1
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity in mouse models of bacterial infection and asthma. Nat Commun 2024; 15:8914. [PMID: 39414787 PMCID: PMC11484968 DOI: 10.1038/s41467-024-53269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory neurons sense pathogenic infiltration to drive innate immune responses, but their role in humoral immunity is unclear. Here, using mouse models of Streptococcus pneumoniae infection and Alternaria alternata asthma, we show that sensory neurons are required for B cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion increases bacterial burden and reduces B cell numbers, IgG release, and neutrophil stimulation. Meanwhile, during A. alternata-induced airway inflammation, sensory neuron depletion decreases B cell population sizes, IgE levels, and asthmatic characteristics. Mechanistically, during bacterial infection, sensory neurons preferentially release vasoactive intestinal polypeptide (VIP). In response to asthma, sensory neurons release substance P. Administration of VIP into sensory neuron-depleted mice suppresses bacterial burden, while VIPR1 deficiency increases infection. Similarly, exogenous substance P delivery aggravates asthma in sensory neuron-depleted mice, while substance P deficiency ameliorates asthma. Our data, thus demonstrate that sensory neurons release select neuropeptides which target B cells dependent on the immunogen.
Collapse
Affiliation(s)
- Diane Aguilar
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fengli Zhu
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicolas Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Patrizia Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph Pisegna
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Taylor A Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marc Swidergall
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Infectious Disease, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, Los Angeles, CA, USA
| | - Nicholas Jendzjowsky
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Leal APF, Nieto Marín V, Cabistany VV, Morales J, Buccini DF, Franco OL. Applicability of mouse models for induction of severe acute lung injury. Pulm Pharmacol Ther 2024; 86:102316. [PMID: 39069252 DOI: 10.1016/j.pupt.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases. This review focuses on the key immunological pathways underlying bacterial ALI and the exploration of mouse models as tools for its induction. These models serve as indispensable platforms for unraveling the inflammatory cascades and biological responses inherent to ALI, while also facilitating the evaluation of novel therapeutic agents. However, their utility is not without challenges, mainly due to the stringent biosafety protocols required by the diverse bacterial virulence profiles. Simple and reproducible models of pulmonary bacterial infection are currently available, including intratracheal, intranasal, pleural and, intraperitoneal approaches. These models use endotoxins such as commercially available lipopolysaccharide (LPS) or live pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus pneumoniae, all of which are implicated in the pathogenesis of ALI. Combining murine models of bacterial lung infection with in-depth studies of the underlying immunological mechanisms is a cornerstone in advancing the therapeutic landscape for acute bacterial lung injury.
Collapse
Affiliation(s)
- Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Vinícius Varzim Cabistany
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Júlia Morales
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Pontifícia Universidade Católica de Brasília, Brasília, DF, 70790160, Brazil.
| |
Collapse
|
3
|
Aguilar D, Zhu F, Millet A, Millet N, Germano P, Pisegna J, Akbari O, Doherty TA, Swidergall M, Jendzjowsky N. Sensory neurons regulate stimulus-dependent humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574231. [PMID: 38260709 PMCID: PMC10802321 DOI: 10.1101/2024.01.04.574231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sensory neurons sense pathogenic infiltration, serving to inform immune coordination of host defense. However, sensory neuron-immune interactions have been predominantly shown to drive innate immune responses. Humoral memory, whether protective or destructive, is acquired early in life - as demonstrated by both early exposure to streptococci and allergic disease onset. Our study further defines the role of sensory neuron influence on humoral immunity in the lung. Using a murine model of Streptococcus pneumonia pre-exposure and infection and a model of allergic asthma, we show that sensory neurons are required for B-cell and plasma cell recruitment and antibody production. In response to S. pneumoniae, sensory neuron depletion resulted in a larger bacterial burden, reduced B-cell populations, IgG release and neutrophil stimulation. Conversely, sensory neuron depletion reduced B-cell populations, IgE and asthmatic characteristics during allergen-induced airway inflammation. The sensory neuron neuropeptide released within each model differed. With bacterial infection, vasoactive intestinal polypeptide (VIP) was preferentially released, whereas substance P was released in response to asthma. Administration of VIP into sensory neuron-depleted mice suppressed bacterial burden and increased IgG levels, while VIP1R deficiency increased susceptibility to bacterial infection. Sensory neuron-depleted mice treated with substance P increased IgE and asthma, while substance P genetic ablation resulted in blunted IgE, similar to sensory neuron-depleted asthmatic mice. These data demonstrate that the immunogen differentially stimulates sensory neurons to release specific neuropeptides which specifically target B-cells. Targeting sensory neurons may provide an alternate treatment pathway for diseases involved with insufficient and/or aggravated humoral immunity.
Collapse
|
4
|
Wang J, Hu L, Zhang Z, Sui C, Zhu X, Wu C, Zhang L, Lv M, Yang W, Zhou D, Shang Z. Mice fatal pneumonia model induced by less-virulent Streptococcus pneumoniae via intratracheal aerosolization. Future Microbiol 2024; 19:1055-1070. [PMID: 38913747 PMCID: PMC11323861 DOI: 10.1080/17460913.2024.2355738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.
Collapse
Affiliation(s)
- Jiazhen Wang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhijun Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengyu Sui
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Microbiology of Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengxi Wu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhengling Shang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
| |
Collapse
|
5
|
Giménez MJ, Aguilar L, Alou L, Sevillano D. Comment on the article: In vivo Pharmacokinetics/Pharmacodynamics Profiles for Appropriate Doses of Cefditoren pivoxil against S. pneumoniae in Murine Lung-Infection Model. Pharm Res 2024; 41:1595-1597. [PMID: 38997597 DOI: 10.1007/s11095-024-03729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Affiliation(s)
- M J Giménez
- PRISM-AG, Madrid, Spain.
- Universidad Europea, Madrid, Spain.
| | | | - L Alou
- Microbiology-Medicine Department, School of Medicine, Universidad Complutense, Madrid, Spain
| | - D Sevillano
- Microbiology-Medicine Department, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
6
|
Sekulovic O, Gallagher C, Lee J, Hao L, Zinonos S, Tan CY, Anderson A, Kanevsky I. Evidence of Reduced Virulence and Increased Colonization Among Pneumococcal Isolates of Serotype 3 Clade II Lineage in Mice. J Infect Dis 2024; 230:e182-e188. [PMID: 39052735 PMCID: PMC11272092 DOI: 10.1093/infdis/jiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Caitlyn Gallagher
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Jonathan Lee
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Li Hao
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Stavros Zinonos
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Charles Y Tan
- Pfizer Inc, Early Clinical Development, Collegeville, Pennsylvania
| | | | - Isis Kanevsky
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| |
Collapse
|
7
|
Farmen K, Tofiño-Vian M, Wellfelt K, Olson L, Iovino F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol Dis 2024; 195:106484. [PMID: 38583642 DOI: 10.1016/j.nbd.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis globally, and pneumococcal meningitis is associated with increased risk of long-term neurological sequelae. These include several sensorimotor functions that are controlled by specific brain regions which, during bacterial meningitis, are damaged by a neuroinflammatory response and the deleterious action of bacterial toxins in the brain. However, little is known about the invasion pattern of the pneumococcus into the brain. Using a bacteremia-derived meningitis mouse model, we combined 3D whole brain imaging with brain microdissection to show that all brain regions were equally affected during disease progression, with the presence of pneumococci closely associated to the microvasculature. In the hippocampus, the invasion provoked microglial activation, while the neurogenic niche showed increased proliferation and migration of neuroblasts. Our results indicate that, even before the outbreak of symptoms, the bacterial load throughout the brain is high and causes neuroinflammation and cell death, a pathological scenario which ultimately leads to a failing regeneration of new neurons.
Collapse
Affiliation(s)
- Kristine Farmen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Bui DT, Lee YS, Kuo TF, Chen ZW, Yang WC. Novel Experimental Mouse Model to Study the Pathogenesis and Therapy of Actinobacillus pleuropneumoniae Infection. Pathogens 2024; 13:412. [PMID: 38787263 PMCID: PMC11123673 DOI: 10.3390/pathogens13050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is a major cause of lung infections in pigs. An experimental mouse has the edge over pigs pertaining to the ease of experimental operation, disease study and therapy, abundance of genetic resources, and cost. However, it is a challenge to introduce APP into a mouse lung due to the small respiratory tract of mice and bacterial host tropism. In this study, an effective airborne transmission of APP serovar 1 (APP1) was developed in mice for lung infection. Consequently, APP1 infected BALB/c mice and caused 60% death within three days of infection at the indicated condition. APP1 seemed to enter the lung and, in turn, spread to other organs of the mice over the first 5 days after infection. Accordingly, APP1 damaged the lung as evidenced by its morphological and histological examinations. Furthermore, ampicillin fully protected mice against APP1 as shown by their survival, clinical symptoms, body weight loss, APP1 count, and lung damages. Finally, the virulence of two extra APP strains, APP2 and APP5, in the model was compared based on the survival rate of mice. Collectively, this study successfully established a fast and reliable mouse model of APP which can benefit APP research and therapy. Such a model is a potentially useful model for airway bacterial infections.
Collapse
Affiliation(s)
- Duc-Thang Bui
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
| | - Yi-San Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli County 350, Taiwan;
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City 115, Taiwan; (D.-T.B.); (Y.-S.L.); (T.-F.K.)
- Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan
- Department of Life Sciences, National Taiwan Ocean University, Keelung City 202, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung City 404, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung City 404, Taiwan
| |
Collapse
|
9
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
10
|
Gierse LC, Meene A, Skorka S, Cuypers F, Surabhi S, Ferrero-Bordera B, Kreikemeyer B, Becher D, Hammerschmidt S, Siemens N, Urich T, Riedel K. Impact of Pneumococcal and Viral Pneumonia on the Respiratory and Intestinal Tract Microbiomes of Mice. Microbiol Spectr 2023; 11:e0344722. [PMID: 36988458 PMCID: PMC10269894 DOI: 10.1128/spectrum.03447-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
With 2.56 million deaths worldwide annually, pneumonia is one of the leading causes of death. The most frequent causative pathogens are Streptococcus pneumoniae and influenza A virus. Lately, the interaction between the pathogens, the host, and its microbiome have gained more attention. The microbiome is known to promote the immune response toward pathogens; however, our knowledge on how infections affect the microbiome is still scarce. Here, the impact of colonization and infection with S. pneumoniae and influenza A virus on the structure and function of the respiratory and gastrointestinal microbiomes of mice was investigated. Using a meta-omics approach, we identified specific differences between the bacterial and viral infection. Pneumococcal colonization had minor effects on the taxonomic composition of the respiratory microbiome, while acute infections caused decreased microbial complexity. In contrast, richness was unaffected following H1N1 infection. Within the gastrointestinal microbiome, we found exclusive changes in structure and function, depending on the pathogen. While pneumococcal colonization had no effects on taxonomic composition of the gastrointestinal microbiome, increased abundance of Akkermansiaceae and Spirochaetaceae as well as decreased amounts of Clostridiaceae were exclusively found during invasive S. pneumoniae infection. The presence of Staphylococcaceae was specific for viral pneumonia. Investigation of the intestinal microbiomés functional composition revealed reduced expression of flagellin and rubrerythrin and increased levels of ATPase during pneumococcal infection, while increased amounts of acetyl coenzyme A (acetyl-CoA) acetyltransferase and enoyl-CoA transferase were unique after H1N1 infection. In conclusion, identification of specific taxonomic and functional profiles of the respiratory and gastrointestinal microbiome allowed the discrimination between bacterial and viral pneumonia. IMPORTANCE Pneumonia is one of the leading causes of death worldwide. Here, we compared the impact of bacterial- and viral-induced pneumonia on the respiratory and gastrointestinal microbiome. Using a meta-omics approach, we identified specific profiles that allow discrimination between bacterial and viral causative.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sebastian Skorka
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fabian Cuypers
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Surabhi Surabhi
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
12
|
Hames RG, Jasiunaite Z, Ercoli G, Wanford JJ, Carreno D, Straatman K, Martinez-Pomares L, Yesilkaya H, Glenn S, Moxon ER, Andrew PW, Kyriacou CP, Oggioni MR. Diurnal Differences in Intracellular Replication Within Splenic Macrophages Correlates With the Outcome of Pneumococcal Infection. Front Immunol 2022; 13:907461. [PMID: 35720383 PMCID: PMC9201068 DOI: 10.3389/fimmu.2022.907461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Circadian rhythms affect the progression and severity of bacterial infections including those caused by Streptococcus pneumoniae, but the mechanisms responsible for this phenomenon remain largely elusive. Following advances in our understanding of the role of replication of S. pneumoniae within splenic macrophages, we sought to investigate whether events within the spleen correlate with differential outcomes of invasive pneumococcal infection. Utilising murine invasive pneumococcal disease (IPD) models, here we report that infection during the murine active phase (zeitgeber time 15; 15h after start of light cycle, 3h after start of dark cycle) resulted in significantly faster onset of septicaemia compared to rest phase (zeitgeber time 3; 3h after start of light cycle) infection. This correlated with significantly higher pneumococcal burden within the spleen of active phase-infected mice at early time points compared to rest phase-infected mice. Whole-section confocal microscopy analysis of these spleens revealed that the number of pneumococci is significantly higher exclusively within marginal zone metallophilic macrophages (MMMs) known to allow intracellular pneumococcal replication as a prerequisite step to the onset of septicaemia. Pneumococcal clusters within MMMs were more abundant and increased in size over time in active phase-infected mice compared to those in rest phase-infected mice which decreased in size and were present in a lower percentage of MMMs. This phenomenon preceded significantly higher levels of bacteraemia alongside serum IL-6 and TNF-α concentrations in active phase-infected mice following re-seeding of pneumococci into the blood. These data greatly advance our fundamental knowledge of pneumococcal infection by linking susceptibility to invasive pneumococcal infection to variation in the propensity of MMMs to allow persistence and replication of phagocytosed bacteria. These findings also outline a somewhat rare scenario whereby the active phase of an organism’s circadian cycle plays a seemingly counterproductive role in the control of invasive infection.
Collapse
Affiliation(s)
- Ryan G Hames
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, London, United Kingdom
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - David Carreno
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Kornelis Straatman
- Advanced Imaging Facility, University of Leicester, Leicester, United Kingdom
| | | | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Sarah Glenn
- Preclinical Research Facility, University of Leicester, Leicester, United Kingdom
| | - E Richard Moxon
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
14
|
Wang Y, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo Z, Du G. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr Res 2021; 65:5623. [PMID: 34908920 PMCID: PMC8634376 DOI: 10.29219/fnr.v65.5623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. Objective To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. Methods The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. Results The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. Conclusion Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.
Collapse
Affiliation(s)
- Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, China
| |
Collapse
|
15
|
Weinberg SE, Singer BD. Toward a Paradigm to Distinguish Distinct Functions of FOXP3 + Regulatory T Cells. Immunohorizons 2021; 5:944-952. [PMID: 34893512 DOI: 10.4049/immunohorizons.2100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
FOXP3+ regulatory T (Treg) cells are a unique subset of CD4+ T cells that classically function as master regulators of immune homeostasis. Besides this canonical suppressive role, which is required to maintain self-tolerance, a growing body of literature has identified Treg cells as critical orchestrators of tissue protection during acute stress and as effector cells that drive repair following tissue injury. Despite substantial interest in these distinct roles, the field has struggled to disentangle Treg cell suppressive functions from those that promote tissue defense and repair. In this article, we will examine the literature in the context of specific physiologic settings, contrasting the suppressive function of Treg cells with their emerging roles in promoting tissue homeostasis and tissue repair. Further, we will discuss a new paradigm differentiating tissue defense from tissue repair-a paradigm needed to translate Treg cell-based therapies to the clinic.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL; and.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
16
|
Han L, Kou J, Hu K, Wang Y, Tang Z, Wu Z, Song X. Protective effects of Re-yan-ning mixture on Streptococcus pneumonia in rats based on network pharmacology. PHARMACEUTICAL BIOLOGY 2021; 59:209-221. [PMID: 33678123 PMCID: PMC7939573 DOI: 10.1080/13880209.2021.1872653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Re-yan-ning mixture (RYNM) is a new national drug approved by China's State Food and Drug Administration for the treatment of colds, simple pneumonia and acute bronchitis. OBJECTIVE To determine the mechanism of action of RYNM in the treatment of bacterial pneumonia. MATERIALS AND METHODS Using the network pharmacology approach, the multiple components, component candidate targets and multiple therapeutic targets of RYNM were screened and functionally enriched. Also, we established a rat Streptococcus pneumonia model to verify the results of network pharmacology enrichment analysis. Forty male SPF Sprague Dawley rats were divided into four groups of 10 rats: control (normal saline), model (normal saline), levofloxacin-intervened and RYNM-intervened groups. IL-10, NOS2, COX-1, IL-6, TNF-α and NF-κB in serum and BALF were detected by ELISA. Western blot detected IL-17, IL-6, TNF-α, COX-2 and Bcl-2. RESULTS The network pharmacology approach successfully identified 48 bioactive components in RYNM, and 65 potential targets and 138 signal pathways involved in the treatment of Streptococcus pneumonia with RYNM. The in vivo experiments indicated that model group has visible inflammation and lesions while RYNM and levofloxacin groups have not. The RYNM exhibited its therapeutic effects on Streptococcus pneumonia mainly via the regulation of cell proliferation and survival through the IL-6/IL-10/IL-17, Bax/Bcl-2, COX-1/COX-2, NF-κB and TNF-α signalling pathways. DISCUSSION AND CONCLUSIONS The present study demonstrated the protective effects of RYNM on Streptococcus pneumonia, providing a potential mechanism for the treatment of bacterial pneumonia with RYNM.
Collapse
Affiliation(s)
- Lizhu Han
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Kou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Kunxia Hu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yunlan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhisheng Wu
- College of Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
17
|
Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Arch Microbiol 2021; 203:4737-4742. [PMID: 34184097 PMCID: PMC8360831 DOI: 10.1007/s00203-021-02458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
In vivo bioluminescence imaging (BLI) offers a unique opportunity to analyze ongoing bacterial infections qualitatively and quantitatively in intact animals over time, leading to a reduction in the number of animals needed for a study. Since accurate determination of the bacterial burden plays an essential role in microbiological research, the present study aimed to evaluate the ability to quantify bacteria by non-invasive BLI technique in comparison to standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). For this purpose, BALB/c mice were intranasally infected with 1 × 105 CFU of bioluminescent Streptococcus pneumoniae A66.1. At day 1 post-infection, the presence of S. pneumoniae in lungs was demonstrated by spread plate method and RT-qPCR, but not by in vivo BLI. However, on the second day p.i., the bioluminescent signal was already detectable, and the photon flux values positively correlated with CFU counts and RT-qPCR data within days 2–6. Though in vivo BLI is valuable research tool allowing the continuous monitoring and quantification of pneumococcal infection in living mice, it should be kept in mind that early in the infection, depending on the infective dose, the bioluminescent signal may be below the detection limit.
Collapse
Affiliation(s)
- Katarína Briestenská
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miriam Mikušová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Karolína Tomčíková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - František Kostolanský
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Varečková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
18
|
Rombauts A, Abelenda-Alonso G, Cuervo G, Gudiol C, Carratalà J. Role of the inflammatory response in community-acquired pneumonia: clinical implications. Expert Rev Anti Infect Ther 2021; 20:1261-1274. [PMID: 33034228 DOI: 10.1080/14787210.2021.1834848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite adequate antibiotic coverage, community-acquired pneumonia (CAP) remains a leading cause of hospitalization and mortality worldwide. It induces both a local pulmonary and a systemic inflammatory response, particularly significant in severe cases. The intensity of the dysregulated host response varies from patient to patient and has a negative impact on survival and other outcomes. AREAS COVERED This comprehensive review summarizes the pathophysiological aspects of the inflammatory response in CAP, briefly discusses the usefulness of biomarkers, and assesses the clinical evidence for modulating the inflammatory pathways. We searched PubMed for the most relevant studies, reviews, and meta-analysis until August 2020. EXPERT OPINION Notable efforts have been made to identify biomarkers that can accurately differentiate between viral and bacterial etiology, and indeed, to enhance risk stratification in CAP. However, none has proven ideal and no recommended biomarker-guided algorithms exist. Biomarker signatures from proteomic and metabolomic studies could be more useful for such assessments. To date, most studies have produced contradictory results concerning the role of immunomodulatory agents (e.g. corticosteroids, macrolides, and statins) in CAP. Adequately identifying the population who may benefit most from effective modulation of the inflammatory response remains a challenge.
Collapse
Affiliation(s)
- Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Guillermo Cuervo
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain.,Institut Català d'Oncologia (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Feldman C, Anderson R. Platelets and Their Role in the Pathogenesis of Cardiovascular Events in Patients With Community-Acquired Pneumonia. Front Immunol 2020; 11:577303. [PMID: 33042161 PMCID: PMC7527494 DOI: 10.3389/fimmu.2020.577303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Community-acquired pneumonia (CAP) remains an important cause of morbidity and mortality throughout the world with much recent and ongoing research focused on the occurrence of cardiovascular events (CVEs) during the infection, which are associated with adverse short-term and long-term survival. Much of the research directed at unraveling the pathogenesis of these events has been undertaken in the settings of experimental and clinical CAP caused by the dangerous, bacterial respiratory pathogen, Streptococcus pneumoniae (pneumococcus), which remains the most common bacterial cause of CAP. Studies of this type have revealed that although platelets play an important role in host defense against infection, there is also increasing recognition that hyperactivation of these cells contributes to a pro-inflammatory, prothrombotic systemic milieu that contributes to the etiology of CVEs. In the case of the pneumococcus, platelet-driven myocardial damage and dysfunction is exacerbated by the direct cardiotoxic actions of pneumolysin, a major pore-forming toxin of this pathogen, which also acts as potent activator of platelets. This review is focused on the role of platelets in host defense against infection, including pneumococcal infection in particular, and reviews the current literature describing the potential mechanisms by which platelet activation contributes to cardiovascular complications in CAP. This is preceded by an evaluation of the burden of pneumococcal infection in CAP, the clinical features and putative pathogenic mechanisms of the CVE, and concludes with an evaluation of the potential utility of the anti-platelet activity of macrolides and various adjunctive therapies.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, Institute of Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|