1
|
Yin H, Yue H, Wang M, Zhang T, Zhao YT, Liu H, Wang J, Zheng H, Xue C. Preparation of Novel Sea Cucumber Intestinal Peptides to Promote Tibial Fracture Healing in Mice by Inducing Differentiation of Hypertrophic Chondrocytes to the Osteoblast Lineage. Mol Nutr Food Res 2024; 68:e2300344. [PMID: 38100188 DOI: 10.1002/mnfr.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/18/2023] [Indexed: 02/01/2024]
Abstract
SCOPE Hypertrophic chondrocytes have a decisive regulatory role in the process of fracture healing, and the fate of hypertrophic chondrocytes is not only apoptosis. However, the mechanism of sea cucumber (Stichopus japonicus) intestinal peptide (SCIP) on fracture promotion is still unclear. This study aims to investigate the effect of sea cucumber intestinal peptide on the differentiation fate of hypertrophic chondrocytes in a mouse tibial fracture model. METHODS AND RESULTS Mice are subjected to open fractures of the right tibia to establish a tibial fracture model. The results exhibit that the SCIP intervention significantly promotes the mineralization of cartilage callus, decreases the expression of the hypertrophic chondrocyte marker Col X, and increases the expression of the osteoblast marker Col I. Mechanically, SCIP promotes tibial fracture healing by promoting histone acetylation and inhibiting histone methylation, thereby upregulating pluripotent transcription factors induced the differentiation of hypertrophic chondrocytes to the osteoblast lineage in a manner distinct from classical endochondral ossification. CONCLUSION This study is the first to report that SCIP can promote tibial fracture healing in mice by inducing the differentiation of hypertrophic chondrocytes to the osteoblast lineage. SCIP may be considered raw material for developing nutraceuticals to promote fracture healing.
Collapse
Affiliation(s)
- Haowen Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| | - Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Meng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Tianqi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hongying Liu
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
- Qingdao Langyatai Group Co., Ltd, Qingdao, China
- Shandong Chongzhi Youpin Pet Food Co., Ltd., Weifang, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Hongwei Zheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, 266109, P. R. China
| |
Collapse
|
2
|
Zhao HN, Thomas SP, Zylka MJ, Dorrestein PC, Hu W. Urine Excretion, Organ Distribution, and Placental Transfer of 6PPD and 6PPD-Quinone in Mice and Potential Developmental Toxicity through Nuclear Receptor Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13429-13438. [PMID: 37642336 DOI: 10.1021/acs.est.3c05026] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The rubber antioxidant 6PPD has gained significant attention due to its highly toxic transformation product, 6PPD-quinone (6PPDQ). Despite their detection in urines of pregnant women, the placental transfer and developmental toxicity of 6PPD and 6PPDQ are unknown. Here, we treated C57Bl/6 mice with 4 mg/kg 6PPD or 6PPDQ to investigate their urine excretion and placental transfer. Female and male mice exhibited sex difference in excretion profiles of 6PPD and 6PPDQ. Urine concentrations of 6PPDQ were one order of magnitude lower than those of 6PPD, suggesting lower excretion and higher bioaccumulation of 6PPDQ. In pregnant mice treated with 6PPD or 6PPDQ from embryonic day 11.5 to 15.5, 6PPDQ showed ∼1.5-8 times higher concentrations than 6PPD in placenta, embryo body, and embryo brain, suggesting higher placental transfer of 6PPDQ. Using in vitro dual-luciferase reporter assays, we revealed that 6PPDQ activated the human retinoic acid receptor α (RARα) and retinoid X receptor α (RXRα) at concentrations as low as 0.3 μM, which was ∼10-fold higher than the concentrations detected in human urines. 6PPD activated the RXRα at concentrations as low as 1.2 μM. These results demonstrate the exposure risks of 6PPD and 6PPDQ during pregnancy and emphasize the need for further toxicological and epidemiological investigations.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Sydney P Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mark J Zylka
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California 92093, United States
| | - Wenxin Hu
- University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Huang K, Jo H, Echesabal-Chen J, Stamatikos A. Combined LXR and RXR Agonist Therapy Increases ABCA1 Protein Expression and Enhances ApoAI-Mediated Cholesterol Efflux in Cultured Endothelial Cells. Metabolites 2021; 11:640. [PMID: 34564456 PMCID: PMC8466889 DOI: 10.3390/metabo11090640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial ABCA1 expression protects against atherosclerosis and this atheroprotective effect is partially attributed to enhancing apoAI-mediated cholesterol efflux. ABCA1 is a target gene for LXR and RXR; therefore, treating endothelial cells with LXR and/or RXR agonists may increase ABCA1 expression. We tested whether treating cultured immortalized mouse aortic endothelial cells (iMAEC) with the endogenous LXR agonist 22(R)-hydroxycholesterol, synthetic LXR agonist GW3965, endogenous RXR agonist 9-cis-retinoic acid, or synthetic RXR agonist SR11237 increases ABCA1 protein expression. We observed a significant increase in ABCA1 protein expression in iMAEC treated with either GW3965 or SR11237 alone, but no significant increase in ABCA1 protein was observed in iMAEC treated with either 22(R)-hydroxycholesterol or 9-cis-retionic acid alone. However, we observed significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux when iMAEC were treated with a combination of either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237. Furthermore, treating iMAEC with either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237 did not trigger an inflammatory response, based on VCAM-1, ICAM-1, CCL2, and IL-6 mRNA expression. Based on our findings, delivering LXR and RXR agonists precisely to endothelial cells may be a promising atheroprotective approach.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| |
Collapse
|
4
|
Li H, Li X, Yang B, Su J, Cai S, Huang J, Hu T, Chen L, Xu Y, Li Y. The retinoid X receptor α modulator K-80003 suppresses inflammatory and catabolic responses in a rat model of osteoarthritis. Sci Rep 2021; 11:16956. [PMID: 34417523 PMCID: PMC8379249 DOI: 10.1038/s41598-021-96517-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA), a most common and highly prevalent joint disease, is closely associated with dysregulated expression and modification of RXRα. However, the role of RXRα in the pathophysiology of OA remains unknown. The present study aimed to investigate whether RXRα modulator, such as K-80003 can treat OA. Experimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats. Articular cartilage degeneration was assessed using Safranin-O and fast green staining. Synovial inflammation was measured using hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA). Expressions of MMP-13, ADAMTS-4 and ERα in joints were analyzed by immunofluorescence staining. Western blot, RT-PCR and co-Immunoprecipitation (co-IP) were used to assess the effects of K-80003 on RXRα-ERα interaction. Retinoid X receptor α (RXRα) modulator K-80003 prevented the degeneration of articular cartilage, reduced synovial inflammation, and alleviated osteoarthritic pain in rats. Furthermore, K-80003 markedly inhibited IL-1β-induced p65 nuclear translocation and IκBα degradation, and down-regulate the expression of HIF-2α, proteinases (MMP9, MMP13, ADAMTS-4) and pro-inflammatory factors (IL-6 and TNFα) in primary chondrocytes. Additionally, knockdown of ERα with siRNA blocked these effects of K-80003 in chondrocytes. In conclusion, RXRα modulators K-80003 suppresses inflammatory and catabolic responses in OA, suggesting that targeting RXRα-ERα interaction by RXRα modulators might be a novel therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Hua Li
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiaofan Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou, 350001, China
| | - Boyu Yang
- The Department of Orthopedics, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Junnan Su
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Shaofang Cai
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jinmei Huang
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Tianfu Hu
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Lijuan Chen
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Yuhang Li
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China.
| |
Collapse
|
5
|
Hong H, Hosomichi J, Maeda H, Ishida Y, Usumi-Fujita R, Yoshida KI, Ono T. Selective β2-Adrenoceptor Blockade Rescues Mandibular Growth Retardation in Adolescent Rats Exposed to Chronic Intermittent Hypoxia. Front Physiol 2021; 12:676270. [PMID: 34220541 PMCID: PMC8247478 DOI: 10.3389/fphys.2021.676270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Activation of the sympathoadrenal system is associated with sleep apnea-related symptoms and metabolic dysfunction induced by chronic intermittent hypoxia (IH). IH can induce hormonal imbalances and growth retardation of the craniofacial bones. However, the relationship between IH and β2-adrenergic receptor signaling in the context of skeletal growth regulation is unclear. This study aimed to investigate the role of β2-adrenergic receptors in IH-induced mandibular growth retardation and bone metabolic alterations. Male 7-week-old Sprague–Dawley rats were subjected to IH for 3 weeks. IH conditions were established using original customized hypoxic chambers; IH was induced at a rate of 20 cycles per hour (oxygen levels changed from 4 to 21% in one cycle) for 8 h per day during the 12 h “lights on” period. The rats received intraperitoneal administration of a β2-adrenergic antagonist (butoxamine) or saline. To exclude dietary effects on general growth, the normoxic rats with saline, normoxic rats with butoxamine, and IH rats with butoxamine were subjected to food restriction to match the body weight gains between IH and other three groups. Body weight, heart rate, blood pressure, and plasma concentrations of leptin, serotonin, and growth hormone were measured. Bone growth and metabolism were evaluated using radiography, microcomputed tomography, and immunohistochemical staining. Plasma leptin levels were significantly increased, whereas that of serotonin and growth hormone were significantly decreased following IH exposure. Leptin levels recovered following butoxamine administration. Butoxamine rescued IH-induced mandibular growth retardation, with alterations in bone mineral density at the condylar head of the mandible. Immunohistochemical analysis revealed significantly lower expression levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the condylar head of IH-exposed rats. Conversely, recovery of RANKL expression was observed in IH-exposed rats administered with butoxamine. Collectively, our findings suggest that the activation of β2-adrenergic receptors and leptin signaling during growth may be involved in IH-induced skeletal growth retardation of the mandible, which may be mediated by concomitant changes in RANKL expression at the growing condyle.
Collapse
Affiliation(s)
- Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan.,Department of Stomatology, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Bali SK, Bryce D, Prein C, Woodgett JR, Beier F. Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice. J Mol Med (Berl) 2021; 99:831-844. [PMID: 33609145 DOI: 10.1007/s00109-021-02049-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die late in embryogenesis or at birth. Selective Gsk3b KO in bone delays development of some bones, whereas cartilage-specific Gsk3b KO mice are normal except for elevated levels of GSK3A protein. However, the collective role of these two GSK3 proteins in cartilage was not evaluated. To address this, we generated tamoxifen-inducible, cartilage-specific Gsk3a/Gsk3b KO (described as "cDKO") in juvenile mice and investigated their skeletal phenotypes. We found that cartilage-specific Gsk3a/Gsk3b deletion in young, skeletally immature mice causes precocious growth plate (GP) remodeling, culminating in shorter long bones and hence, growth retardation. These mice exhibit inefficient breathing patterns at later stages and fail to survive. The disrupted GP in cDKO mice showed progressive loss of cellular and proteoglycan components, and immunostaining for SOX9, while BGLAP (osteocalcin) and COL2A1 increased. In addition, we observed increased osteoclast recruitment and cell apoptosis. Surprisingly, changes in articular cartilage of cDKO mice were mild compared with the GP, signifying differential regulation of articular cartilage vs GP tissues. Taken together, these findings emphasize a crucial role of two GSK3 proteins in skeletal development, in particular in the maintenance and function of GP. KEY MESSAGES: • Both GSK3 genes, together, are crucial regulators of growth plate remodeling. • Cartilage-specific deletion of both GSK3 genes causes skeletal growth retardation. • Deletion of both GSK3 genes decreases Sox9 levels and promotes chondrocyte apoptosis. • Cartilage-specific GSK3 deletion in juvenile mice culminates in premature lethality. • GSK3 deletion exhibits mild effects on articular cartilage compared to growth plate.
Collapse
Affiliation(s)
- Supinder Kour Bali
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - Dawn Bryce
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - Carina Prein
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada.,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 5C1, Canada. .,Western Bone and Joint Institute, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
7
|
Blumer MJF. Bone tissue and histological and molecular events during development of the long bones. Ann Anat 2021; 235:151704. [PMID: 33600952 DOI: 10.1016/j.aanat.2021.151704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
The bones are of mesenchymal or ectomesenchymal origin, form the skeleton of most vertebrates, and are essential for locomotion and organ protection. As a living tissue they are highly vascularized and remodelled throughout life to maintain intact. Bones consist of osteocytes entrapped in a mineralized extracellular matrix, and via their elaborated network of cytoplasmic processes they do not only communicate with each other but also with the cells on the bone surface (bone lining cells). Bone tissue develops through a series of fine-tuned processes, and there are two modes of bone formation, referred to either as intramembranous or endochondral ossification. In intramembranous ossification, bones develop directly from condensations of mesenchymal cells, and the flat bones of the skull, the clavicles and the perichondral bone cuff develop via this process. The bones of the axial (ribs and vertebrae) and the appendicular skeleton (e.g. upper and lower limbs) form through endochondral ossification where mesenchyme turns into a cartilaginous intermediate with the shape of the future skeletal element that is gradually replaced by bone. Endochondral ossification occurs in all vertebrate taxa and its onset involves differentiation of the chondrocytes, mineralization of the extracellular cartilage matrix and vascularization of the intermediate, followed by disintegration and resorption of the cartilage, bone formation, and finally - after complete ossification of the cartilage model - the establishment of an avascular articular cartilage. The epiphyseal growth plate regulates the longitudinal growth of the bones, achieved by a balanced proliferation and elimination of chondrocytes, and the question whether the late hypertrophic chondrocytes die or transform into osteogenic cells is still being hotly debated. The complex processes leading to endochondral ossification have been studied for over a century, and this review aims to give an overview of the histological and molecular events, arising from the long bones' (e.g. femur, tibia) development. The fate of the hypertrophic chondrocytes will be discussed in the light of new findings obtained from cell tracking studies.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Müllerstrasse 59, A-6010 Innsbruck, Austria.
| |
Collapse
|