Synaptic Transmission and Brain Edema Formation after Traumatic Brain Injury. J Neurotrauma 2021; 38:1689-1701. [PMID: 33427032 DOI: 10.1089/neu.2020.7364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) often induces structural damage, disruption of the blood-brain barrier (BBB), neurodegeneration, and dysfunctions of surviving neuronal networks. Nitric oxide (NO) signaling has been suggested to affect brain functions after TBI. The NO exhibits most of its biological effects by activation of the primary targets-guanylyl cyclases (NO-GCs), which exists in two isoforms (NO-GC1 and NO-GC2), and the subsequently produced cyclic guanosine monophosphate (cGMP). However, the specific function of the NO-NO-GCs-cGMP pathway in the context of brain injury is not fully understood. To investigate the specific role of the isoform NO-GC1 early after brain injuries, we performed an in vivo unilateral controlled cortical impact (CCI) in the somatosensory cortex of knockout mice lacking NO-GC1 and their wild-type (WT) littermates. Morphological and electrophysiological changes of cortical neurons located 500 μm distant from the lesion border were studied early (24 h) after TBI. The CCI-operated WT mice exhibited significant BBB disruption, an impairment of dendritic spine morphology, a reduced pre-synaptic glutamate release, and less neuronal activity in the ipsilateral cortical network. The impaired ipsilateral neuronal excitability was associated with increased A-type K+ currents (IA) in the WT mice early after TBI. Interestingly, NO-GC1 KO mice revealed relatively less BBB rupture and a weaker brain edema formation early after TBI. Further, lack of NO-GC1 also prevented the impaired synaptic transmission and network function that were observed in TBI-treated WT mice. These data suggest that NO-GC1 signaling mediates early brain damage and the strength of ipsilateral cortical network in the early phase after TBI.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evanthia Mergia
- Institute of Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Doris Koesling
- Institute of Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Mi Z, Liu H, Rose ME, Ma X, Reay DP, Ma J, Henchir J, Dixon CE, Graham SH. Abolishing UCHL1's hydrolase activity exacerbates TBI-induced axonal injury and neuronal death in mice. Exp Neurol 2020; 336:113524. [PMID: 33159930 DOI: 10.1016/j.expneurol.2020.113524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023]
Abstract
Ubiquitin (Ub) C-terminal hydrolase L1 (UCHL1) is a multifunctional protein that is expressed in neurons throughout brain at high levels. UCHL1 deletion is associated with axonal degeneration, progressive sensory motor ataxia, and premature death in mice. UCHL1 has been hypothesized to play a role in the pathogenesis of neurodegenerative diseases and recovery after neuronal injury. UCHL1 hydrolyzes Ub from polyubiquitinated (poly-Ub) proteins, but also may ligate Ub to select neuronal proteins, and interact with cytoskeletal proteins. These and other mechanisms have been hypothesized to underlie UCHL1's role in neurodegeneration and response to brain injury. A UCHL1 knockin mouse containing a C90A mutation (C90A) devoid of hydrolase activity was constructed. The C90A mouse did not develop the sensory and motor deficits, degeneration of the gracile nucleus and tract, or premature death as seen in UCHL1 deficient mice. C90A and wild type (WT) mice were subjected to the controlled cortical impact (CCI) model of traumatic brain injury (TBI), and cell death, axonal injury and behavioral outcome were assessed. C90A mice exhibited decreased spared tissue volume, greater loss of CA1 hippocampal neurons and greater axonal injury as detected using anti-amyloid precursor protein (APP) antibody and anti- non-phosphorylated neurofilament H (SMI-32) antibody immunohistochemistry after CCI compared to WT controls. Poly-Ub proteins and Beclin-1 were elevated after CCI in C90A mice compared to WT controls. Vestibular motor deficits assessed using the beam balance test resolved by day 5 after CCI in WT mice but not in C90A mice. These results suggest that the hydrolase activity of UCHL1 does not account for the progressive neurodegeneration and premature death seen in mice that do not express full length UCHL1. The hydrolase activity of UCHL1 contributes to the function of the ubiquitin proteasome pathway (UPP), ameliorates activation of autophagy, and improves motor recovery after CCI. Thus, UCHL1 hydrolase activity plays an important role in acute injury response after TBI.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Daniel P Reay
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jeremy Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurosurgery, University of Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, PA, USA.
| |
Collapse
|
9
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
10
|
Zhong L, Zhang H, Ding ZF, Li J, Lv JW, Pan ZJ, Xu DX, Yin ZS. Erythropoietin-Induced Autophagy Protects Against Spinal Cord Injury and Improves Neurological Function via the Extracellular-Regulated Protein Kinase Signaling Pathway. Mol Neurobiol 2020; 57:3993-4006. [PMID: 32647973 DOI: 10.1007/s12035-020-01997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to explore the neuroprotective molecular mechanisms of erythropoietin (EPO) in rats following spinal cord injury (SCI). First, a standard SCI model was established. After drug or saline treatment was administered, locomotor function was evaluated in rats using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. H&E, Nissl, and TUNEL staining were performed to assess the ratio of cavities, number of motor neurons, and apoptotic cells in the damaged area. The relative protein and mRNA expressions were examined using western blot and qRT-PCR analyses, and the inflammatory markers, axon special protein, and neuromuscular junctions (NMJs) were detected by immunofluorescence. Both doses of EPO notably improved locomotor function, but high-dose EPO was more effective than low-dose EPO. Moreover, EPO reduced the cavity ratio, cell apoptosis, and motor neuron loss in the damaged area, but enhanced the autophagy level and extracellular-regulated protein kinase (ERK) activity. Treatment with an ERK inhibitor significantly prevented the effect of EPO on SCI, and an activator mimicked the benefits of EPO. Further investigation revealed that EPO promoted SCI-induced autophagy via the ERK signaling pathway. EPO activates autophagy to promote locomotor function recovery in rats with SCI via the ERK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.,Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Zheng-Fei Ding
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Jian Li
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin-Wei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zheng-Jun Pan
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China. .,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
11
|
Zeng Z, Zhang Y, Jiang W, He L, Qu H. Modulation of autophagy in traumatic brain injury. J Cell Physiol 2019; 235:1973-1985. [PMID: 31512236 DOI: 10.1002/jcp.29173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications.
Collapse
Affiliation(s)
- Zhiqing Zeng
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Yao Zhang
- Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde City, Hunan Province, China
| | - Weiping Jiang
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Lu He
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongtao Qu
- Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|