1
|
Kang Q, Guo X, Li T, Yang C, Han J, Jia L, Liu Y, Wang X, Zhang B, Li J, Wen HL, Li H, Li L. Identification of differentially expressed HERV-K(HML-2) loci in colorectal cancer. Front Microbiol 2023; 14:1192900. [PMID: 37342563 PMCID: PMC10277637 DOI: 10.3389/fmicb.2023.1192900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Colorectal cancer is one of the malignant tumors with the highest mortality rate in the world. Survival rates vary significantly among patients at various stages of the disease. A biomarker capable of early diagnosis is required to facilitate the early detection and treatment of colorectal cancer. Human endogenous retroviruses (HERVs) are abnormally expressed in various diseases, including cancer, and have been involved in cancer development. Real-time quantitative PCR was used to detect the transcript levels of HERV-K(HML-2) gag, pol, and env in colorectal cancer to systematically investigate the connection between HERV-K(HML-2) and colorectal cancer. The results showed that HERV-K(HML-2) transcript expression was significantly higher than healthy controls and was consistent at the population and cell levels. We also used next-generation sequencing to identify and characterize HERV-K(HML-2) loci that were differentially expressed between colorectal cancer patients and healthy individuals. The analysis revealed that these loci were concentrated in immune response signaling pathways, implying that HERV-K impacts the tumor-associated immune response. Our results indicated that HERV-K might serve as a screening tumor marker and a target for tumor immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Qian Kang
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xin Guo
- Key Laboratory for the Prevention and Control of Infectious Diseases, Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianfu Li
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Caiqin Yang
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hong-Ling Wen
- Key Laboratory for the Prevention and Control of Infectious Diseases, Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Department of Virology, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Hosseiniporgham S, Sechi LA. Anti-HERV-K Drugs and Vaccines, Possible Therapies against Tumors. Vaccines (Basel) 2023; 11:vaccines11040751. [PMID: 37112663 PMCID: PMC10144246 DOI: 10.3390/vaccines11040751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The footprint of human endogenous retroviruses (HERV), specifically HERV-K, has been found in malignancies, such as melanoma, teratocarcinoma, osteosarcoma, breast cancer, lymphoma, and ovary and prostate cancers. HERV-K is characterized as the most biologically active HERV due to possession of open reading frames (ORF) for all Gag, Pol, and Env genes, which enables it to be more infective and obstructive towards specific cell lines and other exogenous viruses, respectively. Some factors might contribute to carcinogenicity and at least one of them has been recognized in various tumors, including overexpression/methylation of long interspersed nuclear element 1 (LINE-1), HERV-K Gag, and Env genes themselves plus their transcripts and protein products, and HERV-K reverse transcriptase (RT). Therapies effective for HERV-K-associated tumors mostly target invasive autoimmune responses or growth of tumors through suppression of HERV-K Gag or Env protein and RT. To design new therapeutic options, more studies are needed to better understand whether HERV-K and its products (Gag/Env transcripts and HERV-K proteins/RT) are the initiators of tumor formation or just the disorder’s developers. Accordingly, this review aims to present evidence that highlights the association between HERV-K and tumorigenicity and introduces some of the available or potential therapies against HERV-K-induced tumors.
Collapse
|
3
|
Wang S, Sun J, Dastgheyb RM, Li Z. Tumor-derived extracellular vesicles modulate innate immune responses to affect tumor progression. Front Immunol 2022; 13:1045624. [PMID: 36405712 PMCID: PMC9667034 DOI: 10.3389/fimmu.2022.1045624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 04/23/2024] Open
Abstract
Immune cells are capable of influencing tumor progression in the tumor microenvironment (TME). Meanwhile, one mechanism by which tumor modulate immune cells function is through extracellular vesicles (EVs), which are cell-derived extracellular membrane vesicles. EVs can act as mediators of intercellular communication and can deliver nucleic acids, proteins, lipids, and other signaling molecules between cells. In recent years, studies have found that EVs play a crucial role in the communication between tumor cells and immune cells. Innate immunity is the first-line response of the immune system against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which modulate the functional change of innate immune cells serve important functions in the context of tumor progression. Emerging evidence has shown that TDEVs dually enhance or suppress innate immunity through various pathways. This review aims to summarize the influence of TDEVs on macrophages, dendritic cells, neutrophils, and natural killer cells. We also summarize their further effects on the progression of tumors, which may provide new ideas for developing novel tumor therapies targeting EVs.
Collapse
Affiliation(s)
- Siqi Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Sun
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Raha M. Dastgheyb
- School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zhigang Li
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Ferrari L, Iodice S, Cantone L, Solazzo G, Dioni L, Hoxha M, Vicenzi M, Mozzoni P, Bergamaschi E, Persico N, Bollati V. Extracellular vesicles and their miRNA contents counterbalance the pro-inflammatory effect of air pollution during physiological pregnancy: A focus on Syncytin-1 positive vesicles. ENVIRONMENT INTERNATIONAL 2022; 169:107502. [PMID: 36095930 DOI: 10.1016/j.envint.2022.107502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The impact of exposure to respirable particulate matter (PM) during pregnancy is a growing concern, as several studies have associated increased risks of adverse pregnancy and birth outcomes, and impaired intrauterine growth with air pollution. The molecular mechanisms responsible for such effects are still under debate. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues (e.g., pulmonary environment and placenta), might play an important role in PM-induced risk. We sought to determine whether the levels of PM with aerodynamic diameters of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) are associated with changes in plasmatic EV release and EV-miRNA content by investigating 518 women enrolled in the INSIDE study during the first trimester of pregnancy. In all models, we included both the 90-day averages of PM (long-term effects) and the differences between the daily estimate of PM and the 90-day average (short-term effects). Short-term PM10 and PM2.5 were associated with increased concentrations of all seven EV types that we assayed (positive for human antigen leukocyte G (HLA-G), Syncytin-1 (Sync-1), CD14, CD105, CD62e, CD61, or CD25 determinants), while long-term PM10 showed a trend towards decreased EV concentrations. Increased Sync-1 + EV levels were associated with the plasmatic decrease of sVCAM-1, but not of sICAM-1, which are circulating biomarkers of endothelial dysfunction. Thirteen EV-miRNAs were downregulated in response to long-term PM10 and PM2.5 variations, while seven were upregulated (p-value < 0.05, false discovery rate p-value (qFDR) < 0.1). Only one EV-miRNA (hsa-miR-221-3p) was downregulated after short-term variations. The identified PM-modulated EV-miRNAs exhibited putative roles in inflammation, gestational hypertension, and pre-eclampsia, as highlighted by miRNA target analysis. Our findings strongly support the hypothesis that EVs have an important role in modulating PM exposure effects during pregnancy, possibly through their miRNA cargo.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Preventive Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Iodice
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Dioni
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mirjam Hoxha
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marco Vicenzi
- Cardiovascular Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, Università degli Studi di Torino, Torino, Italy
| | - Nicola Persico
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Obstetrics and Gynecology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Preventive Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Cafora M, Poerio N, Forti F, Loberto N, Pin D, Bassi R, Aureli M, Briani F, Pistocchi A, Fraziano M. Evaluation of phages and liposomes as combination therapy to counteract Pseudomonas aeruginosa infection in wild-type and CFTR-null models. Front Microbiol 2022; 13:979610. [PMID: 36188006 PMCID: PMC9520727 DOI: 10.3389/fmicb.2022.979610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Multi drug resistant (MDR) bacteria are insensitive to the most common antibiotics currently in use. The spread of antibiotic-resistant bacteria, if not contained, will represent the main cause of death for humanity in 2050. The situation is even more worrying when considering patients with chronic bacterial infections, such as those with Cystic Fibrosis (CF). The development of alternative approaches is essential and novel therapies that combine exogenous and host-mediated antimicrobial action are promising. In this work, we demonstrate that asymmetric phosphatidylserine/phosphatidic acid (PS/PA) liposomes administrated both in prophylactic and therapeutic treatments, induced a reduction in the bacterial burden both in wild-type and cftr-loss-of-function (cftr-LOF) zebrafish embryos infected with Pseudomonas aeruginosa (Pa) PAO1 strain (PAO1). These effects are elicited through the enhancement of phagocytic activity of macrophages. Moreover, the combined use of liposomes and a phage-cocktail (CKΦ), already validated as a PAO1 “eater”, improves the antimicrobial effects of single treatments, and it is effective also against CKΦ-resistant bacteria. We also address the translational potential of the research, by evaluating the safety of CKΦ and PS/PA liposomes administrations in in vitro model of human bronchial epithelial cells, carrying the homozygous F508del-CFTR mutation, and in THP-1 cells differentiated into a macrophage-like phenotype with pharmacologically inhibited CFTR. Our results open the way to the development of novel pharmacological formulations composed of both phages and liposomes to counteract more efficiently the infections caused by Pa or other bacteria, especially in patients with chronic infections such those with CF.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milan, Milan, MI, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Davide Pin
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, MI, Italy
- *Correspondence: Anna Pistocchi,
| | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
6
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
7
|
Particulate Matter Exposure and Allergic Rhinitis: The Role of Plasmatic Extracellular Vesicles and Bacterial Nasal Microbiome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010689. [PMID: 34682436 PMCID: PMC8535327 DOI: 10.3390/ijerph182010689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
Particulate matter (PM) exposure is linked to the worsening of respiratory conditions, including allergic rhinitis (AR), as it can trigger nasal and systemic inflammation. To unveil the underlying molecular mechanisms, we investigated the effects of PM exposure on the release of plasmatic extracellular vesicles (EV) and on the complex cross-talk between the host and the nasal microbiome. To this aim, we evaluated the effects of PM10 and PM2.5 exposures on both the bacteria-derived-EV portion (bEV) and the host-derived EVs (hEV), as well as on bacterial nasal microbiome (bNM) features in 26 AR patients and 24 matched healthy subjects (HS). In addition, we assessed the role exerted by the bNM as a modifier of PM effects on the complex EV signaling network in the paradigmatic context of AR. We observed that PM exposure differently affected EV release and bNM composition in HS compared to AR, thus potentially contributing to the molecular mechanisms underlying AR. The obtained results represent the first step towards the understanding of the complex signaling network linking external stimuli, bNM composition, and the immune risponse.
Collapse
|
8
|
Assessment of innate immune response activation following the injection of extracellular vesicles isolated from human cell cultures in zebrafish embryos. Methods Enzymol 2021. [PMID: 33565976 DOI: 10.1016/bs.mie.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The release of extracellular vesicles (EVs) is a common feature of cells but the specific functional role of this secretion still remains poorly understood. EVs carry on their surface and in their lumen several molecules that act as signals, making EVs abundant and effective messengers for cell-to-cell communications. For instance, EVs released from cancer cells can modulate tumor invasiveness, and EVs produced in autoinflammatory diseases can improperly activate the immune system. We recently described an effect of EVs released from colorectal cancer cells in the immune-modulation of cytokine expression in zebrafish. Here, we detail a simple methodological approach to purify EVs from human cell media and to inject them in the zebrafish embryo circulation to follow in vivo the response of the innate immune system to EVs injection.
Collapse
|
9
|
Mahboub HH, Shahin K, Zaglool AW, Roushdy EM, Ahmed SAA. Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfish Clarias gariepinus. DISEASES OF AQUATIC ORGANISMS 2020; 142:147-160. [PMID: 33331282 DOI: 10.3354/dao03531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is an important trace element in fish diets that is required for growth, immunity and antioxidant defense mechanisms. The current study assessed the effects of both organic and nanoparticle zinc oxide (ZnO and ZnO-NPs, respectively) on growth performance, immune response and the antimicrobial effect against Pseudomonas aeruginosa in African catfish Clarias gariepinus. Fish were fed either a control diet or diets supplemented with organic ZnO at concentrations of 20 and 30 mg kg-1 or ZnO-NPs at concentrations of 20 and 30 mg kg-1. After 60 d, a subset of the fish was injected intraperitoneally with 3 × 107 CFU ml-1 of P. aeruginosa. Results showed that body weight gain, feed conversion ratio and specific growth rates were significantly increased in ZnO-NPs20 compared to all other groups. The dietary supplementation with 20 mg kg-1 of ZnO-NPs improved the antioxidant status of fish. Moreover, IgM, lysozyme and nitric oxide showed a significant increase in the fish which received the ZnO-NPs20-supplemented diet. A significant upregulation of growth and stress-related genes was seen in the ZnO-NPs20-supplemented group compared to other groups. However, there was no significant difference in the expression of immune-related genes among ZnO-NPs20, ZnO-NPs30 and ZnO30 groups. These findings highlight the potential use of nano-ZnO for improving growth performance, antioxidant status, immunological status and antibacterial activity against P. aeruginosa in African catfish.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, PO Box 44519, Zagazig 4511, Sharkia, Egypt
| | | | | | | | | |
Collapse
|
10
|
Vergara Bermejo A, Ragonnaud E, Daradoumis J, Holst P. Cancer Associated Endogenous Retroviruses: Ideal Immune Targets for Adenovirus-Based Immunotherapy. Int J Mol Sci 2020; 21:ijms21144843. [PMID: 32650622 PMCID: PMC7402293 DOI: 10.3390/ijms21144843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major challenge in our societies, according to the World Health Organization (WHO) about 1/6 deaths were cancer related in 2018 and it is considered the second leading cause of death globally. Immunotherapies have changed the paradigm of oncologic treatment for several cancers where the field had fallen short in providing competent therapies. Despite the improvement, broadly acting and highly effective therapies capable of eliminating or preventing human cancers with insufficient mutated antigens are still missing. Adenoviral vector-based vaccines are a successful tool in the treatment of various diseases including cancer; however, their success has been limited. In this review we discuss the potential of adenovirus as therapeutic tools and the current developments to use them against cancer. More specifically, we examine how to use them to target endogenous retroviruses (ERVs). ERVs, comprising 8% of the human genome, have been detected in several cancers, while they remain silent in healthy tissues. Their low immunogenicity together with their immunosuppressive capacity aid cancer to escape immunosurveillance. In that regard, virus-like-vaccine (VLV) technology, combining adenoviral vectors and virus-like-particles (VLPs), can be ideal to target ERVs and elicit B-cell responses, as well as CD8+ and CD4+ T-cells responses.
Collapse
Affiliation(s)
- Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Correspondence: (A.V.B.); (P.H.)
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
| | - Joana Daradoumis
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Holst
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (A.V.B.); (P.H.)
| |
Collapse
|
11
|
Alcazer V, Bonaventura P, Depil S. Human Endogenous Retroviruses (HERVs): Shaping the Innate Immune Response in Cancers. Cancers (Basel) 2020; 12:cancers12030610. [PMID: 32155827 PMCID: PMC7139688 DOI: 10.3390/cancers12030610] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are accounting for 8% of the human genome. These sequences are remnants from ancient germline infections by exogenous retroviruses. After million years of evolution and multiple integrations, HERVs have acquired many damages rendering them defective. At steady state, HERVs are mostly localized in the heterochromatin and silenced by methylation. Multiple conditions have been described to induce their reactivation, including auto-immune diseases and cancers. HERVs re-expression leads to RNA (simple and double-stranded) and DNA production (by reverse transcription), modulating the innate immune response. Some studies also argue for a role of HERVs in shaping the evolution of innate immunity, notably in the development of the interferon response. However, their exact role in the innate immune response, particularly in cancer, remains to be defined. In this review, we see how HERVs could be key-players in mounting an antitumor immune response. After a brief introduction on HERVs characteristics and biology, we review the different mechanisms by which HERVs can interact with the immune system, with a focus on the innate response. We then discuss the potential impact of HERVs expression on the innate immune response in cancer.
Collapse
Affiliation(s)
- Vincent Alcazer
- Cancer Research Center of Lyon, 69008 Lyon, France
- Department of Clinical Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Correspondence: (V.A.); (S.D.)
| | - Paola Bonaventura
- Cancer Research Center of Lyon, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
| | - Stephane Depil
- Cancer Research Center of Lyon, 69008 Lyon, France
- Centre Léon Bérard, 69008 Lyon, France
- Université Claude Bernard Lyon 1, 69008 Lyon, France
- ErVaccine Technologies, 69008 Lyon, France
- Correspondence: (V.A.); (S.D.)
| |
Collapse
|
12
|
Tavakolian S, Goudarzi H, Lak E, Faghihloo E. The evaluation of HERV-K env, np9, rec, gag expression in normal, polyp and cancerous tissues of gastric and colon. Future Virol 2019. [DOI: 10.2217/fvl-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim: Gastrointestinal cancer is one of the most alarming cancers worldwide. Infections exert an impact on tumor progression in gastrointestinal tissues. The alteration in the expression of human endogenous retrovirus-K ( HERV-K) genes could remarkably induce oncogenic activity. Materials & methods: In 22 gastric and 23 colon cancer patients, the expression level of HERV-K env, rec, gag and np9 were evaluated. Results: While there was a slight increase in the expression of HERV-K env in colon cancer tissues, the expression level of this gene decreased in gastric tissues. Moreover, the expression of both np9 and gag HERV-K were upregulated only in colon cancer. Nevertheless, rec HERV-K was downregulated in gastric cancer tissues. Conclusion: HERV-K-associated genes can be used as a possible biomarker for cancers diagnosis.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Lak
- Department of gastric & liver, Emam Hossein hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|