1
|
van der Linden RTM, van der Aa HPA, van Nispen RMA. The Role of Season, Sunlight, and Light Sensitivity in Self-Reported Depressive Symptoms by Adults With Visual Impairment. Transl Vis Sci Technol 2024; 13:2. [PMID: 39352713 PMCID: PMC11451827 DOI: 10.1167/tvst.13.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/07/2024] [Indexed: 10/06/2024] Open
Abstract
Purpose Depression is common in people with visual impairment, and the onset may be influenced by aspects related to light. The aim was to explore the associations of season, sunlight, and light sensitivity with depressive symptoms in this population. Methods Data regarding self-reported depressive symptoms from seven cross-sectional studies conducted between 2009 and 2018 were combined with information concerning sensitivity to light, season on the date of self-report, and potential sunlight exposure in the 2 weeks prior to self-report. The latter was calculated by summing up the daily sunlight hours detected by the weather station nearest to the residence of each participant. Logistic regression analyses were performed to investigate the associations. Results Participants (N = 1925) experienced clinically significant depressive symptoms most often in winter (32.8%), followed by summer (27.4%), spring (26.2%), and fall (24.2%). The odds of experiencing depression in fall were significantly lower compared with winter (odds ratio [OR] = 0.67, P = 0.007). An increase in the hours of sunlight in the participant's environment was associated with lower odds to experience depressive symptoms (OR = 0.995, P = 0.011). People who were sensitive to bright light had higher odds of experiencing depressive symptoms (OR = 1.80, P < 0.001). Other differences found between subgroups were not consistent. Conclusions It seems likely that season, sunlight, and light sensitivity play a role in depression among people with visual impairment. Further research is needed, exploring the experiences in this population, the actual sunlight exposure using objective measures, and treatment options. Translational Relevance Clinicians should consider these factors when treating visually impaired patients with depressive symptoms.
Collapse
Affiliation(s)
- Rob T M van der Linden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Ophthalmology, Amsterdam, the Netherlands
- Amsterdam Public Health, Quality of Care, Aging and Later Life, Amsterdam, the Netherlands
| | - Hilde P A van der Aa
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Ophthalmology, Amsterdam, the Netherlands
- Amsterdam Public Health, Quality of Care, Aging and Later Life, Amsterdam, the Netherlands
| | - Ruth M A van Nispen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Ophthalmology, Amsterdam, the Netherlands
- Amsterdam Public Health, Quality of Care, Aging and Later Life, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Platzl C, Kaser-Eichberger A, Trost A, Strohmaier C, Stone R, Nickla D, Schroedl F. Melanopsin in the human and chicken choroid. Exp Eye Res 2024; 247:110053. [PMID: 39151779 PMCID: PMC11542372 DOI: 10.1016/j.exer.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Dept. of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Richard Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debora Nickla
- Dept. of Biomedical Sciences and Disease, The New England College of Optometry, Boston, USA
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Gibertoni G, Hromov A, Piffaretti F, Geiser MH. Development of an Innovative Pupillometer Able to Selectively Stimulate the Eye's Fundus Photoreceptor Cells. Diagnostics (Basel) 2024; 14:1940. [PMID: 39272724 PMCID: PMC11394444 DOI: 10.3390/diagnostics14171940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Recent advancements in clinical research have identified the need to combine pupillometry with a selective stimulation of the eye's photoreceptor cell types to broaden retinal and neuroretinal health assessment opportunities. Our thorough analysis of the literature revealed the technological gaps that currently restrict and hinder the effective utilization of a method acknowledged to hold great potential. The available devices do not adequately stimulate the photoreceptor types with enough contrast and do not guarantee seamless device function integration, which would enable advanced data analysis. RetinaWISE is an advanced silencing pupillometry device that addresses these deficiencies. It combines a Maxwellian optical arrangement with advanced retinal stimulation, allowing for calibrated standard measurements to generate advanced and consistent results across multiple sites. The device holds a Class 1 CE marking under EU regulation 2017/745, thus facilitating clinical research progress.
Collapse
Affiliation(s)
- Giovanni Gibertoni
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anton Hromov
- Oculox Technologies SA, Industria 3, 6933 Muzzano, Switzerland
| | | | - Martial H Geiser
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Oculox Technologies SA, Industria 3, 6933 Muzzano, Switzerland
| |
Collapse
|
4
|
Barlattani T, Soltmann B, D'Amelio C, Socci V, Pacitti F, Pompili M, Ritter P. The influence of PER3 VNTR genotypes on the age of onset in a group of bipolar I disorder patients: an exploratory study. Int J Bipolar Disord 2024; 12:25. [PMID: 38992306 PMCID: PMC11239620 DOI: 10.1186/s40345-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND PER3 is a circadian gene that contains a variable number of tandem repeats (VNTR) which codifies for three genotypes: 4/4; 4/5; and 5/5 and is involved in non-visual response to light, a critical process associated with bipolar disorder onset. Benedetti et al. (Neurosci Lett 445(2):184-7) related this VNTR with bipolar disorder age of onset and linked genotype 5/5 with an earlier onset. In this study, we aimed to investigate these associations of PER3 VNTR genotypes with age of onset in a homogenous sample of German patients with bipolar I disorder through Kaplan-Meier curves. METHODS 45 patients were enrolled and divided into three groups according to PER3 VNTR genotypes. Recognizing common biological features, we built a combined group of -5 allele carriers (4/5 + 5/5). As a primary outcome, Kaplan-Meier analysis was conducted to delineate the three genotypes' influence on age of onset. The secondary Kaplan-Meier analysis aimed to evaluate the relation between the 4/4 homozygotes group and the combined group (4/5 + 5/5) with age of onset. Finally, we proceeded to compare groups through a Log Rank Test and performed an analysis of covariance (ANCOVA). RESULTS The Kaplan-Meier analysis with three separate genotypes didn't replicate the findings of Benedetti's study. The analysis comparing genotype 4/4 with the combined group showed the influence of PER3 VNTR variants on the age of onset and relates genotype 4/4 to an earlier onset. ANCOVA between the combined and the 4/4 genotype groups, correlated genotype 4/4 with an increased number of depressive episodes. CONCLUSION This study showed no significant effect of PER3 VNTR genotypes on the age of onset and in linking genotype 5/5 with an earlier onset age. Contrasting results may arise from intrinsic differences between the two studies but also shed light on hypothetically different levels of functioning of PER3 VNTR genotypes in the context of bipolar pathology. Further studies will require bigger and more homogeneous clinical samples.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy.
| | - Bettina Soltmann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Chiara D'Amelio
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Valentina Socci
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Francesca Pacitti
- Chair of Psychiatry, Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, 67100, Italy
| | - Maurizio Pompili
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Unit of Psychiatry, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Mateos-Olivares M, Pastor-Idoate S, Martín-Vallejo J, García-Vazquez C, Pastor JC, Usategui-Martín R, Sobas EM. Stress and sleep deprivation-related biomarkers in saliva in patients with retinitis pigmentosa. PLoS One 2024; 19:e0304261. [PMID: 38870197 PMCID: PMC11175419 DOI: 10.1371/journal.pone.0304261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE Patients with Retinitis Pigmentosa (RP) commonly experience sleep-related issues and are susceptible to stress. Moreover, variatiaons in their vision are often linked to anxiety, stress and drowsiness, indicating that stress and sleep deprivation lead to a decline in vision, and vision improves when both are mitigated. The objective of this study was to investigate the utility of salivary biomarkers as biochemical indicators of anxiety and sleep deprivation in RP patients. METHODS Seventy-eight RP patients and 34 healthy controls were included in this observational study. Anxiety and sleep-quality questionnaires, a complete ophthalmological exam for severity grading and, the collection of salivary samples from participants were assessed for participants. The activity of biomarkers was estimated by ELISA, and statistical analysis was performed to determine associations between the parameters. Associations between underlying psychological factors, grade of disease severity, and biomarkers activity were also examined. RESULTS Fifty-two (67%) of patients had a severe RP, and 26 (33%) had a mild-moderate grade. Fifty-eight (58,9%) patients reported severe levels of anxiety and 18 (23.,1%) a high level. Forty-six (59%) patients obtained pathological values in sleep-quality questionaries and 43 (55.1%) in sleepiness. Patients with RP exhibited significant differences in testosterone, cortisol, sTNFαRII, sIgA and melatonin as compared to controls and patients with a mild-moderate and advanced stage of disease showed greater differences. In covariate analysis, patients with a severe anxiety level also showed greater differences in mean salivary cortisol, sTNFαRII and melatonin and male patients showed lower IgA levels than female. CONCLUSIONS The present findings suggest that salivary biomarkers could be suitable non-invasive biochemical markers for the objective assessment of sleep deprivation and anxiety in RP patients. Further research is needed to characterize the effects of untreated negative psychological states and sleep deprivation on increased variability of vision and disease progression, if any.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results (RICORS), Carlos III Health Institute, Madrid, Spain
| | - Javier Martín-Vallejo
- Department of Statistics, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | | | - José Carlos Pastor
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results (RICORS), Carlos III Health Institute, Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results (RICORS), Carlos III Health Institute, Madrid, Spain
- Faculty of Medicine, Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Eva María Sobas
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results (RICORS), Carlos III Health Institute, Madrid, Spain
- Faculty of Nursing, University of Valladolid, Valladolid, Spain
| |
Collapse
|
6
|
Trujillo-Rangel WÁ, Acuña-Vaca S, Padilla-Ponce DJ, García-Mercado FG, Torres-Mendoza BM, Pacheco-Moises FP, Escoto-Delgadillo M, García-Benavides L, Delgado-Lara DLC. Modulation of the Circadian Rhythm and Oxidative Stress as Molecular Targets to Improve Vascular Dementia: A Pharmacological Perspective. Int J Mol Sci 2024; 25:4401. [PMID: 38673986 PMCID: PMC11050388 DOI: 10.3390/ijms25084401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.
Collapse
Affiliation(s)
- Walter Ángel Trujillo-Rangel
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| | - Sofía Acuña-Vaca
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| | - Danna Jocelyn Padilla-Ponce
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Florencia Guillermina García-Mercado
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico; (B.M.T.-M.); (M.E.-D.)
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Fermín P. Pacheco-Moises
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán No. 1421, Guadalajara 44430, Jalisco, Mexico;
| | - Martha Escoto-Delgadillo
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico; (B.M.T.-M.); (M.E.-D.)
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez No. 2100, Zapopan 45200, Jalisco, Mexico
| | - Leonel García-Benavides
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, Ejido San José Tateposco, Tonalá 45425, Jalisco, Mexico; (W.Á.T.-R.); (D.J.P.-P.); (F.G.G.-M.); (L.G.-B.)
| | - Daniela L. C. Delgado-Lara
- Departamento de Formación Universitaria Ciencias de la Salud, Universidad Autónoma de Guadalajara, Av. Patria 1201, Lomas del Valle, Zapopan 45129, Jalisco, Mexico;
| |
Collapse
|
7
|
Madsen HØ, Hageman I, Martiny K, Faurholt-Jepsen M, Kolko M, Henriksen TEG, Kessing LV. BLUES - stabilizing mood and sleep with blue blocking eyewear in bipolar disorder - a randomized controlled trial study protocol. Ann Med 2023; 55:2292250. [PMID: 38109922 PMCID: PMC10732202 DOI: 10.1080/07853890.2023.2292250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023] Open
Abstract
INTRODUCTION Chronotherapeutic interventions for bipolar depression and mania are promising interventions associated with rapid response and benign side effect profiles. Filtering of biologically active short wavelength (blue) light by orange tinted eyewear has been shown to induce antimanic and sleep promoting effects in inpatient mania. We here describe a study protocol assessing acute and long-term stabilizing effects of blue blocking (BB) glasses in outpatient treatment of bipolar disorder. PATIENTS AND METHODS A total of 150 outpatients with bipolar disorder and current symptoms of (hypo)-mania will be randomized 1:1 to wear glasses with either high (99%) (intervention group) or low (15%) (control group) filtration of short wavelength light (<500 nm). Following a baseline assessment including ratings of manic and depressive symptoms, sleep questionnaires, pupillometric evaluation and 48-h actigraphy, participants will wear the glasses from 6 PM to 8 AM for 7 consecutive days. The primary outcome is the between group difference in change in Young Mania Rating Scale scores after 7 days of intervention (day 9). Following the initial treatment period, the long-term stabilizing effects on mood and sleep will be explored in a 3-month treatment paradigm, where the period of BB treatment is tailored to the current symptomatology using a 14-h antimanic schedule during (hypo-) manic episodes (BB glasses or dark bedroom from 6 PM to 8 AM) and a 2-h maintenance schedule (BB glasses on two hours prior to bedtime/dark bedroom) during euthymic and depressive states.The assessments will be repeated at follow-up visits after 1 and 3 months. Throughout the 3-month study period, participants will perform continuous daily self-monitoring of mood, sleep and activity in a smartphone-based app. Secondary outcomes include between-group differences in actigraphic sleep parameters on day 9 and in day-to-day instability in mood, sleep and activity, general functioning and objective sleep markers (actigraphy) at weeks 5 and 15. TRIAL REGISTRATION The trial will be registered at www.clinicaltrials.gov prior to initiation and has not yet received a trial reference. ADMINISTRATIVE INFORMATION The current paper is based on protocol version 1.0_31.07.23. Trial sponsor: Lars Vedel Kessing.
Collapse
Affiliation(s)
- Helle Østergaard Madsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Klaus Martiny
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Faurholt-Jepsen
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tone E. G. Henriksen
- Department of Research and Innovation, Division of Mental Health Care, Valen Hospital, Fonna Health Authority, Kvinnherad, Norway
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Mental Health Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Pastor-Idoate S, Mateos-Olivares M, Sobas EM, Marcos M, Toribio A, Pastor JC, Usategui Martín R. Short-Wavelength Light-Blocking Filters and Oral Melatonin Administration in Patients With Retinitis Pigmentosa: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e49196. [PMID: 37971796 PMCID: PMC10690531 DOI: 10.2196/49196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The medical community is beginning to recognize that retinitis pigmentosa (RP), due to its disabling progression, eventually leads to a reduction in the patient´s quality of life, a direct economic impact, and an increase in the burden on the health care system. There is no curative treatment for the origin of the disease, and most of the current interventions fail in reducing the associated negative psychological states, such as anxiety and depression, which lead to increased variability of vision and pose a continuous threat to the patient's independence. OBJECTIVE The aim of this study is to assess the effect of oral melatonin (OM) administration alone and combined with short-wavelength light (SWL)-blocking filters on patients with RP and test their effectiveness in improving the level of stress and sleep problems in many of these patients. METHODS We have developed a low-cost therapy protocol for patients with RP with sleep disorders and negative psychological stress. Patients will be randomized to receive a combined intervention with SWL-blocking filters and OM, SWL-blocking filters alone, or OM alone. There will also be a nonintervention arm as a control group. This study will be conducted across 2 retinal units in patients with RP with sleep disorders and high perceived stress and anxiety score reports. Patients will be assessed in the preintervention period, weekly during the 4 weeks of intervention, and then at 6 months postintervention. The primary outcomes are the differences in changes from baseline to postintervention in hormone release (α-amylase, cortisol, and melatonin) and sleep quality, as measured with the visual analog scale. Secondary outcome measures include clinical macular changes, as measured with optical coherence tomography and optical coherence tomography angiography; retinal function, as measured using the visual field and best-corrected visual acuity; sleep data collected from personal wearables; and several patient-reported variables, such as self-recorded sleep diaries, quality of life, perceived stress, and functional status. RESULTS This project is still a study protocol and has not yet started. Bibliographic research for information for its justification began in 2020, and this working group is currently seeking start-up funding. As soon as we have the necessary means, we will proceed with the registration and organization prior to the preliminary phase. CONCLUSIONS In this feasibility randomized clinical controlled trial, we will compare the effects of SWL blocking alone, administration of OM alone, and a combined intervention with both in patients with RP. We present this study so that it may be replicated and incorporated into future studies at other institutions, as well as applied to additional inherited retinal dystrophies. The goal of presenting this protocol is to aid recent efforts in reducing the impact of sleeping disorders and other psychological disorders on the quality of life in patients with RP and recovering their self-autonomy. In addition, the results of this study will represent a significant step toward developing a novel low-cost therapy for patients with RP and validating a novel therapeutic target. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49196.
Collapse
Affiliation(s)
- Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Milagros Mateos-Olivares
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Caceres, Caceres, Spain
| | - Eva María Sobas
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Nursing School, University of Valladolid, Valladolid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Alfredo Toribio
- Federation of Associations of Hereditary Retinal Dystrophies in Spain, Valladolid, Spain
| | - José Carlos Pastor
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Ricardo Usategui Martín
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Cellular Biology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Liu WJ, Chen JY, Niu SR, Zheng YS, Lin S, Hong Y. Recent advances in the study of circadian rhythm disorders that induce diabetic retinopathy. Biomed Pharmacother 2023; 166:115368. [PMID: 37647688 DOI: 10.1016/j.biopha.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe microvascular complication of diabetes mellitus and a major cause of blindness in young adults. Multiple potential factors influence DR; however, the exact mechanisms are poorly understood. Advanced treatments for DR, including laser therapy, vitrectomy, and intraocular drug injections, slow the disease's progression but fail to cure or reverse visual impairment. Therefore, additional effective methods to prevent and treat DR are required. The biological clock plays a crucial role in maintaining balance in the circadian rhythm of the body. Poor lifestyle habits, such as irregular routines and high-fat diets, may disrupt central and limbic circadian rhythms. Disrupted circadian rhythms can result in altered glucose metabolism and obesity. Misaligned central and peripheral clocks lead to a disorder of the rhythm of glucose metabolism, and chronically high sugar levels lead to the development of DR. We observed a disturbance in clock function in patients with diabetes, and a misaligned clock could accelerate the development of DR. In the current study, we examine the relationship between circadian rhythm disorders, diabetes, and DR. We conclude that: 1) abnormal function of the central clock and peripheral clock leads to abnormal glucose metabolism, further causing DR and 2) diabetes causes abnormal circadian rhythms, further exacerbating DR. Thus, our study presents new insights into the prevention and treatment of DR.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Jie-Yu Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Si-Ru Niu
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Yi-Sha Zheng
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Yu Hong
- Department of Ophthalmology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
10
|
Xu X, Shi J, Zhang C, Shi L, Bai Y, Shi W, Wang Y. Effects of artificial light with different spectral composition on eye axial growth in juvenile guinea pigs. Eur J Histochem 2023; 67. [PMID: 36786079 DOI: 10.4081/ejh.2023.3634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to investigate the effect of artificial light with different spectral composition and distribution on axial growth in guinea pigs. Three-week-old guinea pigs were randomly assigned to groups exposed to natural light, low color temperature light-emitting diode (LED) light, two full spectrum artificial lights (E light and Julia light) and blue light filtered light with the same intensity. Axial lengths of guinea pigs' eyes were measured by A-scan ultrasonography prior to the experiment and every 2 weeks during the experiment. After light exposure for 12 weeks, retinal dopamine (DA), dihydroxy-phenylacetic acid (DOPAC) levels and DOPAC/DA ratio were analyzed by high-pressure liquid chromatography electrochemical detection and retinal histological structure was observed. Retinal melanopsin expression was detected using Western blot and immunohistochemistry. After exposed to different kinds of light with different spectrum for 4 weeks, the axial lengths of guinea pigs' eyes in LED group and Julia light group were significantly longer than those of natural light group. After 6 weeks, the axial lengths in LED light group were significantly longer than those of E light group and blue light filtered group. The difference between axial lengths in E light group and Julia light group showed statistical significance after 8 weeks (p<0.05). After 12 weeks of light exposure, the comparison of retinal DOPAC/DA ratio and melanopsin expression in each group was consistent with that of axial length. In guinea pigs, continuous full spectrum artificial light with no peak or valley can inhibit axial elongation via retinal dopaminergic and melanopsin system.
Collapse
Affiliation(s)
- Xinyu Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Jiayu Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Chuanwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Lixin Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yujie Bai
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Wei Shi
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing.
| | - Yuliang Wang
- Department of Ophthalmology, Affiliated hospital of Nanjing University of Chinese Medicine, Nanjing.
| |
Collapse
|
11
|
Fu Y, Liu S, Dong Y, Gan Y, Guo X, Liu H, Xu Q, Yuan R, Ning A, Hong W, Peng Y, Yu S. Chronic restraint stress-induced depression-like behavior is mediated by upregulation of melanopsin expression in C57BL/6 mice retina. Psychopharmacology (Berl) 2023; 240:283-293. [PMID: 36580134 DOI: 10.1007/s00213-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is associated with circadian disturbances in which melanopsin was a key mechanism. Further studies have demonstrated that melanopsin gene variations are associated with some depressive disorders and aberrant light can impair mood through melanopsin-expressing retinal ganglion cells (mRGCs). The goal of this study was to explore the direct relationship between depression and melanopsin. METHODS Adult C57BL/6 male mice were physically restrained for 16 h in a 50-ml polypropylene centrifuge tube and all behavioral tests were performed after CRS treatment. Western blot analysis and immunofluorescence were used to detect melanopsin expression in the retina of C57BL/6 mice. And we observed the change of the electrophysiological function and release of glutamate of mRGCs. RESULTS The melanopsin expression upregulate in mRGCs of chronic restraint stress (CRS)-treating mice which exhibit depression-like behavior. The frequency of blue light-induced action potentials and light-induced glutamate release mediated by melanopsin also increase significantly. This change of melanopsin is mediated by the CRS-induced glucocorticoid. CONCLUSIONS CRS may induce the depression-like behavior in mice via glucocorticoid-melanopsin pathway. Our findings provide a novel mechanistic link between CRS-induced depression and melanopsin in mice.
Collapse
Affiliation(s)
- Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shanshan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yigang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education & Health Care, East China Normal University, Shanghai, 200241, China
| | - Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education & Health Care, East China Normal University, Shanghai, 200241, China
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailing Ning
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Hong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanmin Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Bergum N, Berezin CT, King CM, Vigh J. µ-Opioid Receptors Expressed by Intrinsically Photosensitive Retinal Ganglion Cells Contribute to Morphine-Induced Behavioral Sensitization. Int J Mol Sci 2022; 23:15870. [PMID: 36555511 PMCID: PMC9781919 DOI: 10.3390/ijms232415870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Opioid drugs are the most effective tools for treating moderate to severe pain. Despite their analgesic efficacy, long-term opioid use can lead to drug tolerance, addiction, and sleep/wake disturbances. While the link between opioids and sleep/wake problems is well-documented, the mechanism underlying opioid-related sleep/wake problems remains largely unresolved. Importantly, intrinsically photosensitive retinal ganglion cells (ipRGCs), the cells that transmit environmental light/dark information to the brain's sleep/circadian centers to regulate sleep/wake behavior, express μ-opioid receptors (MORs). In this study, we explored the potential contribution of ipRGCs to opioid-related sleep/circadian disruptions. Using implanted telemetry transmitters, we measured changes in horizontal locomotor activity and body temperature in mice over the course of a chronic morphine paradigm. Mice lacking MORs expressed by ipRGCs (McKO) exhibited reduced morphine-induced behavioral activation/sensitization compared with control littermates with normal patterns of MOR expression. Contrastingly, mice lacking MORs globally (MKO) did not acquire morphine-induced locomotor activation/sensitization. Control mice also showed morphine-induced hypothermia in both the light and dark phases, while McKO littermates only exhibited morphine-induced hypothermia in the dark. Interestingly, only control animals appeared to acquire tolerance to morphine's hypothermic effect. Morphine, however, did not acutely decrease the body temperature of MKO mice. These findings support the idea that MORs expressed by ipRGCs could contribute to opioid-related sleep/wake problems and thermoregulatory changes.
Collapse
Affiliation(s)
- Nikolas Bergum
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Casey-Tyler Berezin
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Connie M. King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jozsef Vigh
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Ji Q, Wang X, Zhao W, Wills M, Yun HJ, Tong Y, Cai L, Geng X, Ding Y. Effects of remote ischemic conditioning on sleep complaints in Parkinson's disease–rationale, design, and protocol for a randomized controlled study. Front Neurol 2022; 13:932199. [PMID: 35959392 PMCID: PMC9359623 DOI: 10.3389/fneur.2022.932199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Sleep disturbances are common non-motor symptoms of Parkinson's disease. The symptoms affect the quality of patients' life by impeding normal sleep cycles and causing excessive daytime sleepiness. Remote Ischemic Conditioning (RIC) is a therapy often used for ischemic stroke patients to minimize infarct size and maximize post-stroke neurological function. Animal experiments have shown that RIC plays a protective role for retinal ganglion cells and other critical areas of the brain of Parkinson's disease. However, whether RIC improves excessive daytime sleepiness (EDS) for patients with Parkinson's disease remains to be determined. Methods This is a single-center, double-blind, and randomized controlled trial, which includes patients with Parkinson's disease with EDS. All recruited patients will be randomly assigned either to the RIC or the control group (i.e., sham-RIC) with 20 patients in each group. Both groups receive RIC or sham-RIC treatment once a day for 28 days within 24 h of enrollment. Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Parkinson Disease Sleep Scale-2 (PDSS-2), Parkinson's Disease Questionnaire39 (PDQ39) score scales, and adverse events, such as inability to tolerate the treatment leading to suspension of the study or objective signs of tissue or neurovascular injury caused by RIC and/or sham-RIC are evaluated at 7, 14, 28, and 90 days after enrollment. Results The primary goal of this study is to assess the feasibility of the treatments in patients with Parkinson's disease by measuring serious RIC-related adverse events and any reduced incidence of adverse events during the trial and to study potential efficacy, improvement of patients' excessive daytime sleepiness, quality of life-based on ESS, PSQI, PDSS-2, and PDQ39 scores. The secondary goal is to confirm the safety of the treatments. Conclusion This study is a prospective randomized controlled trial to determine the safety, feasibility, and potential efficacy of RIC for patients with Parkinson's disease associated with EDS.
Collapse
Affiliation(s)
- Qiling Ji
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Yuchuan Ding
| |
Collapse
|
14
|
Phenotype Characterization of a Mice Genetic Model of Absolute Blindness. Int J Mol Sci 2022; 23:ijms23158152. [PMID: 35897728 PMCID: PMC9331777 DOI: 10.3390/ijms23158152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent technological development requires new approaches to address the problem of blindness. Such approaches need to be able to ensure that no cells with photosensitive capability remain in the retina. The presented model, Opn4−/− × Pde6brd10/rd10 (O×Rd) double mutant murine, is a combination of a mutation in the Pde6b gene (photoreceptor degeneration) together with a deletion of the Opn4 gene (responsible for the expression of melanopsin in the intrinsically photosensitive retinal ganglion cells). This model has been characterized and compared with those of WT mice and murine animal models displaying both mutations separately. A total loss of pupillary reflex was observed. Likewise, behavioral tests demonstrated loss of rejection to illuminated spaces and a complete decrease in visual acuity (optomotor test). Functional recordings showed an absolute disappearance of various wave components of the full-field and pattern electroretinogram (fERG, pERG). Likewise, visual evoked potential (VEP) could not be recorded. Immunohistochemical staining showed marked degeneration of the outer retinal layers and the absence of melanopsin staining. The combination of both mutations has generated an animal model that does not show any photosensitive element in its retina. This model is a potential tool for the study of new ophthalmological approaches such as optosensitive agents.
Collapse
|
15
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
16
|
Ruzafa N, Pereiro X, Vecino E. Immunohistochemical Characterisation of the Whale Retina. Front Neuroanat 2022; 16:813369. [PMID: 35185483 PMCID: PMC8856181 DOI: 10.3389/fnana.2022.813369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
The eye of the largest adult mammal in the world, the whale, offers a unique opportunity to study the evolution of the visual system and its adaptation to aquatic environments. However, the difficulties in obtaining cetacean samples mean these animals have been poorly studied. Thus, the aim of this study was to characterise the different neurons and glial cells in the whale retina by immunohistochemistry using a range of molecular markers. The whale retinal neurons were analysed using different antibodies, labelling retinal ganglion cells (RGCs), photoreceptors, bipolar and amacrine cells. Finally, glial cells were also labelled, including astrocytes, Müller cells and microglia. Thioflavin S was also used to label oligomers and plaques of misfolded proteins. Molecular markers were used to label the specific structures in the whale retinas, as in terrestrial mammalian retinas. However, unlike the retina of most land mammals, whale cones do not express the cone markers used. It is important to highlight the large size of whale RGCs. All the neurofilament (NF) antibodies used labelled whale RGCs, but not all RGCs were labelled by all the NF antibodies used, as it occurs in the porcine and human retina. It is also noteworthy that intrinsically photosensitive RGCs, labelled with melanopsin, form an extraordinary network in the whale retina. The M1, M2, and M3 subtypes of melanopsin positive-cells were detected. Degenerative neurite beading was observed on RGC axons and dendrites when the retina was analysed 48 h post-mortem. In addition, there was a weak Thioflavin S labelling at the edges of some RGCs in a punctuate pattern that possibly reflects an early sign of neurodegeneration. In conclusion, the whale retina differs from that of terrestrial mammals. Their monochromatic rod vision due to the evolutionary loss of cone photoreceptors and the well-developed melanopsin-positive RGC network could, in part, explain the visual perception of these mammals in the deep sea.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, Biocruces Health Research Institute, Cruces Hospital, Bilbao, Spain
- *Correspondence: Noelia Ruzafa,
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, Biocruces Health Research Institute, Cruces Hospital, Bilbao, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, Biocruces Health Research Institute, Cruces Hospital, Bilbao, Spain
- Elena Vecino,
| |
Collapse
|
17
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [PMID: 34973458 DOI: 10.1016/j.arr.2021.101554] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
Collapse
Affiliation(s)
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Peterlee Place NSW2700, Australia; AFNP Med, Haidingergasse 29, 1030 Wien, Austria
| |
Collapse
|
18
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [DOI: https:/doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
19
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Maneu V, Lax P, Cuenca N. Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases. Neural Regen Res 2022; 17:103-104. [PMID: 34100441 PMCID: PMC8451557 DOI: 10.4103/1673-5374.314305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
22
|
The Associations of Obstructive Sleep Apnea and Eye Disorders: Potential Insights into Pathogenesis and Treatment. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00215-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Purpose of Review
Obstructive sleep apnea (OSA) patients are at significantly increased risks for cardiovascular and cerebrovascular morbidities. Recently, there has been heightened interest in the association of OSA with numerous ocular diseases and possible improvement of these conditions with the initiation of OSA treatment. We reviewed the current evidence with an emphasis on the overlapping pathogeneses of both diseases.
Recent Findings
Currently available literature points to a substantial association of OSA with ocular diseases, ranging from those involving the eyelid to optic neuropathies and retinal vascular diseases. Since the retina is one of the highest oxygen-consuming tissues in the body, the intermittent hypoxia and hypercapnia ensuing in OSA can have deleterious effects on ocular function and health. Tissue hypoxia, autonomic dysfunction, microvascular dysfunction, and inflammation all play important roles in the pathogenesis of both OSA and ocular diseases. Whether OSA treatment is capable of reversing the course of associated ocular diseases remains to be determined. It is anticipated that future therapeutic approaches will target the common underlying pathophysiologic mechanisms and promote favorable effects on the treatment of known associated ocular diseases.
Summary
Emerging evidence supports the association of ocular diseases with untreated OSA. Future studies focusing on whether therapeutic approaches targeting the common pathophysiologic mechanisms will be beneficial for the course of both diseases are warranted.
Collapse
|
23
|
Gaynes BI, Zaffer A, Yousefzai R, Chazaro-Cortes M, Colletta K, Kletzel SL, Jost MB, Park Y, Chawla J, Albert MV, Xiao T. Variable abnormality of the melanopsin-derived portion of the pupillary light reflex (PLR) in patients with Parkinson's disease (PD) and parkinsonism features. Neurol Sci 2021; 43:349-356. [PMID: 33945034 DOI: 10.1007/s10072-021-05245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Ascertain and quantify abnormality of the melanopsin-derived portion of the pupillary light reflex (PLR) in patients with Parkinson's disease (PD) and parkinsonism features based on a statistical predictive modeling strategy for PLR classification. METHODS Exploratory cohort analysis of pupillary kinetics in non-disease controls, PD subjects, and subjects with parkinsonism features using chromatic pupillometry. Receiver operating characteristic (ROC) curve interpretation of pupillary changes consistent with abnormality of intrinsically photosensitive retinal ganglion cells (ipRGCs) was employed using a thresholding algorithm to discriminate pupillary abnormality between study groups. RESULTS Twenty-eight subjects were enrolled, including 17 PD subjects (age range 64-85, mean 70.65) and nine controls (age range 48-95, mean 63.89). Two subjects were described as demonstrating parkinsonism symptoms due to presumed Lewy body dementia and motor system atrophy (MSA) respectively. On aggregate analysis, PD subjects demonstrated abnormal but variable pupillary dynamics suggestive of ipRGC abnormality. Subjects with parkinsonism features did not demonstrate pupillary changes consistent with ipRGC abnormality. There was no relationship between levodopa equivalent dosage or PD severity and ipRGC abnormality. The pupillary test sensitivity in predicting PD was 0.75 and likelihood ratio was 1.2. CONCLUSIONS ipRGC deficit is demonstrated in PD subjects; however, the degree and constancy of abnormality appear variable.
Collapse
Affiliation(s)
- Bruce I Gaynes
- Edward Hines Jr. VA Medical Center, Hines, IL, USA. .,Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
| | | | | | | | | | | | | | | | - Jasvinder Chawla
- Edward Hines Jr. VA Medical Center, Hines, IL, USA.,Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Mark V Albert
- Biomedical Engineering, Computer Science and Engineering, University of North Texas, Denton, TX, USA
| | - Ting Xiao
- Computer Science and Engineering, University of North Texas, Denton, TX, USA
| |
Collapse
|
24
|
Gubin D, Neroev V, Malishevskaya T, Cornelissen G, Astakhov SY, Kolomeichuk S, Yuzhakova N, Kabitskaya Y, Weinert D. Melatonin mitigates disrupted circadian rhythms, lowers intraocular pressure, and improves retinal ganglion cells function in glaucoma. J Pineal Res 2021; 70:e12730. [PMID: 33730443 DOI: 10.1111/jpi.12730] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma is a progressive optic neuropathy associated with damage to retinal ganglion cells (RGCs) and disrupted circadian rhythms. Melatonin is a promising substance to ameliorate glaucoma-associated compromised circadian rhythms, sleep, mood, and retinal cells function. However, studies estimating melatonin effects in glaucoma are currently lacking. Therefore, In this study, we investigated the effect of long-term (daily at 10:30 pm for 90 days) oral melatonin administration on systemic (Tb) and local to the organ of vision (IOP) circadian rhythms, pattern electroretinogram (PERG), sleep, and mood, depending on glaucoma stage in patients diagnosed with stable or advanced primary open-angle glaucoma. In a laboratory study in 15 of them, 24-hour records of salivary melatonin were obtained and MTNR1B receptor gene polymorphism was assessed. Melatonin increased the stability of the Tb circadian rhythm by improving its phase alignment and alignment with IOP. Melatonin time-dependently decreased IOP and IOP standard deviation (SD). IOP 24-hour mean and IOP SD decreases were more pronounced in individuals with the higher initial 24-hour IOP mean. Melatonin improved RGCs function in advanced glaucoma; N95 amplitude increase correlated positively with RGCs loss. The beneficial effects of melatonin on sleep and mood were greater in advanced glaucoma. Finally, delayed salivary melatonin and Tb phases were observed in MTNR1B G-allele carriers with advanced glaucoma. Combined, these results provide evidence for melatonin efficiency in restoring disrupted circadian rhythms in glaucoma with different effects of melatonin on systemic vs. local circadian rhythms, indicating that a personalized strategy of melatonin administration may further refine its treatment benefits.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Medical University, Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Vladimir Neroev
- Helmholtz Moscow Research Institute of Eye Diseases, Moscow, Russia
| | | | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Sergei Y Astakhov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Sergey Kolomeichuk
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center of the Russian Academy of Sciences, Petrozavodsk, Russia
| | | | - Yana Kabitskaya
- Center for Genomic Technologies, Northern Trans-Ural State Agricultural University, Tyumen, Russia
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Investigation of the mechanism and the role of melanopsin in lens-induced myopia is necessary to find out potential targets in the prevention of myopia development. PURPOSE We aimed to study the effect and mechanism of retinal melanopsin on lens-induced myopia in guinea pigs, as well as the interactions between melanopsin and other myopic regulation neurotransmitters such as dopamine and melatonin, and to explore the possible role of melanopsin in the prevention of myopia development. METHODS Twenty-day-old tricolor guinea pigs were randomly divided into four groups: control group, defocus group, defocus + AA92593 group, and defocus + dimethyl sulfoxide (DMSO) group. The defocus eyes wore -6.00 D lens. In the defocus + AA92593 group, the vitreous cavities were injected with melanopsin antagonist AA92593. In the defocus + DMSO group, the vitreous cavities were injected with 5% DMSO as the administration control. The expression of retinal melanopsin protein was measured with immunofluorescence staining and Western blot. The content of dopamine and melatonin in the retina was determined by the high-performance liquid chromatography electrochemical method. RESULTS Compared with the defocus group, intravitreal injection of AA92593 resulted in increased axial length of the defocus eyes (defocus, 8.05 ± 0.09 mm; defocus + AA92593, 8.15 ± 0.11 mm; P = .008), lower refractive degree (defocus, -1.98 ± 0.82 D; defocus + AA92593, -2.59 ± 0.97 D; P = .05), decreased relative expression of retinal melanopsin protein (defocus, 0.67 ± 0.11; defocus + AA92593, 0.20 ± 0.06; P < .0001), and increased melatonin content in the defocus eyes (defocus, 0.38 ± 0.09 ng/mg; defocus + AA92593, 0.55 ± 0.13 ng/mg; P = .01), but it had no obvious effect on dopamine content (defocus, 0.64 ± 0.18 ng/mg; defocus + AA9259, 0.61 ± 0.17 ng/mg; P > .99). The melatonin content of retina in the defocus + AA92593 group was correlated with refractive error (Pearson correlation coefficient = -0.68, P = .006) and eye axis length (Pearson correlation coefficient = 0.74, P = .02). CONCLUSIONS Retinal melanopsin has inhibitory effect on lens-induced myopia development in guinea pigs, and such effect may be related to retinal melatonin.
Collapse
|
26
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
27
|
Fifel K, De Boer T. The circadian system in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:301-313. [PMID: 34225971 DOI: 10.1016/b978-0-12-819975-6.00019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circadian organization of physiology and behavior is an important biologic process that allows organisms to anticipate and prepare for predictable changes in the environment. Circadian disruptions are associated with a wide range of health issues. In patients with neurodegenerative diseases, alterations of circadian rhythms are among the most common and debilitating symptoms. Although a growing awareness of these symptoms has occurred during the last decade, their underlying neuropathophysiologic circuitry remains poorly understood and, consequently, no effective therapeutic strategies are available to alleviate these health issues. Recent studies have examined the neuropathologic status of the different neural components of the circuitry governing the generation of circadian rhythms in neurodegenerative diseases. In this review, we will dissect the potential contribution of dysfunctions in the different nodes of this circuitry to circadian alterations in patients with parkinsonism-linked neurodegenerative diseases (namely, Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy). A deeper understanding of these mechanisms will provide not only a better understanding of disease neuropathophysiology but also holds promise for the development of more effective and mechanisms-based therapies.
Collapse
Affiliation(s)
- Karim Fifel
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Tom De Boer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Sharma A, Sethi G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Circadian Rhythm Disruption and Alzheimer's Disease: The Dynamics of a Vicious Cycle. Curr Neuropharmacol 2020; 19:248-264. [PMID: 32348224 PMCID: PMC8033974 DOI: 10.2174/1570159x18666200429013041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive, 117 600, Singapore
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| |
Collapse
|
29
|
Neroev V, Malishevskaya T, Weinert D, Astakhov S, Kolomeichuk S, Cornelissen G, Kabitskaya Y, Boiko E, Nemtsova I, Gubin D. Disruption of 24-Hour Rhythm in Intraocular Pressure Correlates with Retinal Ganglion Cell Loss in Glaucoma. Int J Mol Sci 2020; 22:ijms22010359. [PMID: 33396443 PMCID: PMC7795318 DOI: 10.3390/ijms22010359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023] Open
Abstract
Parameters of 24-h rhythm in intraocular pressure (IOP) were assessed in patients with stable or advanced primary open-angle glaucoma (S-POAG/A-POAG) and referenced to the phase of “marker” circadian temperature rhythm of each patient. Body temperature and IOP were measured over a 72-h span in 115 participants (65 S-POAG and 50 A-POAG). Retinal Ganglion Cell (RGC) damage was assessed by high-definition optical coherence tomography. The 24-h IOP rhythm in A-POAG patients peaked during the night, opposite to the daytime phase position in S-POAG patients (p < 0.0001). The 24-h IOP phase correlated with RGC loss (p < 0.0001). The internal phase shift between IOP and body temperature gradually increased with POAG progression (p < 0.001). Angiotensin converting enzyme Alu-repeat deletion/insertion (ACE I/D) emerged as a candidate gene polymorphism, which may play a role in the alteration of the circadian IOP variability in advanced glaucoma. To conclude, a reliable estimation of the 24-h rhythm in IOP requires the degree of RGC damage to be assessed. In advanced POAG, the 24-h phase of IOP tended to occur during the night and correlated with RGC loss, being progressively delayed relative to the phase of temperature.
Collapse
Affiliation(s)
- Vladimir Neroev
- Helmholtz Research Institute of Eye Diseases, 105062 Moscow, Russia; (V.N.); (T.M.)
| | | | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Sergei Astakhov
- Department of Ophthalmology, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia;
| | - Sergey Kolomeichuk
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia;
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Yana Kabitskaya
- Сenter for Genomic Technologies, Northern Trans-Ural State Agricultural University, 625003 Tyumen, Russia; (Y.K.); (E.B.)
| | - Elena Boiko
- Сenter for Genomic Technologies, Northern Trans-Ural State Agricultural University, 625003 Tyumen, Russia; (Y.K.); (E.B.)
| | - Irina Nemtsova
- State Autonomous Health Care Institution Tyumen Regional Ophthalmological Dispensary, 625048 Tyumen, Russia;
| | - Denis Gubin
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
- Correspondence:
| |
Collapse
|
30
|
Photosensitive ganglion cells: A diminutive, yet essential population. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2020; 96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.
Collapse
|
31
|
Stebelova K, Roska J, Zeman M. Impact of Dim Light at Night on Urinary 6-Sulphatoxymelatonin Concentrations and Sleep in Healthy Humans. Int J Mol Sci 2020; 21:ijms21207736. [PMID: 33086713 PMCID: PMC7588991 DOI: 10.3390/ijms21207736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night can have negative effects on human wellbeing and health. It can disrupt circadian rhythms, interfere with sleep, and participate in the progress of civilisation diseases. The aim of the present study was to explore if dim artificial light during the entire night (ALAN) can affect melatonin production and sleep quality in young volunteers. We performed two experiments in real-life home-based conditions. Young volunteers (n = 33) were exposed to four nights of one lux ALAN or two nights of five lux ALAN. Melatonin production, based on 6-sulphatoxymelatonin/creatinine concentrations in urine, and sleep quality, based on actimetry, were evaluated. Exposure to ALAN one lux during the entire night did not suppress aMT6s/creatinine concentrations but did aggravate sleep quality by increasing sleep fragmentation and one-minute immobility. ALAN up to five lux reduced melatonin biosynthesis significantly and interfered with sleep quality, as evidenced by an increased percentage of one-minute immobility and a tendency of increased fragmentation index. Our results show that people are more sensitive to low illuminance during the entire night, as previously expected. ALAN can interfere with melatonin production and sleep quality in young, healthy individuals, and both processes have different sensitivities to light.
Collapse
Affiliation(s)
- Katarina Stebelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
- Correspondence:
| | - Jan Roska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovak; (J.R.); (M.Z.)
| |
Collapse
|
32
|
Yoshikawa T, Obayashi K, Miyata K, Saeki K, Ogata N. Decreased melatonin secretion in patients with glaucoma: Quantitative association with glaucoma severity in the LIGHT study. J Pineal Res 2020; 69:e12662. [PMID: 32333450 DOI: 10.1111/jpi.12662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Glaucoma may be associated with circadian disruption due to its association with a loss of intrinsically photosensitive retinal ganglion cells. Clinical evidence demonstrating an association between glaucoma and circadian disruption is limited, and no large-scale studies have been performed. The purpose of this cross-sectional study was to determine whether the presence and severity of glaucoma is correlated with the urinary 6-sulfatoxymelatonin levels as a circadian rhythm parameter. We measured the level of urinary 6-sulfatoxymelatonin excretion (UME) in 118 glaucoma patients and 395 control participants without glaucoma. The UME in the glaucoma group was significantly lower than that of the control group without glaucoma (3.05 and 3.24 log ng/mg creatinine, respectively; P = .010). Next, we examined association of the severity of glaucoma and melatonin levels. In stratification analysis of the glaucoma groups, multivariable linear regression analyses adjusted for potential confounders indicated significantly lower UME by 0.30 log ng/mg creatinine in patients with functional severe glaucoma (visual field mean deviation ≤ -6 dB) compared with mild glaucoma (mean deviation > -6 dB; P = .040) and lower UME by 0.05 log ng/mg creatinine with each 10 μm thinning of the circumpapillary retinal nerve fiber layer thickness as the index of structural severity of glaucoma (P = .011). In conclusion, significant association between glaucoma and lower urinary 6-sulfatoxymelatonin was found. In addition, patients with functional and structural severe glaucoma were significantly associated with lower urinary 6-sulfatoxymelatonin levels. Our results indicate the possibility of a circadian disruption in patients with glaucoma.
Collapse
Affiliation(s)
- Tadanobu Yoshikawa
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kimie Miyata
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
33
|
Diederich NJ, Uchihara T, Grillner S, Goetz CG. The Evolution-Driven Signature of Parkinson's Disease. Trends Neurosci 2020; 43:475-492. [PMID: 32499047 DOI: 10.1016/j.tins.2020.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
In this review, we approach Parkinson's disease (PD) in the context of an evolutionary mismatch of central nervous system functions. The neurons at risk have hyperbranched axons, extensive transmitter release sites, display spontaneous spiking, and elevated mitochondrial stress. They function in networks largely unchanged throughout vertebrate evolution, but now connecting to the expanded human cortex. Their breakdown is favoured by longevity. At the cellular level, mitochondrial dysfunction starts at the synapses, then involves axons and cell bodies. At the behavioural level, network dysfunctions provoke the core motor syndrome of parkinsonism including freezing and failed gait automatization, and non-motor deficits including inactive blindsight and autonomic dysregulation. The proposed evolutionary re-interpretation of PD-prone cellular phenotypes and of prototypical clinical symptoms allows a new conceptual framework for future research.
Collapse
Affiliation(s)
- Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, L-1210 Luxembourg City, Luxembourg.
| | - Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory, Nitobe-Memorial Nakano General Hospital, Tokyo 164-8607, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020; 528:2044-2067. [PMID: 32003463 DOI: 10.1002/cne.24873] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Melanopsin ganglion cells have defied convention since their discovery almost 20 years ago. In the years following, many types of these intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged. In the mouse retina, there are currently six known types (M1-M6) of melanopsin ganglion cells, each with unique morphology, mosaics, connections, physiology, projections, and functions. While melanopsin-expressing cells are usually associated with behaviors like circadian photoentrainment and the pupillary light reflex, the characterization of multiple types has demonstrated a reach that may extend far beyond non-image-forming vision. In fact, studies have shown that individual types of melanopsin ganglion cells have the potential to impact image-forming functions like contrast sensitivity and color opponency. Thus, the goal of this review is to summarize the morphological and functional aspects of the six known types of melanopsin ganglion cells in the mouse retina and to highlight their respective roles in non-image-forming and image-forming vision. Although many melanopsin ganglion cell types do project to image-forming brain targets, it is important to note that this is only the first step in determining their influence on image-forming vision. Even so, the visual system has canonically been divided into these two functional realms and melanopsin ganglion cells have begun to challenge the boundary between them, providing an overlap of visual information that is complementary rather than redundant. Further studies on these ganglion cell photoreceptors will no doubt continue to illustrate an ever-expanding role for melanopsin ganglion cells in image-forming vision.
Collapse
Affiliation(s)
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
35
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
36
|
Mulak A. An overview of the neuroendocrine system in Parkinson's disease: what is the impact on diagnosis and treatment? Expert Rev Neurother 2019; 20:127-135. [PMID: 31829756 DOI: 10.1080/14737175.2020.1701437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A growing body of evidence indicates that neuroendocrine interactions may occur at all levels of the brain-gut-microbiota axis, which is directly involved in the pathogenesis of Parkinson's disease (PD).Areas covered: The review presents some current and emerging concepts regarding the organization and functioning of the neuroendocrine system as well as the role of neuroendocrine disturbances in the pathophysiology and symptomatology of PD. The concept of the brain-gut-microbiota triad interactions in the neuroendocrine system and PD is proposed. In PD, dysregulation of the main neuroendocrine axes coordinated by the hypothalamus is accompanied by disruptions at the peripheral level, which involve enteroendocrine cells producing numerous neuropeptides. Moreover, the important role of the gut microbiota as a main coordinator of immune and neuroendocrine interactions is discussed. The potential diagnostic and therapeutic implications in the context of the recent developments in the fields of neuroendocrinology and neurodegeneration are also presented.Expert opinion: Unraveling complex neuroendocrine interactions in the course of PD may provide crucial diagnostic implications and novel therapeutic approaches including the application of gut neuropeptides and gut microbiota modification.
Collapse
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
37
|
Oh AJ, Amore G, Sultan W, Asanad S, Park JC, Romagnoli M, La Morgia C, Karanjia R, Harrington MG, Sadun AA. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer's disease. PLoS One 2019; 14:e0226197. [PMID: 31821378 PMCID: PMC6903762 DOI: 10.1371/journal.pone.0226197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanopsin-expressing retinal ganglion cells (mRGCs), intrinsically photosensitive RGCs, mediate the light-based pupil response and the light entrainment of the body's circadian rhythms through their connection to the pretectal nucleus and hypothalamus, respectively. Increased awareness of circadian rhythm dysfunction in neurological conditions including Alzheimer's disease (AD), has led to a wave of research focusing on the role of mRGCs in these diseases. Postmortem retinal analyses in AD patients demonstrated a significant loss of mRGCs, and in vivo measurements of mRGC function with chromatic pupillometry may be a potential biomarker for early diagnosis and progression of AD. METHODS We performed a prospective case-control study in 20 cognitively healthy study participants: 10 individuals with pre-symptomatic AD pathology (pre-AD), identified by the presence of abnormal levels of amyloid β42 and total Tau proteins in the cerebrospinal fluid, and 10 age-matched controls with normal CSF amyloid β42 and Tau levels. To evaluate mRGC function, we used a standardized protocol of chromatic pupillometry on a Ganzfeld system using red (640 nm) and blue (450 nm) light stimuli and measured the pupillary light response (PLR). Non-invasive wrist actigraphy and standardized sleep questionnaires were also completed to evaluate rest-activity circadian rhythm. RESULTS Our results did not demonstrate a significant difference of the PLR between pre-AD and controls but showed a variability of the PLR in the pre-AD group compared with controls on chromatic pupillometry. Wrist actigraphy showed variable sleep-wake patterns and irregular circadian rhythms in the pre-AD group compared with controls. CONCLUSIONS The variability seen in measurements of mRGC function and sleep-wake cycle in the pre-AD group suggests that mRGC dysfunction occurs in the pre-symptomatic AD stages, preceding cognitive decline. Future longitudinal studies following progression of these participants can help in elucidating the relationship between mRGCs and circadian rhythm dysfunction in AD.
Collapse
Affiliation(s)
- Angela J. Oh
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- * E-mail:
| | - Giulia Amore
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - William Sultan
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Samuel Asanad
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| | - Jason C. Park
- Columbia University, Department of Psychology, New York, New York, United States of America
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rustum Karanjia
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
- University of Ottawa Eye Institute, Department of Ophthalmology, Ottawa, Ontario, Canada
| | - Michael G. Harrington
- The Huntington Medical Research Institutes and Molecular Neurology Program, Pasadena, California, United States of America
| | - Alfredo A. Sadun
- Doheny Eye institute, UCLA Stein Eye Institute, University of California, Los Angeles, Department of Ophthalmology, Los Angeles, California, United States of America
| |
Collapse
|
38
|
Melanopsin +RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. Int J Mol Sci 2019; 20:ijms20123012. [PMID: 31226772 PMCID: PMC6627747 DOI: 10.3390/ijms20123012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.
Collapse
|