1
|
Ma J, Zhang M, Fu P, Yin X, Chen Z. Chemokines play a role in nerve damage and neuroprotection in vascular dementia. IBRO Neurosci Rep 2024; 17:154-160. [PMID: 39206161 PMCID: PMC11350449 DOI: 10.1016/j.ibneur.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Various Chemotactic Factors (FCs) play different roles in neuronal injury in vascular dementia. CXCL5 and CCL11 exacerbate neurological injury by promoting inflammatory responses. CXCL12/SDF-1 and CX3CL1 play neuroprotective roles.CXCL13, XCL-1 and CCL2/ MCP-1 exacerbate neurological injury in the early stage, while exerting neuronal regeneration and neuroprotective effects in the chronic progressive phase. Chemokines often play an important role in the course of vascular dementia by regulating inflammatory responses, oxidative stress, and autophagy. Activation of microglia plays an important role in the regression of vascular dementia. Activated microglia M1 causes neuronal damage through the release of chemokines. And microglia M2 has anti-inflammatory effects and is involved in the repair of brain damage. Therefore, dynamic monitoring of various related FCs and understanding the relationship between FCs and microglia can help to understand and regulate the disease course progression of vascular dementia.At present, many scholars have confirmed in basic research that different subgroups of chemokines are closely related to vascular dementia. In clinical research, new immunotherapy methods that upregulate XCL-1 and drugs that regulate the activity of CCL2/CCR2 signaling pathways are being studied and promoted.
Collapse
Affiliation(s)
- Jinming Ma
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Peijie Fu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi,332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi,332000, China
| |
Collapse
|
2
|
Zhang H, Lin J, Zhao H. Impacts of Maternal Preeclampsia Exposure on Offspring Neuronal Development: Recent Insights and Interventional Approaches. Int J Mol Sci 2024; 25:11062. [PMID: 39456854 PMCID: PMC11508320 DOI: 10.3390/ijms252011062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Preeclampsia, a hypertensive disorder during pregnancy, frequently correlates with adverse neurological outcomes in offspring, including cognitive impairments, autism spectrum disorder, depressive disorder, attention deficit hyperactivity disorder, and cerebral palsy. Despite these known consequences, the understanding of neuronal damage in the offspring of preeclamptic mothers remains insufficient. Here, we review the neuronal abnormalities resulting from maternal preeclampsia exposure, which include disrupted neurogenesis, loss of neuronal cell integrity, accumulation of cellular debris, decreased synaptogenesis and myelination, and increased neurite growth stimulated by maternal preeclampsia serum. The underlying mechanisms potentially driving these effects involve microglial activation, inflammatory responses, and reduced angiogenesis. Intervention strategies aimed at improving fetal neuronal outcomes are also discussed, encompassing pharmacological treatments such as pravastatin, tadalafil, and melatonin, as well as non-pharmacological approaches like dietary modifications, maternal exercise, and standard care for children. These interventions hold promise for clinical application, offering avenues to address early neuronal abnormalities and prevent the onset of long-term neurological disorders.
Collapse
Affiliation(s)
- He Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jinju Lin
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
3
|
Chen P, Ding N, Pan D, Chen X, Li S, Luo Y, Chen Z, Xu Y, Zhu X, Wang K, Zou W. PET imaging for the early evaluation of ocular inflammation in diabetic rats by using [ 18F]-DPA-714. Exp Eye Res 2024; 245:109986. [PMID: 38945519 DOI: 10.1016/j.exer.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jintan Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu, China
| | - Nannan Ding
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, PuNan Branch of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - ShiYi Li
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China
| | - Ziqing Chen
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuping Xu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China; Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China; Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
van Kammen CM, Taal SEL, Wever KE, Granger JP, Lely AT, Terstappen F. Reduced uterine perfusion pressure as a model for preeclampsia and fetal growth restriction in murine: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 327:H89-H107. [PMID: 38758122 PMCID: PMC11380978 DOI: 10.1152/ajpheart.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The reduced uterine perfusion pressure (RUPP) model is frequently used to study preeclampsia and fetal growth restriction. An improved understanding of influential factors might improve reproducibility and reduce animal use considering the variability in RUPP phenotype. We performed a systematic review and meta-analysis by searching Medline and Embase (until 28 March, 2023) for RUPP studies in murine. Primary outcomes included maternal blood pressure (BP) or proteinuria, fetal weight or crown-rump length, fetal reabsorptions, or antiangiogenic factors. We aimed to identify influential factors by meta-regression analysis. We included 155 studies. Our meta-analysis showed that the RUPP procedure results in significantly higher BP (MD = 24.1 mmHg; [22.6; 25.7]; n = 148), proteinuria (SMD = 2.3; [0.9; 3.8]; n = 28), fetal reabsorptions (MD = 50.4%; [45.5; 55.2]; n = 42), circulating soluble FMS-like tyrosine kinase-1 (sFlt-1) (SMD = 2.6; [1.7; 3.4]; n = 34), and lower fetal weight (MD = -0.4 g; [-0.47; -0.34]; n = 113. The heterogeneity (variability between studies) in primary outcomes appeared ≥90%. Our meta-regression identified influential factors in the method and time point of BP measurement, randomization in fetal weight, and type of control group in sFlt-1. The RUPP is a robust model considering the evident differences in maternal and fetal outcomes. The high heterogeneity reflects the observed variability in phenotype. Because of underreporting, we observed reporting bias and a high risk of bias. We recommend standardizing study design by optimal time point and method chosen for readout measures to limit the variability. This contributes to improved reproducibility and thereby eventually improves the translational value of the RUPP model.
Collapse
Affiliation(s)
- Caren M van Kammen
- Division of Nanomedicine, Department CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seija E L Taal
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - A Titia Lely
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
5
|
González-Rojas A, Valencia-Narbona M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. Int J Mol Sci 2024; 25:3632. [PMID: 38612445 PMCID: PMC11012011 DOI: 10.3390/ijms25073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a multisystem disorder characterized by elevated blood pressure in the mother, typically occurring after 20 weeks of gestation and posing risks to both maternal and fetal health. PE causes placental changes that can affect the fetus, particularly neurodevelopment. Its key pathophysiological mechanisms encompass hypoxia, vascular and angiogenic dysregulation, inflammation, neuronal and glial alterations, and disruptions in neuronal signaling. Animal models indicate that PE is correlated with neurodevelopmental alterations and cognitive dysfunctions in offspring and in humans, an association between PE and conditions such as cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, and sexual dimorphism has been observed. Considering the relevance for mothers and children, we conducted a narrative literature review to describe the relationships between the pathophysiological mechanisms behind neurodevelopmental alterations in the offspring of PE mothers, along with their potential consequences. Furthermore, we emphasize aspects pertinent to the prevention/treatment of PE in pregnant mothers and alterations observed in their offspring. The present narrative review offers a current, complete, and exhaustive analysis of (i) the pathophysiological mechanisms that can affect neurodevelopment in the children of PE mothers, (ii) the relationship between PE and neurological alterations in offspring, and (iii) the prevention/treatment of PE.
Collapse
Affiliation(s)
- Andrea González-Rojas
- Laboratorio de Neurociencias Aplicadas, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso 2340025, Chile;
| | | |
Collapse
|
6
|
Wu BA, Chand KK, Bell A, Miller SL, Colditz PB, Malhotra A, Wixey JA. Effects of fetal growth restriction on the perinatal neurovascular unit and possible treatment targets. Pediatr Res 2024; 95:59-69. [PMID: 37674023 PMCID: PMC10798895 DOI: 10.1038/s41390-023-02805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.
Collapse
Affiliation(s)
- Bing Anthony Wu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander Bell
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Atallah M, Yamashita T, Hu X, Hu X, Abe K. Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model. J Neuroimmune Pharmacol 2023; 18:640-656. [PMID: 37924374 DOI: 10.1007/s11481-023-10095-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.
Collapse
Affiliation(s)
- Marwa Atallah
- Vertebrates Comparative Anatomy and Embryology, Zoology Department, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt.
| | - Toru Yamashita
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xiao Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
- National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front Cell Dev Biol 2023; 11:1272536. [PMID: 37928902 PMCID: PMC10620730 DOI: 10.3389/fcell.2023.1272536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Diabetes-related pathophysiological alterations and various female reproductive difficulties were common in pregnant women with gestational diabetes mellitus (GDM), who had 21.1 million live births. Preeclampsia (PE), which increases maternal and fetal morbidity and mortality, affects approximately 3%-5% of pregnancies worldwide. Nevertheless, it is unclear what triggers PE and GDM to develop. Therefore, the development of novel moderator therapy approaches is a crucial advancement. Chemokines regulate physiological defenses and maternal-fetal interaction during healthy and disturbed pregnancies. Chemokines regulate immunity, stem cell trafficking, anti-angiogenesis, and cell attraction. CXC chemokines are usually inflammatory and contribute to numerous reproductive disorders. Fractalkine (CX3CL1) may be membrane-bound or soluble. CX3CL1 aids cell survival during homeostasis and inflammation. Evidence reveals that CXC and CX3CL1 chemokines and their receptors have been the focus of therapeutic discoveries for clinical intervention due to their considerable participation in numerous biological processes. This review aims to give an overview of the functions of CXC and CX3CL1 chemokines and their receptors in the pathophysiology of PE and GDM. Finally, we examined stimulus specificity for CXC and CX3CL1 chemokine expression and synthesis in PE and GDM and preclinical and clinical trials of CXC-based PE and GDM therapies.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Brohan MP, Daly FP, Kelly L, McCarthy FP, Khashan AS, Kublickiene K, Barrett PM. Hypertensive disorders of pregnancy and long-term risk of maternal stroke-a systematic review and meta-analysis. Am J Obstet Gynecol 2023; 229:248-268. [PMID: 36990309 DOI: 10.1016/j.ajog.2023.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Hypertensive disorders of pregnancy are associated with a long-term risk for cardiovascular disease among parous patients later in life. However, relatively little is known about whether hypertensive disorders of pregnancy are associated with an increased risk for ischemic stroke or hemorrhagic stroke in later life. This systematic review aimed to synthesize the available literature on the association between hypertensive disorders of pregnancy and the long-term risk for maternal stroke. DATA SOURCES PubMed, Web of Science, and CINAHL were searched from inception to December 19, 2022. STUDY ELIGIBILITY CRITERIA Studies were only included if the following criteria were met: case-control or cohort studies that were conducted with human participants, were available in English, and that measured the exposure of a history of hypertensive disorders of pregnancy (preeclampsia, gestational hypertension, chronic hypertension, or superimposed preeclampsia) and the outcome of maternal ischemic stroke or hemorrhagic stroke. METHODS Three reviewers extracted the data and appraised the study quality following the Meta-analyses of Observational Studies in Epidemiology guidelines and using the Newcastle-Ottawa scale for risk of bias assessment. RESULTS The primary outcome was any stroke (undifferentiated) and secondary outcomes included ischemic stroke and hemorrhagic stroke. The protocol for this systematic review was registered in the International Prospective Register of Systematic Reviews under identifier CRD42021254660. Of 24 studies included (10,632,808 study participants), 8 studies examined more than 1 outcome of interest. Hypertensive disorders of pregnancy were significantly associated with any stroke (adjusted risk ratio, 1.74; 95% confidence interval, 1.45-2.10). Preeclampsia was significantly associated with any stroke (adjusted risk ratio, 1.75; 95% confidence interval, 1.56-1.97), ischemic stroke (adjusted risk ratio, 1.74; 95% confidence interval, 1.46-2.06), and hemorrhagic stroke (adjusted risk ratio, 2.77; 95% confidence interval, 2.04-3.75). Gestational hypertension was significantly associated with any stroke (adjusted risk ratio, 1.23; 95% confidence interval, 1.20-1.26), ischemic stroke (adjusted risk ratio, 1.35; 95% confidence interval, 1.19-1.53), and hemorrhagic stroke (adjusted risk ratio, 2.66; 95% confidence interval, 1.02-6.98). Chronic hypertension was associated with ischemic stroke (adjusted risk ratio, 1.49; 95% confidence interval, 1.01-2.19). CONCLUSION In this meta-analysis, exposure to hypertensive disorders of pregnancy, including preeclampsia and gestational hypertension, seems to be associated with an increased risk for any stroke and ischemic stroke among parous patients in later life. Preventive interventions may be warranted for patients who experience hypertensive disorders of pregnancy to reduce their long-term risk for stroke.
Collapse
Affiliation(s)
- Matthew P Brohan
- School of Public Health, University College Cork, Cork, Ireland; School of Medicine, University College Cork, Cork, Ireland.
| | - Fionn P Daly
- School of Medicine, University College Cork, Cork, Ireland
| | - Louise Kelly
- Department of General Medicine, Beaumont Hospital, Dublin, Ireland
| | - Fergus P McCarthy
- Irish Centre for Maternal & Child Health, University College Cork, Cork, Ireland
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Intervention, Science and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter M Barrett
- School of Public Health, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Escudero C, Kupka E, Ibañez B, Sandoval H, Troncoso F, Wikström AK, López-Espíndola D, Acurio J, Torres-Vergara P, Bergman L. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension 2023; 80:242-256. [PMID: 35920147 DOI: 10.1161/hypertensionaha.122.19408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia is a maternal syndrome characterized by the new onset of hypertension and proteinuria after 20 weeks of gestation associated with multisystemic complications, including brain alterations. Indeed, brain complications associated with preeclampsia are the leading direct causes of fetal and maternal morbidity and mortality, especially in low- and middle-income countries. In addition to the well-recognized long-term adverse cardiovascular effects of preeclampsia, women who have had preeclampsia have higher risk of stroke, dementia, intracerebral white matter lesions, epilepsy, and perhaps also cognitive decline postpartum. Furthermore, increasing evidence has also associated preeclampsia with similar cognitive and cerebral disorders in the offspring. However, the mechanistic links between these associations remain unresolved. This article summarizes the current knowledge about the cerebrovascular complications elicited by preeclampsia and the potential pathophysiological mechanisms involved, emphasizing the impaired brain vascular function in the mother and their offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Ellen Kupka
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Sweden (E.K.)
| | - Belen Ibañez
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.)
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Chile (D.L.-E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.).,Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile (P.T.-V.)
| | - Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.).,Department of Obstetrics and Gynecology, Stellenbosch University, South Africa (L.B.).,Department of clinical sciences, Sahlgrenska Academy, Gothenburg University, Sweden (L.B.)
| |
Collapse
|
11
|
Barron A, Manna S, McElwain CJ, Musumeci A, McCarthy FP, O’Keeffe GW, McCarthy CM. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol 2023; 13:1043481. [PMID: 36714304 PMCID: PMC9877349 DOI: 10.3389/fphys.2022.1043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Colm J. McElwain
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Cork Neuroscience Centre, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| |
Collapse
|
12
|
Environmental Enrichment Protects Offspring of a Rat Model of Preeclampsia from Cognitive Decline. Cell Mol Neurobiol 2023; 43:381-394. [PMID: 35119541 DOI: 10.1007/s10571-022-01192-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
Preeclampsia affects 5-7% of all pregnancies and contributes to adverse pregnancy and birth outcomes. In addition to the short-term effects of preeclampsia, preeclampsia can exert long-term adverse effects on offspring. Numerous studies have demonstrated that offspring of preeclamptic women exhibit cognitive deficits from childhood to old age. However, effective ways to improve the cognitive abilities of these offspring remain to be investigated. The aim of this study was to explore whether environmental enrichment in early life could restore the cognitive ability of the offspring of a rat model of preeclampsia and to investigate the cellular and molecular mechanisms by which EE improves cognitive ability. L-NAME was used to establish a rat model of preeclampsia. The spatial learning and memory abilities and recognition memory of 56-day-old offspring were evaluated by the Morris water maze and Novel object recognition (NOR) task. Immunofluorescence was performed to evaluate cell proliferation and apoptosis in the DG region of the hippocampus. qRT-PCR was performed to examine the expression levels of neurogenesis-associated genes, pre- and postsynaptic proteins and inflammatory cytokines. An enzyme-linked immune absorbent assay was performed to evaluate the concentration of vascular endothelial growth factor (VEGF) and inflammatory cytokines in the hippocampus. The administration of L-NAME led to increased systolic blood pressure and urine protein levels in pregnant rats. Offspring in the L-NAME group exhibited impaired spatial learning ability and memory as well as NOR memory. Hippocampal neurogenesis and synaptic plasticity were impaired in offspring from the L-NAME group. Furthermore, cell apoptosis in the hippocampus was increased in the L-NAME group. The hippocampus was skewed to a proinflammatory profile, as shown by increased inflammatory cytokine levels. EE improved the cognitive ability of offspring in the L-NAME group and resulted in increased hippocampal neurogenesis and synaptic protein expression levels and decreased apoptosis and inflammatory cytokine levels. Environmental enrichment resolves cognitive impairment in the offspring of a rat model of preeclampsia by improving hippocampal neurogenesis and synaptic plasticity and normalizing the apoptosis level and the inflammatory balance.
Collapse
|
13
|
Katoh Y, Iriyama T, Yano E, Sayama S, Seyama T, Kotajima-Murakami H, Sato A, Sakuma H, Iguchi Y, Yoshikawa M, Inaoka N, Ichinose M, Toshimitsu M, Sone K, Kumasawa K, Nagamatsu T, Ikeda K, Osuga Y. Increased production of inflammatory cytokines and activation of microglia in the fetal brain of preeclamptic mice induced by angiotensin II. J Reprod Immunol 2022; 154:103752. [PMID: 36202022 DOI: 10.1016/j.jri.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Preeclampsia (PE) is a hypertensive obstetric disorder with poor prognosis for both the mother and offspring. Infants born to mothers with PE are known to be at increased risk of developing higher brain dysfunction, such as autism. However, how maternal PE can affect the environment in the fetal brain has not been fully elucidated. Here, we examined the impact of PE on the fetal brain in a mouse model of PE induced by angiotensin II (Ang II), focusing on changes in the inflammatory condition. We confirmed that pregnant mice which were continuously administered Ang II exhibited PE phenotypes, including high blood pressure, proteinuria, and fetal growth restriction. Quantitative RT-PCR analysis demonstrated that the brain of fetuses on embryonic day 17.5 (E17.5) in the Ang II-administered pregnant mice showed increased expression of cytokines, interleukin (IL)- 6, IL-17a, tumor necrosis factor-α, interferon-γ, IL-12, IL-4, and IL-10. Immunohistochemical analysis over a wide area, from the tip of the frontal lobe to the posterior cerebral end, on E17.5 revealed that the microglia in the fetal brain of the Ang II-administered group displayed higher solidity and circularity than those of the control group, indicating that the microglia had transformed to an amoeboid morphology and were activated. Our findings suggest that maternal PE may cause altered inflammatory conditions in the fetal brain, which might be associated with the pathological mechanism connecting maternal PE and brain dysfunction in the offspring.
Collapse
Affiliation(s)
- Yoshihisa Katoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan; Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Eriko Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Takahiro Seyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | | | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Sakuma
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshinobu Iguchi
- Technology Research Division, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Midori Yoshikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Naoko Inaoka
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mari Ichinose
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masatake Toshimitsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Sun J, Zhang W. Supplementation with dietary omega-3 PUFA mitigates fetal brain inflammation and mitochondrial damage caused by high doses of sodium nitrite in maternal rats. PLoS One 2022; 17:e0266084. [PMID: 35324981 PMCID: PMC8947126 DOI: 10.1371/journal.pone.0266084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/13/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Food safety and nutrition during pregnancy are important concerns related to fetal brain development. In the present study, we aimed to explore the effects of omega-3 polyunsaturated fatty acids (PUFA ω-3) on exogenous sodium nitrite intervention-induced fetal brain injury in pregnant rats. Methods During pregnancy, rats were exposed to water containing sodium nitrite (0.05%, 0.15%, and 0.25%) to establish a fetal rat brain injury model. Inflammatory factors and oxidative stress levels were detected using enzyme-linked immunosorbent assay (ELISA) or flow cytometry. Subsequently, animals were divided into three groups: control, model, and 4% PUFA ω-3. Pregnancy outcomes were measured and recorded. Hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) were utilized to observe brain injury. ELISA, quantitative real-time PCR (qRT-PCR), western blot, flow cytometry, and transmission electron microscopy (TEM) were adopted to measure the levels of inflammatory factors, the NRF1/HMOX1 signaling pathway, and mitochondrial and oxidative stress damage. Results With the increase of sodium nitrite concentration, the inflammatory factors and oxidative stress levels increased. Therefore, the high dose group was set as the model group for the following experiments. After PUFA ω-3 treatment, the fetal survival ratio, average body weight, and brain weight were elevated. The cells in the PUFA ω-3 group were more closely arranged and more round than the model. PUFA ω-3 treatment relieved inflammatory factors, oxidative stress levels, and mitochondria damage while increasing the indicators related to brain injury and NRF1/HMOX1 levels. Conclusions Sodium nitrite exposure during pregnancy could cause brain damage in fetal rats. PUFA ω-3 might help alleviate brain inflammation, oxidative stress, and mitochondrial damage, possibly through the NRF1/HMOX1 signaling pathway. In conclusion, appropriately reducing sodium nitrite exposure and increasing PUFA omega-3 intake during pregnancy may benefit fetal brain development. These findings could further our understanding of nutrition and health during pregnancy.
Collapse
Affiliation(s)
- Jingchi Sun
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
15
|
Neuroprotective effect of exosomes derived from bone marrow mesenchymal stem cells via activating TGR5 and suppressing apoptosis. Biochem Biophys Res Commun 2022; 593:13-19. [DOI: 10.1016/j.bbrc.2022.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/24/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022]
|
16
|
Abnormal development of cerebral arteries and veins in offspring of experimentally preeclamptic rats: Potential role in perinatal stroke. Mech Ageing Dev 2021; 196:111491. [PMID: 33864898 DOI: 10.1016/j.mad.2021.111491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Preeclampsia, a hypertensive disorder of pregnancy, complicates up to 10 % of all pregnancies and increases the risk for perinatal stroke in offspring. The mechanism of this increase is unknown, but may involve vascular dysfunction. The goal of this study was to evaluate the effect of experimental preeclampsia (ePE) on cerebrovascular function in offspring to eludciate a possible mechanism for this association. Dams were fed a high cholesterol diet beginning on day 7 of gestation to induce experimental preeclampsia. Middle cerebral arteries (MCA) and the Vein of Galen (VoG) were isolated from pups from ePE dams and compared to pups from normal pregnant (NP) dams at postnatal days 16, 23, and 30 and studied pressurized in an arteriograph chamber. Markers of inflammation and oxidative stress were measured in serum. Our results suggest altered structure and function in both MCA and VoG of ePE pups. We also found evidence of systemic inflammation and oxidative stress in ePE pups. These findings provide a potential link between preeclampsia and the occurrence or severity of perinatal stroke.
Collapse
|
17
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Huppertz B. IJMS Special Issue "Molecular and Cellular Mechanisms of Preeclampsia"-Editorial. Int J Mol Sci 2020; 21:ijms21134801. [PMID: 32645926 PMCID: PMC7369901 DOI: 10.3390/ijms21134801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- Berthold Huppertz
- Professor of Cell Biology, Chair, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/II, 8010 Graz, Austria
| |
Collapse
|
19
|
Gumusoglu SB, Chilukuri ASS, Santillan DA, Santillan MK, Stevens HE. Neurodevelopmental Outcomes of Prenatal Preeclampsia Exposure. Trends Neurosci 2020; 43:253-268. [PMID: 32209456 DOI: 10.1016/j.tins.2020.02.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/06/2023]
Abstract
Preeclampsia is a dangerous hypertensive disorder of pregnancy with known links to negative child health outcomes. Here, we review epidemiological and basic neuroscience work from the past several decades linking prenatal preeclampsia to altered neurodevelopment. This work demonstrates increased rates of neuropsychiatric disorders [e.g., increased autism spectrum disorder, attention deficit hyperactivity disorder (ADHD)] in children of preeclamptic pregnancies, as well as increased rates of cognitive impairments [e.g., decreased intelligence quotient (IQ), academic performance] and neurological disease (e.g., stroke and epilepsy). We also review findings from multiple animal models of preeclampsia. Manipulation of key clinical preeclampsia processes in these models (e.g., placental hypoxia, immune dysfunction, angiogenesis, oxidative stress) causes various disruptions in offspring, including ones in white matter/glia, glucocorticoid receptors, neuroimmune outcomes, cerebrovascular structure, and cognition/behavior. This animal work implicates potentially high-yield targets that may be leveraged in the future for clinical application.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Akanksha S S Chilukuri
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Donna A Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Mark K Santillan
- University of Iowa Carver College of Medicine, Department of Obstetrics and Gynecology, Iowa City, IA, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
| |
Collapse
|