1
|
Manola KN, Zachaki S, Kakosaiou K, Ioannidou A, Kalomoiraki M, Rampias T. Cohesin RAD21 Gene Promoter Methylation in Patients with Acute Myeloid Leukemia. Life (Basel) 2024; 14:1311. [PMID: 39459611 PMCID: PMC11509327 DOI: 10.3390/life14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aberrant gene promoter methylation is one of the hallmarks of Acute Myeloid Leukemia (AML). RAD21 is an important gene, implicated in sister chromatids cohesion, DNA repair, the regulation of gene transcription, apoptosis and hematopoiesis. METHODS In this study, we investigate the possible implication of RAD21 promoter methylation in AML pathogenesis using a cohort of AML patients and a cohort of healthy individuals. RESULTS RAD21 promoter methylation was found in 24% of patients and in none of the controls (p = 0.023), indicating a possible contribution to AML development. Interestingly, a statistically higher frequency of RAD21 methylation was observed in patients with trisomy 8 (9/21, 42.9%, p = 0.021), while none of the patients with aberrations of chromosome 11 had RAD21 gene promoter methylation (0%, 0/11, p = 0.048). Patients with monosomal and complex karyotypes showed low frequencies of RAD21 methylation (7.7% and 15.4%, respectively) without reaching statistical significance. Moreover, ASXL1 mutations were not found to be associated with RAD21 methylation. CONCLUSIONS This is the first study which provides evidence for a possible pathogenetic role of RAD21 promoter methylation in AML development and especially in AML with trisomy 8. Further studies of RAD21 promoter methylation in large series of different AML genetic subgroups may contribute to the elucidation of AML pathogenesis and to the identification of new epigenetic biomarkers with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Kalliopi N. Manola
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Sophia Zachaki
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Katerina Kakosaiou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Agapi Ioannidou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Marina Kalomoiraki
- Laboratory of Health Physics, Radiobiology & Cytogenetics, National Center for Scientific Research (NCSR) “Demokritos”, 15341 Athens, Greece; (S.Z.); (K.K.); (A.I.); (M.K.)
| | - Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
3
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Dong Q, Gong C, Jiang Q, Liu Y, Hu Y, Wang D, Liu H, Zheng T, Song C, Wang T, Ju R, Wang C, Song D, Liu Z, Liu Y, Lu Y, Fan J, Liu M, Gao T, An Z, Zhang J, Li P, Cao C, Liu X. Identification of differentially expressed tumour-related genes regulated by UHRF1-driven DNA methylation. Sci Rep 2024; 14:18371. [PMID: 39112494 PMCID: PMC11306747 DOI: 10.1038/s41598-024-69110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an epigenetic regulator that plays critical roles in tumours. However, the DNA methylation alteration patterns driven by UHRF1 and the related differentially expressed tumour-related genes remain unclear. In this study, a UHRF1-shRNA MCF-7 cell line was constructed, and whole-genome bisulfite sequencing and RNA sequencing were performed. The DNA methylation alteration landscape was elucidated, and DNA methylation-altered regions (DMRs) were found to be distributed in both gene bodies and adjacent regions. The DMRs were annotated and categorized into 488 hypermethylated/1696 hypomethylated promoters and 1149 hypermethylated/5501 hypomethylated gene bodies. Through an integrated analysis with the RNA sequencing data, 217 methylation-regulated upregulated genes and 288 downregulated genes were identified, and these genes were primarily enriched in nervous system development and cancer signalling pathways. Further analysis revealed 21 downregulated oncogenes and 15 upregulated TSGs. We also showed that UHRF1 silencing inhibited cell proliferation and migration and suppressed tumour growth in vivo. Our study suggested that UHRF1 and the oncogenes or TSGs it regulates might serve as biomarkers and targets for breast cancer treatment.
Collapse
Affiliation(s)
- Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Di Wang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Dengcen Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zijing Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuting Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuwei Lu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jinlian Fan
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Mengzi Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ziqian An
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jiaxin Zhang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
5
|
Tanaka Y, Nakanishi Y, Furuhata E, Nakada KI, Maruyama R, Suzuki H, Suzuki T. FLI1 is associated with regulation of DNA methylation and megakaryocytic differentiation in FPDMM caused by a RUNX1 transactivation domain mutation. Sci Rep 2024; 14:14080. [PMID: 38890442 PMCID: PMC11189521 DOI: 10.1038/s41598-024-64829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.
Collapse
Affiliation(s)
- Yuki Tanaka
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Nakanishi
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ken-Ichi Nakada
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Rino Maruyama
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Campus, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama City, Kanagawa, 230-0045, Japan.
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
6
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
7
|
Feng B, Zheng J, Cai Y, Han Y, Han Y, Wu J, Feng J, Zheng K. An Epigenetic Manifestation of Alzheimer's Disease: DNA Methylation. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:365-374. [PMID: 38863055 PMCID: PMC11190457 DOI: 10.62641/aep.v52i3.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Alzheimer's disease (AD), the most common form of dementia, has a complex pathogenesis. The number of AD patients has increased in recent years due to population aging, while a trend toward a younger age of onset has arisen, imposing a substantial burden on society and families, and garnering extensive attention. DNA methylation has recently been revealed to play an important role in AD onset and progression. DNA methylation is a critical mechanism regulating gene expression, and alterations in this mechanism dysregulate gene expression and disrupt important pathways, including oxidative stress responses, inflammatory reactions, and protein degradation processes, eventually resulting in disease. Studies have revealed widespread changes in AD patients' DNA methylation in the peripheral blood and brain tissues, affecting multiple signaling pathways and severely impacting neuronal cell and synaptic functions. This review summarizes the role of DNA methylation in the pathogenesis of AD, aiming to provide a theoretical basis for its early prevention and treatment.
Collapse
Affiliation(s)
- Boyi Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
- Shenzhen Guangming District People's Hospital, 518107 Shenzhen, Guangdong, China
| | - Junli Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Ying Cai
- Public Health Service Center, Bao'an District, 518100 Shenzhen, Guangdong, China
| | - Yaguang Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Yanhua Han
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150000 Harbin, Heilongjiang, China
| | - Jiaqi Wu
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Jun Feng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| | - Kai Zheng
- Department of Chronic Disease, Longhua District Center for Chronic Disease Control/Mental Health, 510080 Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
9
|
Bashi MA, Ad'hiah AH. Molecular landscape of the interleukin-40 encoding gene, C17orf99, in patients with acute myeloid leukemia. Gene 2024; 904:148214. [PMID: 38286266 DOI: 10.1016/j.gene.2024.148214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant hematological disorder in which aberrant cytokine signaling and inflammation play a role in disease initiation and progression. Interleukin-40 (IL-40) is a novel cytokine encoded by the chromosome 17 open reading frame 99 (C17orf99) gene. This cytokine is involved in mediating inflammation but its biological significance in the pathogenesis of AML has not been investigated. In this case-control and observational study, mRNA expression and DNA methylation of the C17orf99 gene were evaluated in the peripheral blood of AML patients. In addition, the polymorphism of two novel intergenic variants of the C17orf99 gene, rs2004339 A/G and rs2310998 G/A, were explored using a real-time polymerase chain reaction assay. The study was conducted on 131 patients with AML and 106 controls and gene expression and DNA methylation were expressed as fold-change (2-ΔΔCt). Results revealed that mRNA expression of the C17orf99 gene was down-regulated in AML patients, particularly in females, while up-regulated expression was found in patients with hypoalbuminemia. For DNA methylation, it was up-regulated in AML patients, particularly in females, AML M5 subtype, and CD4-negative and CD14-positive peripheral blood cells. The mutant A allele and the corresponding homozygous AA genotype of rs2004339 was significantly associated with an increased risk of AML. The AA genotype was also associated with significantly up-regulated C17orf99 mRNA expression and DNA methylation of compared to the wild-type GG genotype. In conclusions, C17orf99 mRNA expression showed down-regulated levels in the peripheral blood of AML patients, while DNA methylation was up-regulated. The intergenic variant rs2004339 was associated with susceptibility to AML and had an effect on mRNA expression and DNA methylation.
Collapse
Affiliation(s)
- Mustafa A Bashi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
10
|
Bonilla G, Morris A, Kundu S, Ducasse A, Jeffries NE, Chetal K, Yvanovich EE, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
11
|
Zhang X, Zhang K, Zhang J, Chang W, Zhao Y, Suo X. DNMTs-mediated SOCS3 methylation promotes the occurrence and development of AML. Eur J Haematol 2024; 112:439-449. [PMID: 37950514 DOI: 10.1111/ejh.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES As a tumor suppressor gene, SOCS3 inhibits the growth of tumor cells by regulating JAK/STAT signaling pathway through negative feedback. This study aimed to investigate the biological function and mechanism of SOCS3 methylation mediated by DNMTs in the development of AML. METHODS Bone marrow samples were collected from 70 AML patients and 20 healthy volunteers. The expression and methylation status of each gene were detected by RT-qPCR, western blot and MS-PCR, and the growth and apoptosis rate of leukemia cell lines were detected by CCK-8 and flow cytometry. The effects of changes in SOCS3 gene expression and methylation status of AML cell lines were observed by gene transfection and gene knockdown. RESULTS The methylation rate of SOCS3 in AML initial treatment group was significantly higher than that in the remission group and the normal control group (60% vs. 0%, 0%). The expression of SOCS3 in the SOCS3 methylation group was significantly lower than that in the non-methylated group and control group, while the expression of DNMT1, DNMT3a, p-JAK2, p-STAT3 and p-STAT5 were significantly higher than those in the non-methylated group and control group. Demethylation treatment, SOCS3 transfection and DNMT3a knockdown could up-regulate the expression of SOCS3, which decreased the proliferation and increased the apoptosis of leukemia cell lines. CONCLUSION SOCS3 methylation mediated by DNMTs promotes the occurrence and development of AML and can be used as a potential biomarker for the diagnosis and efficacy evaluation of AML.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Kai Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Zhang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Wei Chang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Yunguo Zhao
- Department of Medicine, Handan Central Hospital, Handan, Hebei, China
| | - Xiaohui Suo
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| |
Collapse
|
12
|
Li C, Zhao J, Kang B, Li S, Tang J, Dong D, Chen Y. Identification and validation of STAT4 as a prognostic biomarker in acute myeloid leukemia. Biosci Rep 2024; 44:BSR20231720. [PMID: 38294290 PMCID: PMC10861362 DOI: 10.1042/bsr20231720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024] Open
Abstract
Acute myelogenous leukemia (AML) is a common malignancy and is supposed to have the ability to escape host immune surveillance. The present study aimed to identify key genes in AML that may affect tumor immunity and to provide prognosis biomarkers of AML. The Cancer Genome Atlas (TCGA) dataset was screened for transcription factors (TFs) involved in immunity and influencing survival, combining Gene Expression Omnibus (GEO) data to validate the impact on patient survival. A prognostic signature was established using four transcription factors, and these genes play an important role in the immune system, with higher regulatory T cell (Treg) scores in high-risk patients compared with the low-risk group. Analysis of individual genes showed that STAT4 and Treg are closely related, which may be due to STAT4 transcribing related genes that affect immunity. STAT4 expression was positively correlated with the proportion of abnormal cells and promoted AML recurrence as verified by AML clinical patient samples. In addition, silencing of STAT4 significantly slowed down the proliferation capacity of HL60 cells. In conclusion, these findings suggest that STAT4 may be a potential biomarker for AML prognosis. As a key gene affecting the prognosis of AML patients, STAT4 has the potential to be a candidate diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingyu Kang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingya Tang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Šestáková Š, Šálek C, Kundrát D, Cerovská E, Vydra J, Ježíšková I, Folta A, Mayer J, Cetkovský P, Remešová H. MethScore as a new comprehensive DNA methylation-based value refining the prognosis in acute myeloid leukemia. Clin Epigenetics 2024; 16:17. [PMID: 38254139 PMCID: PMC10802002 DOI: 10.1186/s13148-024-01625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Changes in DNA methylation are common events in the pathogenesis of acute myeloid leukemia (AML) and have been repeatedly reported as associated with prognosis. However, studies integrating these numerous and potentially prognostically relevant DNA methylation changes are lacking. Therefore, we aimed for an overall evaluation of these epigenetic aberrations to provide a comprehensive NGS-based approach of DNA methylation assessment for AML prognostication. RESULTS We designed a sequencing panel targeting 239 regions (approx. 573 kb of total size) described in the literature as having a prognostic impact or being associated with AML pathogenesis. Diagnostic whole-blood DNA samples of adult AML patients divided into a training (n = 128) and a testing cohort (n = 50) were examined. The libraries were prepared using SeqCap Epi Enrichments System (Roche) and sequenced on MiSeq instrument (Illumina). Altogether, 1935 CpGs affecting the survival (p < 0.05) were revealed in the training cohort. A summarizing value MethScore was then calculated from these significant CpGs. Patients with lower MethScore had markedly longer overall survival (OS) and event-free survival (EFS) than those with higher MethScore (p < 0.001). The predictive ability of MethScore was verified on the independent testing cohort for OS (p = 0.01). Moreover, the proof-of-principle validation was performed using the TCGA dataset. CONCLUSIONS We showed that comprehensive NGS-based approach of DNA methylation assessment revealed a robust epigenetic signature relevant to AML outcome. We called this signature MethScore and showed it might serve as a strong prognostic marker able to refine survival probability of AML patients.
Collapse
Affiliation(s)
- Šárka Šestáková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dávid Kundrát
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
| | - Ela Cerovská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Vydra
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Ježíšková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, School of Medicine, Brno, Czech Republic
| | - Adam Folta
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, School of Medicine, Brno, Czech Republic
| | - Jiří Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, School of Medicine, Brno, Czech Republic
| | - Petr Cetkovský
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Remešová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00, Prague, Czech Republic.
| |
Collapse
|
14
|
Song C, Kim MY, Cho JY. The Role of Protein Methyltransferases in Immunity. Molecules 2024; 29:360. [PMID: 38257273 PMCID: PMC10819338 DOI: 10.3390/molecules29020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The immune system protects our body from bacteria, viruses, and toxins and removes malignant cells. Activation of immune cells requires the onset of a network of important signaling proteins. Methylation of these proteins affects their structure and biological function. Under stimulation, T cells, B cells, and other immune cells undergo activation, development, proliferation, differentiation, and manufacture of cytokines and antibodies. Methyltransferases alter the above processes and lead to diverse outcomes depending on the degree and type of methylation. In the previous two decades, methyltransferases have been reported to mediate a great variety of immune stages. Elucidating the roles of methylation in immunity not only contributes to understanding the immune mechanism but is helpful in the development of new immunotherapeutic strategies. Hence, we review herein the studies on methylation in immunity, aiming to provide ideas for new approaches.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
15
|
Ogana HA, Hurwitz S, Wei N, Lee E, Morris K, Parikh K, Kim YM. Targeting integrins in drug-resistant acute myeloid leukaemia. Br J Pharmacol 2024; 181:295-316. [PMID: 37258706 DOI: 10.1111/bph.16149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest. AML cells express integrins that bind to ligands in the microenvironment, enabling adhesion of leukaemia cells in the microenvironment, thereby initiating intracellular signalling pathways that are associated with cell migration, cell proliferation, survival, and drug resistance that has been described to mediate cell adhesion-mediated drug resistance (CAM-DR). Identifying and targeting integrins in AML to interrupt interactions with the microenvironment have been pursued as a strategy to overcome CAM-DR. Here, we focus on the BM microenvironment and review the role of integrins in CAM-DR of AML and discuss integrin-targeting strategies. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Heather A Ogana
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samantha Hurwitz
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nathan Wei
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eliana Lee
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kayla Morris
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Karina Parikh
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Wen Q, Wang S, Hong L, Shen S, He Y, Sheng X, Zhuang X, Chen S, Wang Y, Zhuang H. m 5 C regulator-mediated methylation modification patterns and tumor microenvironment infiltration characteristics in acute myeloid leukemia. Immun Inflamm Dis 2024; 12:e1150. [PMID: 38270308 PMCID: PMC10802208 DOI: 10.1002/iid3.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Recently, many studies have been conducted to examine immune response modification at epigenetic level, but the candidate effect of RNA 5-methylcytosine (m5 C) modification on tumor microenvironment (TME) of acute myeloid leukemia (AML) is still unknown at present. METHODS We assessed the patterns of m5 C modification among 417 AML cases by using nine m5 C regulators. Thereafter, we associated those identified modification patterns with TME cell infiltration features. Additionally, stepwise regression and LASSO Cox regression analyses were conducted for quantifying patterns of m5 C modification among AML cases to establish the m5 C-score. Meanwhile, we validated the expression of genes in the m5C-score model by qRT-PCR. Finally, the present work analyzed the association between m5 C-score and AML clinical characteristics and prognostic outcomes. RESULTS In total, three different patterns of m5 C modification (m5 C-clusters) were identified, and highly differentiated TME cell infiltration features were also identified. On this basis, evaluating patterns of m5 C modification in single cancer samples was important for evaluating the immune/stromal activities in TME and for predicting prognosis. In addition, the m5 C-score was established, which showed a close relation with the overall survival (OS) of test and training set samples. Moreover, multivariate Cox analysis suggested that our constructed m5 C-score served as the independent predicting factor for the prognosis of AML (hazard ratio = 1.57, 95% confidence interval = 1.38-1.79, p < 1e-5 ). CONCLUSIONS This study shows that m5 C modification may be one of the key roles in the formation of diversity and complexity of TME. Meanwhile, assessing the patterns of m5 C modification among individual cancer samples is of great importance, which provides insights into cell infiltration features within TME, thereby helping to develop relevant immunotherapy and predict patient prognostic outcomes.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Gynecologic OncologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouZhejiangChina
| | - ShouJun Wang
- Department of MedicineHangZhou FuYang Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Lili Hong
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| | - Siyu Shen
- The First School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yibo He
- Department of Clinical LabThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouZhejiangChina
| | - Xianfu Sheng
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| | - Xiaofen Zhuang
- Department of MedicineHangZhou FuYang Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Shiliang Chen
- Department of Clinical LabThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouZhejiangChina
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Haifeng Zhuang
- Department of Hematology and TransfusionThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hang ZhouZhejiangChina
| |
Collapse
|
17
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
18
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
19
|
Park J, Luo Y, Park JW, Kim SH, Hong YJ, Lim Y, Seo YJ, Bae J, Seo SB. Downregulation of DNA methylation enhances differentiation of THP-1 cells and induces M1 polarization of differentiated macrophages. Sci Rep 2023; 13:13132. [PMID: 37573395 PMCID: PMC10423279 DOI: 10.1038/s41598-023-40362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
DNA methylation is an epigenetic modification that regulates gene expression and plays an essential role in hematopoiesis. UHRF1 and DNMT1 are both crucial for regulating genome-wide maintenance of DNA methylation. Specifically, it is well known that hypermethylation is crucial characteristic of acute myeloid leukemia (AML). However, the mechanism underlying how DNA methylation regulates the differentiation of AML cells, including THP-1 is not fully elucidated. In this study, we report that UHRF1 or DNMT1 depletion enhances the phorbol-12-myristate-13-acetate (PMA)-induced differentiation of THP-1 cells. Transcriptome analysis and genome-wide methylation array results showed that depleting UHRF1 or DNMT1 induced changes that made THP-1 cells highly sensitive to PMA. Furthermore, knockdown of UHRF1 or DNMT1 impeded solid tumor formation in xenograft mouse model. These findings suggest that UHRF1 and DNMT1 play a pivotal role in regulating differentiation and proliferation of THP-1 cells and targeting these proteins may improve the efficiency of differentiation therapy in AML patients.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yongyang Luo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ye Joo Hong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
20
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
21
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
22
|
Xu X, Wang H, Han H, Yao Y, Li X, Qi J, Cai C, Zhou M, Tang Y, Pan T, Zhang Z, Yang J, Wu D, Han Y. Clinical characteristics and prognostic significance of DNA methylation regulatory gene mutations in acute myeloid leukemia. Clin Epigenetics 2023; 15:54. [PMID: 36991512 PMCID: PMC10061765 DOI: 10.1186/s13148-023-01474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that regulates gene expression. However, there are limited data on the comprehensive analysis of DNA methylation regulated gene mutations (DMRGM) in acute myeloid leukemia (AML) mainly referring to DNA methyltransferase 3α (DNMT3A), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2), and Tet methylcytidine dioxygenase 2 (TET2). RESULTS A retrospective study of the clinical characteristics and gene mutations in 843 newly diagnosed non-M3 AML patients was conducted between January 2016 and August 2019. 29.7% (250/843) of patients presented with DMRGM. It was characterized by older age, higher white blood cell count, and higher platelet count (P < 0.05). DMRGM frequently coexisted with FLT3-ITD, NPM1, FLT3-TKD, and RUNX1 mutations (P < 0.05). The CR/CRi rate was only 60.3% in DMRGM patients, significantly lower than in non-DMRGM patients (71.0%, P = 0.014). In addition to being associated with poor overall survival (OS), DMRGM was also an independent risk factor for relapse-free survival (RFS) (HR: 1.467, 95% CI: 1.030-2.090, P = 0.034). Furthermore, OS worsened with an increasing burden of DMRGM. Patients with DMRGM may be benefit from hypomethylating drugs, and the unfavorable prognosis of DMRGM can be overcome by hematopoietic stem cell transplantation (HSCT). For external validation, the BeatAML database was downloaded, and a significant association between DMRGM and OS was confirmed (P < 0.05). CONCLUSION Our study provides an overview of DMRGM in AML patients, which was identified as a risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yifang Yao
- Soochow Hopes Hematonosis Hospital, Suzhou, People's Republic of China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Chengsen Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
23
|
Yin PY, Wang RW, Jing R, Li X, Ma JH, Li KM, Wang H. Research progress on molecular biomarkers of acute myeloid leukemia. Front Oncol 2023; 13:1078556. [PMID: 36824144 PMCID: PMC9941555 DOI: 10.3389/fonc.2023.1078556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of adult acute leukemia. The pathophysiology of the disease has been studied intensively at the cellular and molecular levels. At present, cytogenetic markers are an important basis for the early diagnosis, prognostic stratification and treatment of AML. However, with the emergence of new technologies, the detection of other molecular markers, such as gene mutations and epigenetic changes, began to play important roles in evaluating the occurrence and development of diseases. Recent evidence shows that identifying new AML biomarkers contributes to a better understanding of the molecular mechanism of the disease and is essential for AML screening, diagnosis, prognosis monitoring, and individualized treatment response. In this review, we summarized the promising AML biomarkers from four aspects, which contributing to a better understanding of the disease. Of course, it must be soberly aware that we have not listed all biomarkers of AML. Anyway, the biomarkers we mentioned are representative. For example, mutations in TP53, FLT3, and ASXL1 suggest poor prognosis, low remission rate, short survival period, and often require allogeneic hematopoietic stem cell transplantation. The CEBPA double mutation, NPM1 and CBF mutation suggest that the prognosis is good, the remission rate is high, the survival period is long, and the effect of chemotherapy or autotherapy is good. As for other mutations mentioned in the article, they usually predict a moderate prognosis. All in all, we hope it could provide a reference for the precise diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Pei-Yuan Yin
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Rui Jing
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xing Li
- Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Jing-Hua Ma
- Department of Science and Education, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Kai-Min Li
- Hematology Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Hua Wang
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| |
Collapse
|
24
|
Dong Y, Jin F, Wang J, Li Q, Huang Z, Xia L, Yang M. SFXN3 is Associated with Poor Clinical Outcomes and Sensitivity to the Hypomethylating Therapy in Non-M3 Acute Myeloid Leukemia Patients. Curr Gene Ther 2023; 23:410-418. [PMID: 37491851 PMCID: PMC10614111 DOI: 10.2174/1566523223666230724121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet. OBJECTIVE In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients. METHODS We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals. RESULTS Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1. CONCLUSION In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.
Collapse
Affiliation(s)
- Yuxuan Dong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fengbo Jin
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Leiming Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
25
|
Small S, Oh TS, Platanias LC. Role of Biomarkers in the Management of Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:14543. [PMID: 36498870 PMCID: PMC9741257 DOI: 10.3390/ijms232314543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite many recent advances in treatment options, acute myeloid leukemia (AML) still has a high mortality rate. One important issue in optimizing outcomes for AML patients lies in the limited ability to predict response to specific therapies, duration of response, and likelihood of relapse. With evolving genetic characterization and improving molecular definitions, the ability to predict outcomes and long-term prognosis is slowly improving. The majority of the currently used prognostic assessments relate to molecular and chromosomal abnormalities, as well as response to initial therapy. These risk categories, however, do not account for a large amount of the variability in AML. Laboratory techniques now utilized in the clinic extend beyond bone marrow morphology and single gene sequencing, to next-generation sequencing of large gene panels and multiparameter flow cytometry, among others. Other technologic advances, such as gene expression analysis, have yet to demonstrate enough predictive and prognostic power to be employed in clinical medicine outside of clinical trials, but may be incorporated into the clinic in the future. In this review, we discuss the utility of current biomarkers, and present novel biomarker techniques and strategies that are in development for AML patients. Measurable residual disease (MRD) is a powerful prognostic tool that is increasingly being incorporated into clinical practice, and there are some exciting emerging biomarker technologies that have the potential to improve prognostic power in AML. As AML continues to be a difficult-to-treat disease with poor outcomes in many subtypes, advances in biomarkers that lead to better treatment decisions are greatly needed.
Collapse
Affiliation(s)
- Sara Small
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Timothy S. Oh
- Division of Hospital Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Identification of three novel DNMT3A mutations with compromising methylation capacity in human acute myeloid leukaemia. Mol Biol Rep 2022; 49:11685-11693. [PMID: 36175738 DOI: 10.1007/s11033-022-07977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a complex and heterogeneous hematopoietic stem and progenitor cell malignancy characterised by the accumulation of immature blast cells in the bone marrow, blood, and other organs linked to environmental, genetic, and epigenetic factors. Somatic mutations in the gene DNA (cytosine-5)-methyltransferase 3A (DNMT3A; NM_022552.4) are common in AML patients. METHODS In this study, we used Sanger sequencing to detect the mutations in the DNMT3A gene in 61 Iraqi AML patients, Hence, the protein function and stability within alterations were identified and analyzed using a variety of computational tools with the goal of determining how these changes affect total protein stability, and then the capacity of methylation was analyzed by methylation specific PCR MSP status at CpG islands. RESULTS Three novel mutations in exon 23 of DNMT3A were identified in 14 patients (22.9%; V877I, N879delA, and L888Q). The V877I and L888Q substitutions are caused by heterozygous C2629G > A and C2663T > A mutations, respectively, while frameshift mutation C2635delA caused protein truncation with stop codon N879T*. Methylation was detected in the DNMT3A promoter region in 9 patients carrying DNMT3A mutations (64.28%) by MSP, and we found significant correlations between DNMT3A mutations and promoter methylation (p = 8.52 × 105). In addition, we found a significant overrepresentation of DNMT3A methylation status in patients ≥ 50 years old (p = 0.025). CONCLUSION Our findings highlight the importance of studying the effects of DNMT3A methylation alteration in Iraqi populations beyond R882 substitutions in the leukemogenic pathway so that patient treatment can be tailored to prevent therapeutic resistance and relapse.
Collapse
|
27
|
Functional Drug Screening of Small Molecule Inhibitors of Epigenetic Modifiers in Refractory AML Patients. Cancers (Basel) 2022; 14:cancers14174094. [PMID: 36077629 PMCID: PMC9455071 DOI: 10.3390/cancers14174094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The use of inhibitors of epigenetic modifiers in the treatment of acute myeloid leukemia (AML) has become increasingly appealing due to the highly epigenetic nature of the disease. We evaluated a library of 164 epigenetic compounds in a cohort of 9 heterogeneous AML patients using an ex vivo drug screen. AML blasts were isolated from bone marrow biopsies according to established protocols and treatment response to the epigenetic library was evaluated. We find that 11 histone deacetylase (HDAC) inhibitors, which act upon mechanisms of cell cycle arrest and apoptotic pathways through inhibition of zinc-dependent classes of HDACs, showed efficacy in all patient-derived samples. Other compounds, including bromodomain and extraterminal domain (BET) protein inhibitors, showed efficacy in most samples. Specifically, HDAC inhibitors are already clinically available and can be repurposed for use in AML. Results in this cohort of AML patient-derived samples reveal several epigenetic compounds with high anti-blast activity in all samples, despite the molecular diversity of the disease. These results further enforce the notion that AML is a predominantly epigenetic disease and that similar epigenetic mechanisms may underlie disease development and progression in all patients, despite differences in genetic mutations.
Collapse
|
28
|
Zhou JD, Zhao YJ, Leng JY, Gu Y, Xu ZJ, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. DNA methylation-mediated differential expression of DLX4 isoforms has opposing roles in leukemogenesis. Cell Mol Biol Lett 2022; 27:59. [PMID: 35883028 PMCID: PMC9327205 DOI: 10.1186/s11658-022-00358-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background Previously, we reported the expression of DLX4 isoforms (BP1 and DLX7) in myeloid leukemia, but the functional role of DLX4 isoforms remains poorly understood. In the work described herein, we further determined the underlying role of DLX4 isoforms in chronic myeloid leukemia (CML) leukemogenesis. Methods The expression and methylation of DLX4 isoforms were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP) in patients with CML. The functional role of DLX4 isoforms was determined in vitro and in vivo. The molecular mechanism of DLX4 isoforms in leukemogenesis was identified based on chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq)/assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) and RNA sequencing (RNA-Seq). Results BP1 expression was increased in patients with CML with unmethylated promoter, but DLX7 expression was decreased with hypermethylated promoter. Functionally, overexpression of BP1 increased the proliferation rate of K562 cells with S/G2 promotion, whereas DLX7 overexpression reduced the proliferation rate of K562 cells with G1 arrest. Moreover, K562 cells with BP1 overexpression increased the tumorigenicity in NCG mice, whereas K562 cells with DLX7 overexpression decreased the tumorigenicity. Mechanistically, a total of 91 genes including 79 messenger RNAs (mRNAs) and 12 long noncoding RNAs (lncRNAs) were discovered by ChIP-Seq and RNA-Seq as direct downstream targets of BP1. Among the downstream genes, knockdown of RREB1 and SGMS1-AS1 partially revived the proliferation caused by BP1 overexpression in K562 cells. Similarly, using ATAC-Seq and RNA-Seq, a total of 282 genes including 151 mRNA and 131 lncRNAs were identified as direct downstream targets of DLX7. Knockdown of downstream genes PTPRB and NEAT1 partially revived the proliferation caused by DLX7 overexpression in K562 cells. Finally, we also identified and validated a SGMS1-AS1/miR-181d-5p/SRPK2 competing endogenous RNA (ceRNA) network caused by BP1 overexpression in K562 cells. Conclusions The current findings reveal that DNA methylation-mediated differential expression of DLX4 isoforms BP1 and DLX7 plays opposite functions in leukemogenesis. BP1 plays an oncogenic role in leukemia development, whereas DLX7 acts as a tumor suppressor gene. These results suggest DLX4 as a therapeutic target for antileukemia therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00358-0.
Collapse
Affiliation(s)
- Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yang-Jing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang-Mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Ting-Juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Department of Oncology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002, Jiangsu, People's Republic of China. .,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, 212002, Jiangsu, People's Republic of China. .,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Cell-free DNA 5-hydroxymethylcytosine is an emerging marker of acute myeloid leukemia. Sci Rep 2022; 12:12410. [PMID: 35859008 PMCID: PMC9300744 DOI: 10.1038/s41598-022-16685-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.
Collapse
|
30
|
Hua J, Ma C, Wang CH, Wang Y, Feng S, Xiao T, Zhu C. Abnormal GRHL2 Methylation Confers Malignant Progression to Acute Leukemia. Appl Bionics Biomech 2022; 2022:9708829. [PMID: 35855840 PMCID: PMC9288345 DOI: 10.1155/2022/9708829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Abnormal methylation of Grainyhead-like 2 (GRHL2) is associated with a substantial role in the malignant phenotype of tumor patients. Our present research is aimed at studying the abnormal expression of GRHL2 and the association of methylation in patients with acute leukemia and its relationship with prognosis. Materials and Methods We used quantitative real-time polymerase chain reaction (qRT-PCR) for detecting the aberrant expression level of GRHL2 in 60 patients with acute leukemia and 60 normal controls. We analyzed the significant correlation between the expression level of GRHL2 with clinicopathological features and patients' prognosis in acute leukemia using the corresponding statistical methods. Secondly, we employed qRT-PCR and Western blotting to detect the mRNA and protein levels of GRHL2 in leukemia cell lines. Next, we used methylation-specific polymerase chain reaction (MSP) technology for detecting the methylation of GRHL2 in clinical samples with acute leukemia and cell lines. Then we investigated the demethylating effect of arsenic trioxide and 5-azacitidine on the mRNA and protein expression levels of GRHL2 in cell lines of acute leukemia. Finally, we studied the effects of arsenide trioxide and 5-azacitidine on the proliferation of leukemia cells and the TGF-β signaling pathway. Results We found a lower level of GRHL2 expression not only in acute leukemia patients but also in cell lines when compared with normal controls. At the same time, the expression level of GRHL2 in patients with acute leukemia was significantly correlated with leukocyte count, platelet count, and cytogenetic risk grouping. In addition, the lower GRHL2 expression group showed a significantly lower overall survival rate in acute leukemia patients than that of patients with a higher GRHL2 expression group. Univariate and multivariate analyses revealed that the expression of GRHL2 is an independent risk factor in acute leukemia patients. The methylation level of the GRHL2 promoter region in acute leukemia patients and cell lines was significantly higher than the normal control group, and we found the elevated mRNA and protein levels of GRHL2 in acute leukemia cell lines after the use of the demethylation drug arsenic trioxide and 5-azacitidine. At the same time, arsenide trioxide and 5-azacitidine are associated with the inhibition of cellular proliferation of acute leukemia cells and also promote the elevated expression of TGF-β signaling pathway-linked proteins, including TGF-β, Smad2, Smad3, and Smad4. Conclusion Increased expression and methylation level of GRHL2 are closely associated with the prognosis and malignant phenotype of acute leukemia patients and play an irreplaceable role in the occurrence and development of patients with acute leukemia.
Collapse
Affiliation(s)
- Jing Hua
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Congcong Ma
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - Chao Hui Wang
- Department of Hematology, Qingdao Haici Medical Group, China
| | - Yan Wang
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| | - Taiwu Xiao
- Department of Hematology, Liaocheng People's Hospital, Shandong University, China
| | - ChuanSheng Zhu
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Shandong University, China
| |
Collapse
|
31
|
Niu J, Peng D, Liu L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front Oncol 2022; 12:896426. [PMID: 35865470 PMCID: PMC9294245 DOI: 10.3389/fonc.2022.896426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological malignancy. Relapse and refractory after induction chemotherapy are still challenges for curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are dynamic derivations and possess various elusive resistance mechanisms. In this review, we summarized different primary resistance and remolding mechanisms of LSCs after chemotherapy, as well as the indispensable role of the bone marrow microenvironment on LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs resistance, it can provide better strategies for future researches on eradicating LSCs and clinical treatment of AML.
Collapse
Affiliation(s)
| | | | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Su N, Wang Y, Lu X, Xu W, Wang H, Mo W, Pang H, Tang R, Li S, Yan X, Li Y, Zhang R. Methylation of SPRED1: A New Target in Acute Myeloid Leukemia. Front Oncol 2022; 12:854192. [PMID: 35359401 PMCID: PMC8960233 DOI: 10.3389/fonc.2022.854192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sprouty-related, EVH1 domain-containing protein 1 (SPRED1) has been identified as a novel tumor suppressor gene in acute myeloid leukemia (AML). Previous studies showed that SPRED1 methylation levels were significantly increased in AML patients, making it an interesting candidate for further investigations. To confirm the association of SPRED1 methylation, clinical parameters, and known molecular prognosticators and to identify the impact of methylation level on treatment outcome, we conducted this study in a larger cohort of 75 AML patients. Significantly increased methylation levels of SPRED1 were detected at four of ten CpG units by quantitative high-resolution mass spectrometry-based approach (MassARRAY) in AML patients. Whereas overall survival (OS) and relapse-free survival (RFS) showed no statistical difference between hypermethylation and hypomethylation subgroups, the relationship between methylation level and treatment response was indicated in paired samples from pre- and post-induction. To determine the possible mechanism of SPRED1 methylation in AML, we performed in vitro experiments using THP-1 cells, as the latter showed the highest methylation level (determined by utilizing bisulfite modification) among the three AML cell lines we tested. When treated with 5-AZA and lentivirus transfection, upregulated SPRED1 expression, decreased cell proliferation, increased cell differentiation and apoptosis, and inactivated phosphorylated extracellular signal-regulated kinase (p-ERK) were detected in THP-1 cells. These results show that demethylation of SPRED1 can inhibit the proliferation of AML cells and promote their differentiation and apoptosis, possibly by the ERK pathway. The hypermethylation of SPRED1 is a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Nan Su
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujiao Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Weihong Xu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - He Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Pang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rurong Tang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Mustafa Ali MK, Corley EM, Alharthy H, Kline KAF, Law JY, Lee ST, Niyongere S, Duong VH, Emadi A, Baer MR. Outcomes of Newly Diagnosed Acute Myeloid Leukemia Patients Treated With Hypomethylating Agents With or Without Venetoclax: A Propensity Score-Adjusted Cohort Study. Front Oncol 2022; 12:858202. [PMID: 35433414 PMCID: PMC9008336 DOI: 10.3389/fonc.2022.858202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a deficiency of real-world data on the impact of combining venetoclax (VEN) with hypomethylating agents (HMAs) in newly diagnosed acute myeloid leukemia (AML) patients. We conducted a single-center, propensity-adjusted retrospective cohort study to compare composite complete remission (CCR) rates, median overall survival (m-OS) and median event-free survival (m-EFS). A total of 170 adult AML patients were treated with first-line azacitidine (AZA) or decitabine (DEC) +/- VEN. Median age was 71 years and 99 (58%) were male. Median follow-up in HMA and HMA-VEN groups was 79 and 21 months. Treatments included AZA alone (n=35, 21%), DEC alone (n=84, 49%), AZA-VEN (n=24, 14%) and DEC-VEN (n=27, 16%). VEN improved CCR rates to HMAs overall (52% vs. 27%, P<0.05) and to AZA (54% vs. 10%, P<0.05), but not to DEC (43% vs. 32%, P=0.35); it did not improve OS, and only improved EFS for AZA (10.5 vs. 3.8 months, P<0.05). CCR rates were lower with AZA than with DEC (13% vs. 33%, P<0.05), but OS and EFS were not different statistically. CCR rates did not differ for AZA-VEN vs. DEC-VEN (CCR: 58% vs. 52%, P=0.66), but OS and EFS were longer for AZA-VEN (m-OS: 12.3 vs. 2.2 months, P<0.05; m-EFS: 9.2 vs. 2.1 months, P<0.05). Our analysis showed that combining VEN with AZA in newly diagnosed AML patients improved outcomes, but combining VEN with DEC did not. AZA-VEN was associated with improved outcomes compared to DEC-VEN. Further studies are needed to test the benefit of combining VEN with DEC.
Collapse
Affiliation(s)
- Moaath K. Mustafa Ali
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Hanan Alharthy
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kathryn A. F. Kline
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jennie Y. Law
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seung Tae Lee
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sandrine Niyongere
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vu H. Duong
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ashkan Emadi
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
- Translational Genomics Laboratory, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| | - Maria R. Baer
- Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Šestáková Š, Cerovská E, Šálek C, Kundrát D, Ježíšková I, Folta A, Mayer J, Ráčil Z, Cetkovský P, Remešová H. A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel. Clin Epigenetics 2022; 14:22. [PMID: 35148810 PMCID: PMC8832751 DOI: 10.1186/s13148-022-01242-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival (OS) and event-free survival (EFS). RESULTS Fourteen studies (published 2011-2019) comprising of 27 genes were subjected to validation by a custom NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3 + 7 induction regimen. The results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis had a p-value ≤ 0.05. The predictive role of DNA methylation was confirmed for three studies comprising of four genes: CEBPA (OS: p = 0.02; EFS: p = 0.03), PBX3 (EFS: p = 0.01), LZTS2 (OS: p = 0.05; EFS: p = 0.0003), and NR6A1 (OS: p = 0.004; EFS: p = 0.0003). For all of these genes, higher methylation was an indicator of longer survival. Concurrent higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML group (OS: p < 0.0001; EFS: p < 0.0001) as well as for the whole AML cohort (OS: p = 0.01; EFS < 0.0001). In contrast, for two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, again linking higher GPX3 (OS: p = 0.006; EFS: p < 0.0001) and DLX4 (OS: p = 0.03; EFS = 0.03) methylation to a favorable treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis. CONCLUSIONS Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation changes and to enable the introduction of these promising epigenetic markers into clinical practice.
Collapse
Affiliation(s)
- Šárka Šestáková
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ela Cerovská
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cyril Šálek
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dávid Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Ivana Ježíšková
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Adam Folta
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiří Mayer
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Ráčil
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic
| | - Petr Cetkovský
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Remešová
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20, Prague 2, Czech Republic.
| |
Collapse
|
35
|
Chattopadhyaya S, Ghosal S. DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 2022; 35:448-461. [DOI: 10.1007/s13577-022-00674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
36
|
Zhou W, Xu S, Deng T, Zhou R, Wang C. LncRNA USP30-AS1 promotes the survival of acute myeloid leukemia cells by cis-regulating USP30 and ANKRD13A. Hum Cell 2022; 35:360-378. [PMID: 34694569 PMCID: PMC8732929 DOI: 10.1007/s13577-021-00636-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant tumor derived from leukemia stem cells, with complicated pathogenesis. LncRNAs play an important role in tumors genesis and progression. According to results from bioinformatics analysis, lncRNA USP30-AS1 is highly expressed in AML and both the high expression of USP30-AS1 and low methylation level at Cg03124318 locus of USP30-AS1 gene promoter are associated with poor prognosis of AML. This study knocked down and overexpressed USP30-AS1 to determine the roles in AML cell lines. High-throughput sequencing was performed to explore the genes regulated by USP30-AS1. Results showed that USP30-AS1 promoted AML cell viability and inhibited apoptosis. Genes regulated by USP30-AS1 are mainly related to genetic regulation and immune system. Among them, USP30 and ANKRD13A genes are close to USP30-AS1 gene in chromosome. Knockdown of USP30, but not ANKRD13A, abolished the cancer-promoting effects of USP30-AS1. ANKRD13A recognizes Lys-63-linked polyubiquitin chain in HLA-I. USP30-AS1 induced HLA-I internalization from the cell membrane by up-regulating ANKRD13A, which might induce the immune escape of AML cells. ChIP analysis revealed that the regulatory effects of USP30-AS1 on USP30 and ANKRD13A are associated with H3K4me3 and H3K27Ac. In summary, USP30-AS1 probably promotes AML cell survival by cis-regulating USP30 and ANKRD13A.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Shilin Xu
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Tingfen Deng
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Ruiqing Zhou
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Caixia Wang
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Thymoquinone Inhibits Growth of Acute Myeloid Leukemia Cells through Reversal SHP-1 and SOCS-3 Hypermethylation: In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14121287. [PMID: 34959687 PMCID: PMC8703481 DOI: 10.3390/ph14121287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) plays an essential role in cancer pathogenesis, including acute myeloid leukemia (AML). All of SHP-1, SOCS-1, and SOCS-3 are TSGs that negatively regulate JAK/STAT signaling. Enhanced re-expression of TSGs through de-methylation represents a therapeutic target in several cancers. Thymoquinone (TQ) is a major component of Nigella sativa seeds with anticancer effects against several cancers. However, the effects of TQ on DNA methylation are not entirely understood. This study aimed to evaluate the ability of TQ to re-express SHP-1, SOCS-1, and SOCS-3 in MV4-11 AML cells through de-methylation. Cytotoxicity, apoptosis, and cell cycle assays were performed using WSTs-8 kit, Annexin V-FITC/PI apoptosis detection kit, and fluorometric-red cell cycle assay kit, respectively. The methylation of SHP-1, SOCS-1, and SOCS-3 was evaluated by pyrosequencing analysis. The expression of SHP-1, SOCS-1, SOCS-3, JAK2, STAT3, STAT5A, STAT5B, FLT3-ITD, DNMT1, DNMT3A, DNMT3B, TET2, and WT1 was assessed by RT-qPCR. The molecular docking of TQ to JAK2, STAT3, and STAT5 was evaluated. The results revealed that TQ significantly inhibited the growth of MV4-11 cells and induced apoptosis in a dose- and time-dependent manner. Interestingly, the results showed that TQ binds the active pocket of JAK2, STAT3, and STAT5 to inhibit their enzymatic activity and significantly enhances the re-expression of SHP-1 and SOCS-3 through de-methylation. In conclusion, TQ curbs MV4-11 cells by inhibiting the enzymatic activity of JAK/STAT signaling through hypomethylation and re-expression of JAK/STAT negative regulators and could be a promising therapeutic candidate for AML patients.
Collapse
|
38
|
Jiang H, Yang X, Mi M, Wei X, Wu H, Xin Y, Jiao L, Sun S, Sun C. Development and performance evaluation of TaqMan real-time fluorescence quantitative methylation specific PCR for detecting methylation level of PER2. Mol Biol Rep 2021; 49:2097-2105. [PMID: 34854010 DOI: 10.1007/s11033-021-07027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND PER2 gene methylation is closely related to the occurrence and progress of some cancers, but there is no method to quantitatively detect PER2 methylation in conventional laboratories. So, we established a TaqMan real-time fluorescence quantitative methylation specific PCR (TaqMan real-time FQ-MSP) assay and use it for quantitative detection of PER2 methylation in leukemia patients. METHODS According to the PER2 sequence searched by GenBank, a CpG sequence enrichment region of the PER2 gene promoter was selected, and the methylated and unmethylated target sequences were designed according to the law of bisulfite conversion of DNA to construct PER2 methylation positive and negative reference materials. Specific primers and probe were designed. The reference materials were continuously diluted into gradient samples by tenfold ratio to evaluate the analytical sensitivity, specificity, accuracy and reproducibility of the method, and the analytical sensitivity of TaqMan real-time FQ-MSP assay was compared with that of the conventional MSP assay. At the same time, the new-established TaqMan real-time FQ-MSP assay and the conventional MSP assay were used to detect the PER2 methylation level of 81 patients with leukemia, and the samples with inconsistent detection results of the two assays were sent to pyromethylation sequencing to evaluate the clinical detection performance. RESULTS The minimum detection limit of TaqMan real-time FQ-MSP assay for detecting PER2 methylation level established in this study was 6 copies/uL, and the coefficient of variation(CV) of intra-assay and inter-assay was less than 3%. Compared with the conventional MSP assay, it has higher analytical sensitivity. For the samples with inconsistent detection results, the results of pyrosequencing and TaqMan real-time FQ-MSP assay are consistent. CONCLUSION TaqMan real-time FQ-MSP assay of PER2 methylation established in this study has high detection performance and can be used for the detection of clinical samples.
Collapse
Affiliation(s)
- Huihui Jiang
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Xin Yang
- Department of Laboratory Center, Yantai Yuhuangding Hospital Affiliated to Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Miaomiao Mi
- Department of Laboratory Center, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Xiaonan Wei
- Department of Laboratory Center, Qingdao Women and Children's Hospital, Qingdao, 266000, Shandong, China
| | - Hongyuan Wu
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Yu Xin
- Binzhou Medical University, Yantai, 264000, Shandong, China
| | - Liping Jiao
- Qingdao University, Qingdao, 266000, Shandong, China
| | - Shengjun Sun
- Department of Laboratory Center, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Chengming Sun
- Department of Laboratory Center, Yantai Yuhuangding Hospital Affiliated to Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
39
|
Kuang Y, Wang Y, Cao X, Peng C, Gao H. New prognostic factors and scoring system for patients with acute myeloid leukemia. Oncol Lett 2021; 22:823. [PMID: 34691250 PMCID: PMC8527825 DOI: 10.3892/ol.2021.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem or progenitor cells. It is important to identify molecules associated with the prognosis of AML and conduct an individual risk assessment for different patients. In the present study, the RNA expression profile of 132 patients with AML and 337 healthy individuals were downloaded from the University of California Santa Cruz Xena and the Genotype-Tissue Expression project databases. Differentially expressed mRNA (DEmRNA) transcripts between normal blood and AML blood were identified. Among these, prognosis-associated signature mRNA molecules were screened using univariate Cox and least absolute shrinkage and selection operator regression. A total of four genes, namely, family with sequence similarity 124 member B (FAM124B), 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), myeloperoxidase (MPO) and purinergic receptor P2Y1 (P2RY1), were identified using multivariate Cox regression analysis and were used to construct a prognostic scoring system. Moreover, the expression levels of HPDL and MPO were higher in the samples with high immunity scores and estimate scores (sum of stromal score and immune score), compared with those with low scores. Reverse transcription-quantitative PCR and western blot analysis were used to confirm the upregulation of the four candidate genes in AML cell lines as well as in clinical AML samples. In summary, the present study identified a novel mRNA-based prognostic risk scoring system for patients with AML. The four genes used in this scoring system may also play an important role in AML.
Collapse
Affiliation(s)
- Ye Kuang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Yang Wang
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Xianghong Cao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Chuanmei Peng
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| | - Hui Gao
- Medical Laboratory, Yan'An Hospital, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
40
|
Zeisig BB, So CWE. Therapeutic Opportunities of Targeting Canonical and Noncanonical PcG/TrxG Functions in Acute Myeloid Leukemia. Annu Rev Genomics Hum Genet 2021; 22:103-125. [PMID: 33929894 DOI: 10.1146/annurev-genom-111120-102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional deregulation is a key driver of acute myeloid leukemia (AML), a heterogeneous blood cancer with poor survival rates. Polycomb group (PcG) and Trithorax group (TrxG) genes, originally identified in Drosophila melanogaster several decades ago as master regulators of cellular identity and epigenetic memory, not only are important in mammalian development but also play a key role in AML disease biology. In addition to their classical canonical antagonistic transcriptional functions, noncanonical synergistic and nontranscriptional functions of PcG and TrxG are emerging. Here, we review the biochemical properties of major mammalian PcG and TrxG complexes and their roles in AML disease biology, including disease maintenance as well as drug resistance. We summarize current efforts on targeting PcG and TrxG for treatment of AML and propose rational synthetic lethality and drug-induced antagonistic pleiotropy options involving PcG and TrxG as potential new therapeutic avenues for treatment of AML.
Collapse
Affiliation(s)
- Bernd B Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| |
Collapse
|
41
|
Nan FY, Gu Y, Xu ZJ, Sun GK, Zhou JD, Zhang TJ, Ma JC, Leng JY, Lin J, Qian J. Abnormal expression and methylation of PRR34-AS1 are associated with adverse outcomes in acute myeloid leukemia. Cancer Med 2021; 10:5283-5296. [PMID: 34227248 PMCID: PMC8335806 DOI: 10.1002/cam4.4085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
It was previously reported that PRR34‐AS1 was overexpressed in some solid tumors. PRR34‐AS1 promoter was shown to have a differential methylation region (DMR), and was hypomethylated in acute myeloid leukemia (AML). Therefore, the present study used real‐time quantitative PCR (RQ‐PCR) to explore the expression characteristics of PRR34‐AS1 in AML. In addition, the correlation between the expression of PRR34‐AS1 and clinical prognosis of AML was determined. The findings of this study indicated that high PRR34‐AS1 expression was bound up with shorter overall survival (OS) in AML patients (p = 0.002). Moreover, patients with high expression of PRR34‐AS1 had significantly lower complete remission (CR) rate compared with those with low expression of PRR34‐AS1 after induction chemotherapy. Furthermore, multivariate analysis confirmed that PRR34‐AS1 expression was an independent factor affecting CR in whole‐AML, non‐APL‐AML, and CN‐AML patients (p = 0.032, 0.039, and 0.036, respectively). Methylation‐specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to explore the methylation status of PRR34‐AS1. PRR34‐AS1 promoter showed a pattern of hypomethylation in AML patients compared with normal controls (p = 0.122). Notably, of whole‐AML and non‐APL‐AML patients, PRR34‐AS1 hypomethylated patients presented a significantly shorter OS than those with a hypermethylated PRR34‐AS1 (p = 0.010 and 0.037, respectively). Multivariate analysis confirmed that the hypomethylation of PRR34‐AS1 served as an independent prognostic indicator in both whole‐cohort AML and non‐APL‐AML categories (p = 0.057 and 0.018, respectively). In summary, the findings of this study showed that abnormalities in PRR34‐AS1 are associated with poor prognosis in AML. Therefore, monitoring this index may be important in the prognosis of AML and can provide information on effective chemotherapy against the disease.
Collapse
Affiliation(s)
- Fang-Yu Nan
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Gu
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Guo-Kang Sun
- West China School of Public Health and China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia-Yan Leng
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Sampath S, Misra P, Yadav SK, Sharma S, Somasundaram V. A study on DNA methylation status in promoter region of p15 gene in patients of acute myeloid leukemia and myelodysplastic syndrome. Med J Armed Forces India 2021; 77:337-342. [PMID: 34305288 PMCID: PMC8282539 DOI: 10.1016/j.mjafi.2021.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are a spectrum of hematological malignancies with a multistep process of accumulated genetic and epigenetic alterations. DNA methylation is most extensively studied epigenetic alteration in malignancies. Recent research studies in the field have brought out translational implications of promoter methylation of tumor suppressor gene p15 in tumors. Therefore, we studied the role of DNA Methylation of p15 gene in AML and MDS. METHODS The study was carried out in 41 consecutive AML/MDS cases reporting to hematological OPD of a tertiary care center along with 25 age and sex-matched healthy controls. The methylation status in the promoter region of the p15 gene was assessed by methylation-specific PCR (MSP) from blood samples after ethical approval and informed consent of the patients and controls. The association of methylation status was studied with clinical presentations, AML subtypes, and cytogenetics using Chi-square test/Fisher's exact test tools. RESULTS A total of 41 cases included in the study comprised 33 cases of AML and 08 cases of MDS with an age range between 06 months and 82 years. Of the 41 cases, 29 revealed promoter methylation of the p15 gene, which compared to healthy controls was found statistically significant (p < 0.001). The methylation status did not significantly correlate with AML subtypes or the cytogenetic abnormalities detected in cases. CONCLUSION The outcome of the study indicates p15 promoter DNA methylation in cases of AML and MDS may identify those individuals who might benefit from the targeted therapeutic approaches.
Collapse
Affiliation(s)
- Sangeetha Sampath
- Professor (Biochemistry), Command Hospital (Air Force), Bengaluru, India
| | - Pratibha Misra
- Professor & Head, Department of Biochemistry, Armed Forces Medical College, Pune, India
| | | | - Sanjeevan Sharma
- Senior Advisor (Medicine & Hematology), Command Hospital (Central Command), Lucknow, India
| | | |
Collapse
|
43
|
Kumar S, Nagpal R, Kumar A, Ashraf MU, Bae YS. Immunotherapeutic Potential of m6A-Modifiers and MicroRNAs in Controlling Acute Myeloid Leukaemia. Biomedicines 2021; 9:690. [PMID: 34207299 PMCID: PMC8234128 DOI: 10.3390/biomedicines9060690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have been predominantly focused on DNA methylation, histone modifications, and chromatin remodelling. Epitranscriptomics is an emerging field that encompasses the study of RNA modifications that do not affect the RNA sequence but affect functionality via a series of RNA binding proteins called writer, reader and eraser. Several kinds of epi-RNA modifications are known, such as 6-methyladenosine (m6A), 5-methylcytidine (m5C), and 1-methyladenosine. M6A modification is the most studied and has large therapeutic implications. In this review, we have summarised the therapeutic potential of m6A-modifiers in controlling haematological disorders, especially acute myeloid leukaemia (AML). AML is a type of blood cancer affecting specific subsets of blood-forming hematopoietic stem/progenitor cells (HSPCs), which proliferate rapidly and acquire self-renewal capacities with impaired terminal cell-differentiation and apoptosis leading to abnormal accumulation of white blood cells, and thus, an alternative therapeutic approach is required urgently. Here, we have described how RNA m6A-modification machineries EEE (Editor/writer: Mettl3, Mettl14; Eraser/remover: FTO, ALKBH5, and Effector/reader: YTHDF-1/2) could be reformed into potential druggable candidates or as RNA-modifying drugs (RMD) to treat leukaemia. Moreover, we have shed light on the role of microRNAs and suppressors of cytokine signalling (SOCS/CISH) in increasing anti-tumour immunity towards leukaemia. We anticipate, our investigation will provide fundamental knowledge in nurturing the potential of RNA modifiers in discovering novel therapeutics or immunotherapeutic procedures.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Amit Kumar
- Medical Writer, Quebec City, QC G1X 3E1, Canada;
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| |
Collapse
|
44
|
Venney D, Mohd-Sarip A, Mills KI. The Impact of Epigenetic Modifications in Myeloid Malignancies. Int J Mol Sci 2021; 22:5013. [PMID: 34065087 PMCID: PMC8125972 DOI: 10.3390/ijms22095013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Myeloid malignancy is a broad term encapsulating myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Initial studies into genomic profiles of these diseases have shown 2000 somatic mutations prevalent across the spectrum of myeloid blood disorders. Epigenetic mutations are emerging as critical components of disease progression, with mutations in genes controlling chromatin regulation and methylation/acetylation status. Genes such as DNA methyltransferase 3A (DNMT3A), ten eleven translocation methylcytosine dioxygenase 2 (TET2), additional sex combs-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and isocitrate dehydrogenase 1/2 (IDH1/2) show functional impact in disease pathogenesis. In this review we discuss how current knowledge relating to disease progression, mutational profile and therapeutic potential is progressing and increasing understanding of myeloid malignancies.
Collapse
Affiliation(s)
| | | | - Ken I Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.V.); (A.M.-S.)
| |
Collapse
|
45
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
46
|
Yang E, Gong D, Guan W, Li J, Gao X, Li Y, Yu L. Evaluation of acute myeloid leukemia blast percentage on MethylC-Capture Sequencing results. Exp Hematol Oncol 2021; 10:26. [PMID: 33789763 PMCID: PMC8011402 DOI: 10.1186/s40164-021-00219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
Aberrant DNA methylation is often related to the diagnosis, prognosis, and therapeutic response of acute myeloid leukemia (AML); however, relevant studies on the relationship between bone marrow myeloblast percentage and the DNA methylation level in AML have not been reported. We evaluated the effects of AML blast percentage on DNA methylation level using the MethylC-capture sequencing (MCC-Seq) approach based on next-generation sequencing (NGS) and found that the methylation level of both genome-wide and promoter regions significantly increased when the percentage of AML blasts reached ≥ 40%, indicating that an accurate DNA methylation level in cancer cells can be obtained when the bone marrow samples of AML patients have more than 40% myeloblasts.
Collapse
Affiliation(s)
- Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Desheng Gong
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Wei Guan
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jieying Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xuefeng Gao
- Centrol Laboratory, Shenzhen University General Hospital, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China.
| | - Yonghui Li
- Centrol Laboratory, Shenzhen University General Hospital, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Nanshan District, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
47
|
Domingo-Relloso A, Huan T, Haack K, Riffo-Campos AL, Levy D, Fallin MD, Terry MB, Zhang Y, Rhoades DA, Herreros-Martinez M, Garcia-Esquinas E, Cole SA, Tellez-Plaza M, Navas-Acien A. DNA methylation and cancer incidence: lymphatic-hematopoietic versus solid cancers in the Strong Heart Study. Clin Epigenetics 2021; 13:43. [PMID: 33632303 PMCID: PMC7908806 DOI: 10.1186/s13148-021-01030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic alterations may contribute to early detection of cancer. We evaluated the association of blood DNA methylation with lymphatic-hematopoietic cancers and, for comparison, with solid cancers. We also evaluated the predictive ability of DNA methylation for lymphatic-hematopoietic cancers. METHODS Blood DNA methylation was measured using the Illumina Infinium methylationEPIC array in 2324 Strong Heart Study participants (41.4% men, mean age 56 years). 788,368 CpG sites were available for differential DNA methylation analysis for lymphatic-hematopoietic, solid and overall cancers using elastic-net and Cox regression models. We conducted replication in an independent population: the Framingham Heart Study. We also analyzed differential variability and conducted bioinformatic analyses to assess for potential biological mechanisms. RESULTS Over a follow-up of up to 28 years (mean 15), we identified 41 lymphatic-hematopoietic and 394 solid cancer cases. A total of 126 CpGs for lymphatic-hematopoietic cancers, 396 for solid cancers, and 414 for overall cancers were selected as predictors by the elastic-net model. For lymphatic-hematopoietic cancers, the predictive ability (C index) increased from 0.58 to 0.87 when adding these 126 CpGs to the risk factor model in the discovery set. The association was replicated with hazard ratios in the same direction in 28 CpGs in the Framingham Heart Study. When considering the association of variability, rather than mean differences, we found 432 differentially variable regions for lymphatic-hematopoietic cancers. CONCLUSIONS This study suggests that differential methylation and differential variability in blood DNA methylation are associated with lymphatic-hematopoietic cancer risk. DNA methylation data may contribute to early detection of lymphatic-hematopoietic cancers.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain.
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Dorothy A Rhoades
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | | | - Esther Garcia-Esquinas
- Universidad Autonoma de Madrid, Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
48
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
49
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Wang SM, Li M, Wu WS, Sun LL, Yan D. Methylation analysis of the SLC19A1 promoter region in Chinese children with acute lymphoblastic leukaemia. J Clin Pharm Ther 2020; 45:646-651. [PMID: 32403197 DOI: 10.1111/jcpt.13171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Reduced folate carrier 1 (RFC1), which is encoded by the human solute carrier family 19 member 1 (SLC19A1) gene, plays an essential role in the cellular uptake of methotrexate (MTX). RFC1 expression is regulated by genetic variations and epigenetic modifications. The aim of the present study was to investigate the methylation status of the SLC19A1 promoter in peripheral blood and its association with MTX levels and toxicities in children with acute lymphoblastic leukaemia (ALL). METHODS Serum MTX concentrations were measured using a fluorescence polarization immunoassay. Methylation quantification for SLC19A1 promoter region #17 was performed by Sequenom MassARRAY in 52 paediatric ALL patients. RESULTS AND DISCUSSION Overall, the investigated region of the SLC19A1 promoter was in a hypermethylated state. No significant associations were detected between the methylation levels of six CpG units in the SLC19A1 promoter region #17 and clinical parameters of patients with ALL, including sex, age, immunotype and risk stratification. The methylation level of CpG_10 showed a significant positive correlation with MTX 24 hours after the initiation of infusion. No significant differences in the methylation levels of six CpG units were observed between patients with and without MTX toxicities. Due to the small sample size of this study, there was a high chance of false-positive results. A large-scale study would be required to confirm these preliminary results. WHAT IS NEW AND CONCLUSION Our preliminary results suggested the hypermethylated status of the SLC19A1 promoter in children with ALL. The methylation levels of the SLC19A1 promoter might affect MTX exposure. These findings have implications for the mechanisms underlying the variability of MTX responses in childhood ALL.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Miao Li
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wan-Shui Wu
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu-Lu Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| |
Collapse
|