1
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2024:S2090-1232(24)00157-7. [PMID: 38631430 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Dabiri H, Sadeghizadeh M, Ziaei V, Moghadasi Z, Maham A, Hajizadeh-Saffar E, Habibi-Anbouhi M. Development of an ostrich-derived single-chain variable fragment (scFv) against PTPRN extracellular domain. Sci Rep 2024; 14:3689. [PMID: 38355744 PMCID: PMC10866909 DOI: 10.1038/s41598-024-53386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
In type 1 diabetes, the immune system destroys pancreatic beta cells in an autoimmune condition. To overcome this disease, a specific monoclonal antibody that binds to pancreatic beta cells could be used for targeted immunotherapy. Protein tyrosine phosphatase receptor N (PTPRN) is one of the important surface antigen candidates. Due to its high sequence homology among mammals, so far, no single-chain monoclonal antibody has been produced against this receptor. In this study, we developed a novel single-chain variable fragment (scFv) against the PTPRN extracellular domain. To this aim, ostrich species was used as a host is far phylogenetically birds from mammals to construct a phage display library for the first time. An ostrich-derived scfv phage display library was prepared and biopanning steps were done to enrich and screen for isolating the best anti-PTPRN binders. An scFv with appropriate affinity and specificity to the PTPRN extracellular domain was selected and characterized by ELISA, western blotting, and flow cytometry. The anti-PTPRN scFv developed in this study could be introduced as an effective tool that can pave the way for the creation of antibody-based targeting systems in cooperation with the detection and therapy of type I diabetes.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Moghadasi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maham
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | |
Collapse
|
3
|
Petakh P, Kamyshna I, Kamyshnyi A. Gene expression of protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), solute carrier family 2 member 1 (SLC2A1) and mechanistic target of rapamycin (MTOR) in metformin-treated type 2 diabetes patients with COVID-19: impact on inflammation markers. Inflammopharmacology 2024; 32:885-891. [PMID: 37773574 DOI: 10.1007/s10787-023-01341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The COVID-19 pandemic has resulted in a global health crisis that has severely impacted patients with type 2 diabetes (T2D). T2D patients have a higher risk of experiencing severe COVID-19 symptoms, hospitalization, and mortality compared to patients without diabetes. The dysregulated immune response in T2D patients can exacerbate the severity of COVID-19 symptoms. Insulin therapy, a common treatment for T2D patients, has been linked to increased mortality in COVID-19 patients with T2D. However, metformin, an anti-diabetic medication, has been shown to have anti-inflammatory properties that may mitigate the cytokine storm observed in severe COVID-19 cases. In this study, we investigated how the PRKAA1, SLC2A1, and MTOR genes contribute to inflammation markers in COVID-19 patients with T2D, who were receiving either insulin or metformin therapy. Our findings revealed that metformin treatment was associated with reduced expression of genes involved in Th1/Th17 cell differentiation. These results suggest that metformin could be a potential treatment option for T2D patients with COVID-19 due to its anti-inflammatory properties, which may improve patient outcomes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine.
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, 46001, Ukraine.
| |
Collapse
|
4
|
Shi Y, Katdare KA, Kim H, Rosch JC, Neal EH, Vafaie-Partin S, Bauer JA, Lippmann ES. An arrayed CRISPR knockout screen identifies genetic regulators of GLUT1 expression. Sci Rep 2023; 13:21038. [PMID: 38030680 PMCID: PMC10687026 DOI: 10.1038/s41598-023-48361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023] Open
Abstract
Glucose, a primary fuel source under homeostatic conditions, is transported into cells by membrane transporters such as glucose transporter 1 (GLUT1). Due to its essential role in maintaining energy homeostasis, dysregulation of GLUT1 expression and function can adversely affect many physiological processes in the body. This has implications in a wide range of disorders such as Alzheimer's disease (AD) and several types of cancers. However, the regulatory pathways that govern GLUT1 expression, which may be altered in these diseases, are poorly characterized. To gain insight into GLUT1 regulation, we performed an arrayed CRISPR knockout screen using Caco-2 cells as a model cell line. Using an automated high content immunostaining approach to quantify GLUT1 expression, we identified more than 300 genes whose removal led to GLUT1 downregulation. Many of these genes were enriched along signaling pathways associated with G-protein coupled receptors, particularly the rhodopsin-like family. Secondary hit validation confirmed that removal of select genes, or modulation of the activity of a corresponding protein, yielded changes in GLUT1 expression. Overall, this work provides a resource and framework for understanding GLUT1 regulation in health and disease.
Collapse
Affiliation(s)
- Yajuan Shi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sidney Vafaie-Partin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua A Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Cudini A, Fierabracci A. Advances in Immunotherapeutic Approaches to Type 1 Diabetes. Int J Mol Sci 2023; 24:ijms24119220. [PMID: 37298175 DOI: 10.3390/ijms24119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a multifactorial autoimmune disease characterized by the selective destruction of pancreatic insulin-producing beta cells due to the aberrant activation of different immune effector cells (reviewed (rev [...].
Collapse
|
7
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Wen Q, Xu ZL, Wang Y, Lv M, Song Y, Lyv ZS, Xing T, Xu LP, Zhang XH, Huang XJ, Kong Y. Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:528-544. [PMID: 36166182 DOI: 10.1007/s11427-022-2170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Although glucorticosteroids (GCs) are the standard first-line therapy for acute graft-versus-host disease (aGvHD), nearly 50% of aGvHD patients have no response to GCs. The role of T cell metabolism in murine aGvHD was recently reported. However, whether GCs and metabolism regulators could cooperatively suppress T cell alloreactivity and ameliorate aGvHD remains to be elucidated. Increased glycolysis, characterized by elevated 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and higher rates of glucose consumption and lactate production were found in T cells from aGvHD patients. Genetic upregulation of PFKFB3 induced T cell proliferation and differentiation into proinflammatory cells. In a humanized mouse model, PFKFB3-overexpressing or PFKFB3-silenced T cells aggravated or prevented aGvHD, respectively. Importantly, our integrated data from patient samples in vitro, in a humanized xenogeneic murine model of aGvHD and graft-versus-leukaemia (GVL) demonstrate that GCs combined with a glycolysis inhibitor could cooperatively reduce the alloreactivity of T cells and ameliorate aGvHD without loss of GVL effects. Together, the current study indicated that glycolysis is critical for T cell activation and induction of human aGvHD. Therefore, the regulation of glycolysis offers a potential pathogenesis-oriented therapeutic strategy for aGvHD patients. GCs combined with glycolysis inhibitors promises to be a novel first-line combination therapy for aGvHD patients.
Collapse
Affiliation(s)
- Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Zhong-Shi Lyv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
9
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
10
|
Feng J, Lu M, Li W, Li J, Meng P, Li Z, Gao X, Zhang Y. PPARγ alleviates peritoneal fibrosis progression along with promoting GLUT1 expression and suppressing peritoneal mesothelial cell proliferation. Mol Cell Biochem 2022; 477:1959-1971. [PMID: 35380292 PMCID: PMC9206601 DOI: 10.1007/s11010-022-04419-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Peritoneal fibrosis (PF) is commonly induced by bioincompatible dialysate exposure during peritoneal dialysis, but the underlying mechanisms remain elusive. This study aimed to investigate the roles of peroxisome proliferator-activated receptor gamma (PPARγ) in PF pathogenesis. METHODS Rat and cellular PF models were established by high glucose dialysate and lipopolysaccharide treatments. Serum creatinine, urea nitrogen, and glucose contents were detected by ELISA. Histological evaluation was done through H&E and Masson staining. GLUT1, PPARγ, and other protein expression were measured by qRT-PCR, western blotting, and IHC. PPARγ and GLUT1 subcellular distribution were detected using confocal microscopy. Cell proliferation was assessed by MTT and Edu staining. RESULTS Serum creatinine, urea nitrogen and glucose, and PPARγ and GLUT1 expression in rat PF model were reduced by PPARγ agonists Rosiglitazone or 15d-PGJ2 and elevated by antagonist GW9662. Rosiglitazone or 15d-PGJ2 repressed and GW9662 aggravated peritoneal fibrosis in rat PF model. PPARγ and GLUT1 were mainly localized in nucleus and cytosols of peritoneal mesothelial cells, respectively, which were reduced in cellular PF model, enhanced by Rosiglitazone or 15d-PGJ2, and repressed by GW9662. TGF-β and a-SMA expression was elevated in cellular PF model, which was inhibited by Rosiglitazone or 15d-PGJ2 and promoted by GW9662. PPARγ silencing reduced GLUT1, elevated a-SMA and TGF-b expression, and promoted peritoneal mesothelial cell proliferation, which were oppositely changed by PPARγ overexpression. CONCLUSION PPARγ inhibited high glucose-induced peritoneal fibrosis progression through elevating GLUT1 expression and repressing peritoneal mesothelial cell proliferation.
Collapse
Affiliation(s)
- Junxia Feng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meizhi Lu
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenhao Li
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingchun Li
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zukai Li
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), 48 Xinhua Road, 510800, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [18F]Me4FDG PET in Rats. Mol Imaging 2022; 2022:4635171. [PMID: 35903251 PMCID: PMC9281422 DOI: 10.1155/2022/4635171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mediating glucose absorption in the small intestine and renal clearance, sodium glucose cotransporters (SGLTs) have emerged as an attractive therapeutic target in diabetic patients. A substantial fraction of patients, however, only achieve inadequate glycemic control. Thus, we aimed to assess the potential of the SGLT-targeting PET radiotracer alpha-methyl-4-deoxy-4-[18F]fluoro-D-glucopyranoside ([18F]Me4FDG) as a noninvasive intestinal and renal biomarker of SGLT-mediated glucose transport. Methods We investigated healthy rats using a dedicated small animal PET system. Dynamic imaging was conducted after administration of the reference radiotracer 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), or the SGLT-targeting agent, [18F]Me4FDG either directly into the digestive tract (for assessing intestinal absorption) or via the tail vein (for evaluating kidney excretion). To confirm the specificity of [18F]Me4FDG and responsiveness to treatment, a subset of animals was also pretreated with the SGLT inhibitor phlorizin. In this regard, an intraintestinal route of administration was used to assess tracer absorption in the digestive tract, while for renal assessment, phlorizin was injected intravenously (IV). Results Serving as reference, intestinal administration of [18F]FDG led to slow absorption with retention of 89.2 ± 3.5% of administered radioactivity at 15 min. [18F]Me4FDG, however, was rapidly absorbed into the blood and cleared from the intestine within 15 min, leading to markedly lower tracer retention of 18.5 ± 1.2% (P < 0.0001). Intraintestinal phlorizin led to marked increase of [18F]Me4FDG uptake (15 min, 99.9 ± 4.7%; P < 0.0001 vs. untreated controls), supporting the notion that this PET agent can measure adequate SGLT inhibition in the digestive tract. In the kidneys, radiotracer was also sensitive to SGLT inhibition. After IV injection, [18F]Me4FDG reabsorption in the renal cortex was significantly suppressed by phlorizin when compared to untreated animals (%ID/g at 60 min, 0.42 ± 0.10 vs. untreated controls, 1.20 ± 0.03; P < 0.0001). Conclusion As a noninvasive read-out of the concurrent SGLT expression in both the digestive tract and the renal cortex, [18F]Me4FDG PET may serve as a surrogate marker for treatment response to SGLT inhibition. As such, [18F]Me4FDG may enable improvement in glycemic control in diabetes by PET-based monitoring strategies.
Collapse
|
12
|
Tang R, Zhong T, Fan L, Xie Y, Li J, Li X. Enhanced T Cell Glucose Uptake Is Associated With Progression of Beta-Cell Function in Type 1 Diabetes. Front Immunol 2022; 13:897047. [PMID: 35677051 PMCID: PMC9168918 DOI: 10.3389/fimmu.2022.897047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal intracellular glucose/fatty acid metabolism of T cells has tremendous effects on their immuno-modulatory function, which is related to the pathogenesis of autoimmune diseases. However, the association between the status of intracellular metabolism of T cells and type 1 diabetes is unclear. This study aimed to investigate the uptake of glucose and fatty acids in T cells and its relationship with disease progression in type 1 diabetes. Methods A total of 86 individuals with type 1 diabetes were recruited to detect the uptake of glucose and fatty acids in T cells. 2-NBDG uptake and expression of glucose transporter 1 (GLUT1); or BODIPY uptake and expression of carnitine palmitoyltransferase 1A(CPT1A) were used to assess the status of glucose or fatty acid uptake in T cells. Patients with type 1 diabetes were followed up every 3-6 months for 36 months, the progression of beta-cell function was assessed using generalized estimating equations, and survival analysis was performed to determine the status of beta-cell function preservation (defined as 2-hour postprandial C-peptide >200 pmol/L). Results Patients with type 1 diabetes demonstrated enhanced intracellular glucose uptake of T cells as indicated by higher 2NBDG uptake and GLUT1 expression, while no significant differences in fatty acid uptake were observed. The increased T cells glucose uptake is associated with lower C-peptide and higher hemoglobin A1c levels. Notably, patients with low T cell glucose uptake at onset maintained high levels of C-peptide within 36 months of the disease course [fasting C-petite and 2-hour postprandial C-peptide are 60.6 (95%CI: 21.1-99.8) pmol/L and 146.3 (95%CI: 14.1-278.5) pmol/L higher respectively], And they also have a higher proportion of beta-cell function preservation during this follow-up period (P<0.001). Conclusions Intracellular glucose uptake of T cells is abnormally enhanced in type 1 diabetes and is associated with beta-cell function and its progression.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuting Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Juan Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Heaton BJ, Jensen RL, Line J, David CAW, Brain DE, Chadwick AE, Liptrott NJ. Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir, leads to lower glucose uptake and altered bioenergetic cell profiles through interactions with SLC2A1. Biomed Pharmacother 2022; 150:112999. [PMID: 35461087 DOI: 10.1016/j.biopha.2022.112999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 μg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 μg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.
Collapse
Affiliation(s)
- Bethany J Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Rebecca L Jensen
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - James Line
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Danielle E Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Amy E Chadwick
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK; Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
14
|
Fujii T, Katoh M, Ootsubo M, Nguyen OTT, Iguchi M, Shimizu T, Tabuchi Y, Shimizu Y, Takeshima H, Sakai H. Cardiac glycosides stimulate endocytosis of GLUT1 via intracellular Na + ,K + -ATPase α3-isoform in human cancer cells. J Cell Physiol 2022; 237:2980-2991. [PMID: 35511727 DOI: 10.1002/jcp.30762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/20/2023]
Abstract
Glucose transporter GLUT1 plays a primary role in the glucose metabolism of cancer cells. Here, we found that cardiac glycosides (CGs) such as ouabain, oleandrin, and digoxin, which are Na+ ,K+ -ATPase inhibitors, decreased the GLUT1 expression in the plasma membrane of human cancer cells (liver cancer HepG2, colon cancer HT-29, gastric cancer MKN45, and oral cancer KB cells). The effective concentration of ouabain was lower than that for inhibiting the activity of Na+ ,K+ -ATPase α1-isoform (α1NaK) in the plasma membrane. The CGs also inhibited [3 H]2-deoxy- d-glucose uptake, lactate secretion, and proliferation of the cancer cells. In intracellular vesicles of human cancer cells, Na+ ,K+ -ATPase α3-isoform (α3NaK) is abnormally expressed. Here, a low concentration of ouabain inhibited the activity of α3NaK. Knockdown of α3NaK significantly inhibited the ouabain-decreased GLUT1 expression in HepG2 cells, while the α1NaK knockdown did not. Consistent with the results in human cancer cells, CGs had no effect on GLUT1 expression in rat liver cancer dRLh-84 cells where α3NaK was not endogenously expressed. Interestingly, CGs decreased GLUT expression in the dRLh-84 cells exogenously expressing α3NaK. In HepG2 cells, α3NaK was found to be colocalized with TPC1, a Ca2+ -releasing channel activated by nicotinic acid adenine dinucleotide phosphate (NAADP). The CGs-decreased GLUT1 expression was significantly inhibited by a Ca2+ chelator, a Ca2+ -ATPase inhibitor, and a NAADP antagonist. The GLUT1 decrease was also attenuated by inhibitors of dynamin and phosphatidylinositol-3 kinases (PI3Ks). In conclusion, the binding of CGs to intracellular α3NaK elicits the NAADP-mediated Ca2+ mobilization followed by the dynamin-dependent GLUT1 endocytosis in human cancer cells.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mizuki Katoh
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Manami Ootsubo
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Oanh T T Nguyen
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mayumi Iguchi
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yasuharu Shimizu
- Tokyo Research Center, Kyushin Pharmaceutical Co, Ltd., Tokyo, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Guo L, Zhang W, Xie Y, Chen X, Olmstead EE, Lian M, Zhang B, Zaytseva YY, Evers BM, Spielmann HP, Liu X, Watt DS, Liu C. Diaminobutoxy-substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells. Mol Cancer Ther 2022; 21:740-750. [PMID: 35247917 PMCID: PMC9081236 DOI: 10.1158/1535-7163.mct-21-0925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lichao Guo
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Yanqi Xie
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xi Chen
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Emma E. Olmstead
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Mengqiang Lian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Yekaterina Y. Zaytseva
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - B. Mark Evers
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - H. Peter Spielmann
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
16
|
Sun F, Geng H, Sun Y, Feng W, Tian T, Ye L, Lei M. Exosomes derived from the blood of patients with sepsis regulate apoptosis and aerobic glycolysis in human myocardial cells via the hsa‑miR‑1262/SLC2A1 signaling pathway. Mol Med Rep 2022; 25:119. [PMID: 35137927 DOI: 10.3892/mmr.2022.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/03/2021] [Indexed: 11/05/2022] Open
Abstract
Myocardial injury occurs in the majority of patients with sepsis and is associated with early mortality. MicroRNAs (miRs) transported by exosomes have been implicated in numerous diseases, such as tumors, acute myocardial infarction and cardiovascular disease. Human serum albumin (hsa)‑miR‑1262 has been shown to serve a role in sepsis; however, its role in exosomes isolated from patients with sepsis and septic myocardial injury remains unclear. In the present study, serum exosomes were isolated via ultracentrifugation. Solute carrier family 2 member 1 (SLC2A1), an essential mediator in energy metabolism, was silenced and overexpressed in the human myocardial AC16 cell line using lentiviral plasmids containing either SLC2A1‑targeting short interfering RNAs or SLC2A1 cDNA, respectively. Cell apoptosis was analyzed using flow cytometry, and the extracellular acidification rate and oxygen consumption rate of AC16 cells were determined using an XFe24 Extracellular Flux Analyzer. Furthermore, the dual‑luciferase reporter assay was used to evaluate the interaction between hsa‑miR‑1262 and SLC2A1. Finally, reverse transcription‑quantitative PCR and western blotting were used to evaluate gene and protein expression levels, respectively. Exosomes isolated from the blood of patients with sepsis (Sepsis‑exo) markedly reduced aerobic glycolysis activity, but significantly promoted the apoptosis of human AC16 cells in a time‑dependent manner. Moreover, Sepsis‑exo significantly increased hsa‑miR‑1262 expression levels, but significantly decreased SLC2A1 mRNA expression levels in a time‑dependent manner. Bioinformatics analysis indicated that hsa‑miR‑1262 bound to the 3' untranslated region of SLC2A1 to negatively regulate its expression. The silencing of SLC2A1 promoted apoptosis and suppressed glycolysis in AC16 cells, whereas SLC2A1 overexpression resulted in the opposite effects. Therefore, the present study demonstrated that exosomes derived from patients with sepsis may inhibit glycolysis and promote the apoptosis of human myocardial cells through exosomal hsa‑miR‑1262 via its target SLC2A1. These findings highlighted the importance of the hsa‑miR‑1262/SLC2A1 signaling pathway in septic myocardial injury and provided novel insights into therapeutic strategies for septic myocardial depression.
Collapse
Affiliation(s)
- Fangyuan Sun
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Huan Geng
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yuxia Sun
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wentao Feng
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Tianning Tian
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Liang Ye
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ming Lei
- Trauma Emergency Center, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
17
|
Zhang M, Zhou Y, Xie Z, Luo S, Zhou Z, Huang J, Zhao B. New Developments in T Cell Immunometabolism and Therapeutic Implications for Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:914136. [PMID: 35757405 PMCID: PMC9226440 DOI: 10.3389/fendo.2022.914136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a serious public health threat. Despite the increasing incidence rate of T1D worldwide, our understanding of why T1D develops and how T cells lose their self-tolerance in this process remain limited. Recent advances in immunometabolism have shown that cellular metabolism plays a fundamental role in shaping T cell responses. T cell activation and proliferation are supported by metabolic reprogramming to meet the increased energy and biomass demand, and deregulation in immune metabolism can lead to autoimmune disorders. Specific metabolic pathways and factors have been investigated to rectify known deficiencies in several autoimmune diseases, including T1D. Most therapeutic strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact but primarily target those autoreactive T cells with hyperactivated metabolism. In this review, we provide an overview of metabolic reprogramming used by T cells, summarize the recent findings of key metabolic pathways and regulators modulating T cell homeostasis, differentiation, and function in the context of T1D, and discuss the opportunities for metabolic intervention to be employed to suppress autoreactive T cells and limit the progression of β-cell destruction.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;
| |
Collapse
|
18
|
Udrea AM, Gradisteanu Pircalabioru G, Boboc AA, Mares C, Dinache A, Mernea M, Avram S. Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules 2021; 11:1692. [PMID: 34827690 PMCID: PMC8615418 DOI: 10.3390/biom11111692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes represents a major health problem, involving a severe imbalance of blood sugar levels, which can disturb the nerves, eyes, kidneys, and other organs. Diabes management involves several synthetic drugs focused on improving insulin sensitivity, increasing insulin production, and decreasing blood glucose levels, but with unclear molecular mechanisms and severe side effects. Natural chemicals extracted from several plants such as Gymnema sylvestre, Momordica charantia or Ophiopogon planiscapus Niger have aroused great interest for their anti-diabetes activity, but also their hypolipidemic and anti-obesity activity. Here, we focused on the anti-diabetic activity of a few natural and synthetic compounds, in correlation with their pharmacokinetic/pharmacodynamic profiles, especially with their blood-brain barrier (BBB) permeability. We reviewed studies that used bioinformatics methods such as predicted BBB, molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to elucidate the proper action mechanisms of antidiabetic compounds. Currently, it is evident that BBB damage plays a significant role in diabetes disorders, but the molecular mechanisms are not clear. Here, we presented the efficacy of natural (gymnemic acids, quercetin, resveratrol) and synthetic (TAK-242, propofol, or APX3330) compounds in reducing diabetes symptoms and improving BBB dysfunctions. Bioinformatics tools can be helpful in the quest for chemical compounds with effective anti-diabetic activity that can enhance the druggability of molecular targets and provide a deeper understanding of diabetes mechanisms.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, 1 B. P. Hașdeu St., 50567 Bucharest, Romania;
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, Eroii Sanitari Bd., 020021 Bucharest, Romania
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Andra Dinache
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Maurele, Romania; (A.M.U.); (A.D.)
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| |
Collapse
|
19
|
Shariatzadeh M, Lopes AG, Glen KE, Sinclair A, Thomas RJ. Application of a simple unstructured kinetic and cost of goods models to support T-cell therapy manufacture. Biotechnol Prog 2021; 37:e3205. [PMID: 34455707 DOI: 10.1002/btpr.3205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
Manufacturing of cell therapy products requires sufficient understanding of the cell culture variables and associated mechanisms for adequate control and risk analysis. The aim of this study was to apply an unstructured ordinary differential equation-based model for prediction of T-cell bioprocess outcomes as a function of process input parameters. A series of models were developed to represent the growth of T-cells as a function of time, culture volumes, cell densities, and glucose concentration using data from the Ambr®15 stirred bioreactor system. The models were sufficiently representative of the process to predict the glucose and volume provision required to maintain cell growth rate and quantitatively defined the relationship between glucose concentration, cell growth rate, and glucose utilization rate. The models demonstrated that although glucose is a limiting factor in batch supplied medium, a delivery rate of glucose at significantly less than the maximal specific consumption rate (0.05 mg 1 × 106 cell h-1 ) will adequately sustain cell growth due to a lower glucose Monod constant determining glucose consumption rate relative to the glucose Monod constant determining cell growth rate. The resultant volume and exchange requirements were used as inputs to an operational BioSolve cost model to suggest a cost-effective T-cell manufacturing process with minimum cost of goods per million cells produced and optimal volumetric productivity in a manufacturing settings. These findings highlight the potential of a simple unstructured model of T-cell growth in a stirred tank system to provide a framework for control and optimization of bioprocesses for manufacture.
Collapse
Affiliation(s)
- Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical and Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, UK
| | | | - Katie E Glen
- Centre for Biological Engineering, Wolfson School of Mechanical and Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, UK
| | | | - Rob J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical and Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, UK
| |
Collapse
|
20
|
Basso PJ, Andrade-Oliveira V, Câmara NOS. Targeting immune cell metabolism in kidney diseases. Nat Rev Nephrol 2021; 17:465-480. [PMID: 33828286 DOI: 10.1038/s41581-021-00413-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Insights into the relationship between immunometabolism and inflammation have enabled the targeting of several immunity-mediated inflammatory processes that underlie infectious diseases and cancer or drive transplant rejection, but this field remains largely unexplored in kidney diseases. The kidneys comprise heterogeneous cell populations, contain distinct microenvironments such as areas of hypoxia and hypersalinity, and are responsible for a functional triad of filtration, reabsorption and secretion. These distinctive features create myriad potential metabolic therapeutic targets in the kidney. Immune cells have crucial roles in the maintenance of kidney homeostasis and in the response to kidney injury, and their function is intricately connected to their metabolic properties. Changes in nutrient availability and biomolecules, such as cytokines, growth factors and hormones, initiate cellular signalling events that involve energy-sensing molecules and other metabolism-related proteins to coordinate immune cell differentiation, activation and function. Disruption of homeostasis promptly triggers the metabolic reorganization of kidney immune and non-immune cells, which can promote inflammation and tissue damage. The metabolic differences between kidney and immune cells offer an opportunity to specifically target immunometabolism in the kidney.
Collapse
Affiliation(s)
- Paulo José Basso
- Laboratory of Immunobiology of Transplantation, Department of Immunology, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Laboratory of Immunobiology of Transplantation, Department of Immunology, Universidade de São Paulo, São Paulo, São Paulo, Brazil. .,Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Marchesi F, Vignali D, Manini B, Rigamonti A, Monti P. Manipulation of Glucose Availability to Boost Cancer Immunotherapies. Cancers (Basel) 2020; 12:cancers12102940. [PMID: 33053779 PMCID: PMC7650629 DOI: 10.3390/cancers12102940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
The orchestration of T cell responses is intimately linked to the execution of metabolic processes, both in homeostasis and disease. In cancer tissues, metabolic alterations that characterize malignant transformation profoundly affect the composition of the immune microenvironment and the accomplishment of an effective anti-tumor response. The growing understanding of the metabolic regulation of immune cell function has shed light on the possibility to manipulate metabolic pathways as a strategy to improve T cell function in cancer. Among others, glucose metabolism through the glycolytic pathway is central in shaping T cell responses and emerges as an ideal target to improve cancer immunotherapy. However, metabolic manipulation requires a deep level of control over side-effects and development of biomarkers of response. Here, we summarize the metabolic control of T cell function and focus on the implications of metabolic manipulation for the design of immunotherapeutic strategies. Integrating our understanding of T cell function and metabolism will hopefully foster the forthcoming development of more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Federica Marchesi
- Center-IRCCS, Department of Immunology and Inflammation, Humanitas Clinical and Research, Rozzano, 20089 Milan, Italy; (F.M.); (A.R.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Debora Vignali
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20131 Milan, Italy; (D.V.); (B.M.)
| | - Beatrice Manini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20131 Milan, Italy; (D.V.); (B.M.)
- San Raffaele Vita Salute University, 20133 Milan, Italy
| | - Alessandra Rigamonti
- Center-IRCCS, Department of Immunology and Inflammation, Humanitas Clinical and Research, Rozzano, 20089 Milan, Italy; (F.M.); (A.R.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Paolo Monti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20131 Milan, Italy; (D.V.); (B.M.)
- Correspondence:
| |
Collapse
|
22
|
Liang J, Liu T, Liao J, Zhang L, Zhou M, Xu W, He Y, Cai G, Jin G, Song J, Li G, Liang H, Ding Z, Zhang B. Development and validation of a CpG island methylator phenotype-related prognostic signature for cholangiocarcinoma. J Cell Physiol 2020; 236:3143-3156. [PMID: 32996133 DOI: 10.1002/jcp.30082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) still has a very unfavorable prognosis with a very high mortality, which is complicated by a lack of prognostic biomarkers. In this study, CCA patients in the Gene Expression Omnibus (GEO) cohort were categorized into two subtypes. Differentially expressed and methylated genes were identified, and the impact of DNA methylation in the trans-regulation of gene expression was investigated. Finally, a CIMP-related methylation signature specific for CCA (CMSC) was trained in GEO and validated in the Tongji cohort. A subset of patients with CIMP-H was identified, which was correlated with an unfavorable prognosis. Gene enrichment analysis implied the potential mechanism of CIMP as a promoter of carcinogenesis by regulating proliferation. The trans-regulation among differentially methylated CpG sites and genes with the same change trends was positively correlated, while the converse situation showed a negative correlation. Notably, CMSC based on four genes could significantly classify CCA patients into low- and high-risk groups in the GEO cohort, and the robustness of CMSC was validated in the Tongji cohort. The results of receiver operating characteristic analysis further indicated that CMSC was capable of highly sensitive and specific prediction of the patient outcomes in CCA. In conclusion, our work highlights the clinical significance of CMSC in the prognosis of CCA.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongtong Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mi Zhou
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guannan Jin
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|