1
|
Wu R, Jia Q, Guo Y, Lin Y, Liu J, Chen J, Yan Q, Yuan N, Xue C, Chen X, Yuan X. Characterization of TBP and TAFs in Mungbean ( Vigna radiata L.) and Their Potential Involvement in Abiotic Stress Response. Int J Mol Sci 2024; 25:9558. [PMID: 39273505 PMCID: PMC11394781 DOI: 10.3390/ijms25179558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The TATA-box binding protein (TBP) and TBP-associated factors (TAFs) constitute the transcription factor IID (TFIID), a crucial component of RNA polymerase II, essential for transcription initiation and regulation. Several TFIID subunits are shared with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator complex. Recent research has revealed the roles of TBP and TAFs in organogenesis and stress adaptation. In this study, we identified 1 TBP and 21 putative TAFs in the mungbean genome, among which VrTAF5, VrTAF6, VrTAF8, VrTAF9, VrTAF14, and VrTAF15 have paralogous genes. Their potential involvement in abiotic stress responses was also investigated here, including high salinity, water deficit, heat, and cold. The findings indicated that distinct genes exerted predominant influences in the response to different abiotic stresses through potentially unique mechanisms. Specifically, under salt stress, VrTBP, VrTAF2, and VrTAF15-1 were strongly induced, while VrTAF10, VrTAF11, and VrTAF13 acted as negative regulators. In the case of water-deficit stress, it was likely that VrTAF1, VrTAF2, VrTAF5-2, VrTAF9, and VrTAF15-1 were primarily involved. Additionally, in response to changes in ambient temperature, it was possible that genes such as VrTAF5-1, VrTAF6-1, VrTAF9-2, VrTAF10, VrTAF13, VrTAF14b-2, and VrTAF15-1 might play a dominant role. This comprehensive exploration of VrTBP and VrTAFs can offer a new perspective on understanding plant stress responses and provide valuable insights into breeding improvement.
Collapse
Affiliation(s)
- Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiyuan Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjian Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Na Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (R.W.); (Q.J.); (Y.G.); (Y.L.); (J.L.); (J.C.); (Q.Y.); (N.Y.); (C.X.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
2
|
Wang F, Li CH, Liu Y, He LF, Li P, Guo JX, Zhang N, Zhao B, Guo YD. Plant responses to abiotic stress regulated by histone acetylation. FRONTIERS IN PLANT SCIENCE 2024; 15:1404977. [PMID: 39081527 PMCID: PMC11286584 DOI: 10.3389/fpls.2024.1404977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
In eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance of histone acetylation in the regulation of abiotic stress responses including temperature, light, salt and drought stress. This information will contribute to our understanding of how plants adapt to environmental changes. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in improvement of agricultural productivity.
Collapse
Affiliation(s)
- Fei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chong-Hua Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ling-Feng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jun-Xin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
3
|
Kulasza M, Sielska A, Szenejko M, Soroka M, Skuza L. Effects of copper, and aluminium in ionic, and nanoparticulate form on growth rate and gene expression of Setaria italica seedlings. Sci Rep 2024; 14:15897. [PMID: 38987627 PMCID: PMC11237061 DOI: 10.1038/s41598-024-66921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
This study aims to determine the effects of copper, copper oxide nanoparticles, aluminium, and aluminium oxide nanoparticles on the growth rate and expression of ACT-1, CDPK, LIP, NFC, P5CR, P5CS, GR, and SiZIP1 genes in five days old seedling of Setaria italica ssp. maxima, cultivated in hydroponic culture. Depending on their concentration (ranging from 0.1 to 1.8 mg L-1), all tested substances had both stimulating and inhibiting effects on the growth rate of the seedlings. Copper and copper oxide-NPs had generally a stimulating effect whereas aluminium and aluminium oxide-NPs at first had a positive effect but in higher concentrations they inhibited the growth. Treating the seedlings with 0.4 mg L-1 of each tested toxicant was mostly stimulating to the expression of the genes and reduced the differences between the transcript levels of the coleoptiles and roots. Increasing concentrations of the tested substances had both stimulating and inhibiting effects on the expression levels of the genes. The highest expression levels were usually noted at concentrations between 0.4 and 1.0 mg/L of each metal and metal nanoparticle, except for SiZIP1, which had the highest transcript amount at 1.6 mg L-1 of Cu2+ and at 0.1-0.8 mg L-1 of CuO-NPs, and LIP and GR from the seedling treated with Al2O3-NPs at concentrations of 0.1 and 1.6 mg L-1, respectively.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
| | - Anna Sielska
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Doctoral School, University of Szczecin, 70383, Szczecin, Poland.
| | - Magdalena Szenejko
- Institute of Marine and Environmental Sciences, University of Szczecin, 71412, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| | - Marianna Soroka
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, 71412, Szczecin, Poland
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| |
Collapse
|
4
|
Chmielowska-Bąk J, Searle IR, Wakai TN, Arasimowicz-Jelonek M. The role of epigenetic and epitranscriptomic modifications in plants exposed to non-essential metals. FRONTIERS IN PLANT SCIENCE 2023; 14:1278185. [PMID: 38111878 PMCID: PMC10726048 DOI: 10.3389/fpls.2023.1278185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Contamination of the soil with non-essential metals and metalloids is a serious problem in many regions of the world. These non-essential metals and metalloids are toxic to all organisms impacting crop yields and human health. Crop plants exposed to high concentrations of these metals leads to perturbed mineral homeostasis, decreased photosynthesis efficiency, inhibited cell division, oxidative stress, genotoxic effects and subsequently hampered growth. Plants can activate epigenetic and epitranscriptomic mechanisms to maintain cellular and organism homeostasis. Epigenetic modifications include changes in the patterns of cytosine and adenine DNA base modifications, changes in cellular non-coding RNAs, and remodeling histone variants and covalent histone tail modifications. Some of these epigenetic changes have been shown to be long-lasting and may therefore contribute to stress memory and modulated stress tolerance in the progeny. In the emerging field of epitranscriptomics, defined as chemical, covalent modifications of ribonucleotides in cellular transcripts, epitranscriptomic modifications are postulated as more rapid modulators of gene expression. Although significant progress has been made in understanding the plant's epigenetic changes in response to biotic and abiotic stresses, a comprehensive review of the plant's epigenetic responses to metals is lacking. While the role of epitranscriptomics during plant developmental processes and stress responses are emerging, epitranscriptomic modifications in response to metals has not been reviewed. This article describes the impact of non-essential metals and metalloids (Cd, Pb, Hg, Al and As) on global and site-specific DNA methylation, histone tail modifications and epitranscriptomic modifications in plants.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Iain Robert Searle
- Discipline of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Theophilus Nang Wakai
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
5
|
Imran M, Farooq MA, Batool A, Shafiq S, Junaid M, Wang J, Tang X. Impact and mitigation of lead, cadmium and micro/nano plastics in fragrant rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122224. [PMID: 37479167 DOI: 10.1016/j.envpol.2023.122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Heavy metals (HMs) and micro(nano)plastics (MNPs), represent a significant risk to global food supply as well as a potential risk to humankind. Over 50% of the worldwide population eat rice every day, and rice aroma is a significant qualitative trait that is highly valued by consumers and fetches premium prices in the global market. Despite the huge commercial importance of fragrant rice, limited studies were directed to investigate the influence of HMs and MNPs on yield related traits and 2-Acetyl-1-pyrroline (2-AP) compound, mainly responsible for aroma production in fragrant rice. In this review, we found that the interaction of HMs and MNPs in fragrant rice is complex and accumulation of HMs and MNPs was higher in root as compared to the grains. Nutrients and phytohormones mediated mitigation of HMs and MNPs were most effective sustainable strategies. In addition, monitoring the checkpoints of 2-AP biosynthesis and its interaction with HMs and MNPs is challenging. Finally, we explained the potential challenges that fragrant rice faces considering the continuous rise in environmental pollutants and discussed the future avenues of research to improve fragrant rice's yield and qualitative traits.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Batool
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Sarfraz Shafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
7
|
Ivanova T, Dincheva I, Badjakov I, Iantcheva A. Transcriptional and Metabolic Profiling of Arabidopsis thaliana Transgenic Plants Expressing Histone Acetyltransferase HAC1 upon the Application of Abiotic Stress-Salt and Low Temperature. Metabolites 2023; 13:994. [PMID: 37755274 PMCID: PMC10536276 DOI: 10.3390/metabo13090994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Augmented knowledge of plant responses upon application of stress could help improve our understanding of plant tolerance under abiotic stress conditions. Histone acetylation plays an important role in gene expression regulation during plant growth and development and in the response of plants to abiotic stress. The current study examines the level of transcripts and free metabolite content in transgenic Arabidopsis thaliana plants expressing a gene encoding histone acetyltransferase from Medicago truncatula (MtHAC1) after its heterologous expression. Stable transgenic plants with HAC1 gain and loss of function were constructed, and their T5 generation was used. Transgenic lines with HAC1-modified expression showed a deviation in root growth dynamics and leaf area compared to the wild-type control. Transcriptional profiles were evaluated after the application of salinity stress caused by 150 mM NaCl at four different time points (0, 24, 48, and 72 h) in treated and non-treated transgenic and control plants. The content and quantity of free metabolites-amino acids, mono- and dicarbohydrates, organic acids, and fatty acids-were assessed at time points 0 h and 72 h in treated and non-treated transgenic and control plants. The obtained transcript profiles of HAC1 in transgenic plants with modified expression and control were assessed after application of cold stress (low temperature, 4 °C).
Collapse
Affiliation(s)
| | | | | | - Anelia Iantcheva
- AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria; (T.I.); (I.D.); (I.B.)
| |
Collapse
|
8
|
Possamai-Della T, Cararo JH, Aguiar-Geraldo JM, Peper-Nascimento J, Zugno AI, Fries GR, Quevedo J, Valvassori SS. Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics. Mol Neurobiol 2023; 60:5013-5033. [PMID: 37233974 DOI: 10.1007/s12035-023-03348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Preclinical genetic studies have related stress early exposures with changes in gene regulatory mechanisms, including epigenetic alterations, such as modifications of DNA methylation, histone deacetylation, and histones acetylation. This study evaluates the effects of prenatal stress on the behavior, hypothalamus-pituitary-adrenal (HPA)-axis, and epigenetic parameters in stressed dams and their offspring. The rats were subjected to a protocol of chronic unpredictable mild stress on the fourteenth day of pregnancy until the birth of offspring. After birth, maternal care was evaluated for six days. Following weaning, the locomotor and depressive-like behaviors of the dams and their offspring (60 days old) were assessed. The HPA axis parameters were evaluated in serum from dams and offspring, and epigenetic parameters (histone acetyltransferase (HAT), histone deacetylase (HDAC), DNA methyltransferase (DNMT) activities, and the levels of histone H3 acetylated at lysine residue 9 (H3K9ac) and histone 3 acetylated at lysine residue 14 (H3K14ac)) were assessed in dams' and offspring' brains. Prenatal stress did not significantly influence maternal care; however, it induced manic behavior in female offspring. These behavioral alterations in the offspring were accompanied by hyperactivity of the HPA-axis, epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones H3K9 and H3K14. In addition, the prenatal stressed female offspring showed increased levels of ACTH compared to their male counterpart. Our findings reinforce the impact of prenatal stress on behavior, stress response, and epigenetic profile of offspring.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
9
|
Ma H, Lin J, Mei F, Mao H, Li QQ. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:499-518. [PMID: 36786697 DOI: 10.1111/tpj.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
10
|
Shen Q, Zhang S, Ge C, Liu S, Chen J, Liu R, Ma H, Song M, Pang C. Genome-wide association study identifies GhSAL1 affects cold tolerance at the seedling emergence stage in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:27. [PMID: 36810826 DOI: 10.1007/s00122-023-04317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.
Collapse
Affiliation(s)
- Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
11
|
Cheng Y, Ning K, Chen Y, Hou C, Yu H, Yu H, Chen S, Guo X, Dong L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med 2023; 18:16. [PMID: 36782242 PMCID: PMC9926835 DOI: 10.1186/s13020-023-00720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.
Collapse
Affiliation(s)
- Yufei Cheng
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.443651.10000 0000 9456 5774College of Agronomy, Ludong University, Yantai, 264000 China
| | - Kang Ning
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yongzhong Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Cong Hou
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, 650217 China
| | - Huatao Yu
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaotong Guo
- College of Agronomy, Ludong University, Yantai, 264000, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Wei Z, Li Y, Ali F, Wang Y, Liu J, Yang Z, Wang Z, Xing Y, Li F. Transcriptomic analysis reveals the key role of histone deacetylation via mediating different phytohormone signalings in fiber initiation of cotton. Cell Biosci 2022; 12:107. [PMID: 35831870 PMCID: PMC9277824 DOI: 10.1186/s13578-022-00840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Histone deacetylation is one of the most important epigenetic modifications and plays diverse roles in plant development. However, the detailed functions and mechanisms of histone deacetylation in fiber development of cotton are still unclear. HDAC inhibitors (HDACi) have been commonly used to study the molecular mechanism underlying histone deacetylation or to facilitate disease therapy in humans through hindering the histone deacetylase catalytic activity. Trichostatin A (TSA)—the most widely used HDACi has been extensively employed to determine the role of histone deacetylation on different developmental stages of plants. Results Through in vitro culture of ovules, we observed that exogenous application of TSA was able to inhibit the fiber initiation development. Subsequently, we performed a transcriptomic analysis to reveal the underlying mechanisms. The data showed that TSA treatment resulted in 4209 differentially expressed genes, which were mostly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, and carbon metabolism pathways. The phytohormone signal transduction pathways harbor the most differentially expressed genes. Deeper studies showed that some genes promoting auxin, Gibberellic Acid (GA) signaling were down-regulated, while some genes facilitating Abscisic Acid (ABA) and inhibiting Jasmonic Acid (JA) signaling were up-regulated after the TSA treatments. Further analysis of plant hormone contents proved that TSA significantly promoted the accumulation of ABA, JA and GA3. Conclusions Collectively, histone deacetylation can regulate some key genes involved in different phytohormone pathways, and consequently promoting the auxin, GA, and JA signaling, whereas repressing the ABA synthesis and signaling to improve the fiber cell initiation. Moreover, the genes associated with energy metabolism, phenylpropanoid, and glutathione metabolism were also regulated by histone deacetylation. The above results provided novel clues to illuminate the underlying mechanisms of epigenetic modifications as well as related different phytohormones in fiber cell differentiation, which is also very valuable for the molecular breeding of higher quality cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00840-4.
Collapse
|
13
|
Imran M, Shafiq S, Ilahi S, Ghahramani A, Bao G, Dessoky ES, Widemann E, Pan S, Mo Z, Tang X. Post-transcriptional regulation of 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway, silicon, and heavy metal transporters in response to Zn in fragrant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:948884. [PMID: 36061781 PMCID: PMC9428631 DOI: 10.3389/fpls.2022.948884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulates 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcript variability and proteome diversity in plants. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed based on RNA-seq analysis. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular processes in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars and Zn treatment altered the editing frequency of single nucleotide polymorphism (SNPs) in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Similar to the 2-AP pathway, we found that heavy metal transporters (genes related to silicon, iron, Zn and other metal transport) are also regulated at transcriptional and post-transcriptional levels in response to Zn in fragrant rice. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway and heavy metal transporters may also be regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis and regulation of heavy metal transporters in fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Sara Ilahi
- Department of Economics, Lahore College for Women University, Lahore, Pakistan
| | - Alireza Ghahramani
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gegen Bao
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Eldessoky S. Dessoky
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, Strasbourg, France
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
14
|
Morończyk J, Brąszewska A, Wójcikowska B, Chwiałkowska K, Nowak K, Wójcik AM, Kwaśniewski M, Gaj MD. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022; 11:863. [PMID: 35269485 PMCID: PMC8909028 DOI: 10.3390/cells11050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.
Collapse
Affiliation(s)
- Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Barbara Wójcikowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Anna M. Wójcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| |
Collapse
|
15
|
ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 2021; 16:e0261215. [PMID: 34914734 PMCID: PMC8675703 DOI: 10.1371/journal.pone.0261215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.
Collapse
Affiliation(s)
- Qurat-ul ain-Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
16
|
Osadchuk K, Cheng CL, Irish EE. The integration of leaf-derived signals sets the timing of vegetative phase change in maize, a process coordinated by epigenetic remodeling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111035. [PMID: 34620439 DOI: 10.1016/j.plantsci.2021.111035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
After germination, the maize shoot proceeds through a series of developmental stages before flowering. The first transition occurs during the vegetative phase where the shoot matures from the juvenile to the adult phase, called vegetative phase change (VPC). In maize, both phases exhibit easily-scored morphological characteristics, facilitating the elucidation of molecular mechanisms directing the characteristic gene expression patterns and resulting physiological features of each phase. miR156 expression is high during the juvenile phase, suppressing expression of squamosa promoter binding proteins/SBP-like transcription factors and miR172. The decline in miR156 and subsequent increase in miR172 expression marks the transition into the adult phase, where miR172 represses transcripts that confer juvenile traits. Leaf-derived signals attenuate miR156 expression and thus the duration of the juvenile phase. As found in other species, VPC in maize utilizes signals that consist of hormones, stress, and sugar to direct epigenetic modifiers. In this review we identify the intersection of leaf-derived signaling with components that contribute to the epigenetic changes which may, in turn, manage the distinct global gene expression patterns of each phase. In maize, published research regarding chromatin remodeling during VPC is minimal. Therefore, we identified epigenetic regulators in the maize genome and, using published gene expression data and research from other plant species, identify VPC candidates.
Collapse
Affiliation(s)
- Krista Osadchuk
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Chi-Lien Cheng
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Erin E Irish
- 129 E. Jefferson Street, Department of Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Epigenetic control of abiotic stress signaling in plants. Genes Genomics 2021; 44:267-278. [PMID: 34515950 DOI: 10.1007/s13258-021-01163-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although plants may be regularly exposed to various abiotic stresses, including drought, salt, cold, heat, heavy metals, and UV-B throughout their lives, it is not possible to actively escape from such stresses due to the immobile nature of plants. To overcome adverse environmental stresses, plants have developed adaptive systems that allow appropriate responses to diverse environmental cues; such responses can be achieved by fine-tuning or controlling genetic and epigenetic regulatory systems. Epigenetic mechanisms such as DNA or histone modifications and modulation of chromatin accessibility have been shown to regulate the expression of stress-responsive genes in struggles against abiotic stresses. OBJECTIVE Herein, the current progress in elucidating the epigenetic regulation of abiotic stress signaling in plants has been summarized in order to further understand the systems plants utilize to effectively respond to abiotic stresses. METHODS This review focuses on the action mechanisms of various components that epigenetically regulate plant abiotic stress responses, mainly in terms of DNA methylation, histone methylation/acetylation, and chromatin remodeling. CONCLUSIONS This review can be considered a basis for further research into understanding the epigenetic control system for abiotic stress responses in plants. Moreover, the knowledge of such systems can be effectively applied in developing novel methods to generate abiotic stress resistant crops.
Collapse
|
18
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
19
|
Zhang C, Yang Q, Zhang X, Zhang X, Yu T, Wu Y, Fang Y, Xue D. Genome-Wide Identification of the HMA Gene Family and Expression Analysis under Cd Stress in Barley. PLANTS (BASEL, SWITZERLAND) 2021; 10:1849. [PMID: 34579382 PMCID: PMC8468745 DOI: 10.3390/plants10091849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, cadmium (Cd) pollution in soil has increased with increasing industrial activities, which has restricted crop growth and agricultural development. The heavy metal ATPase (HMA) gene family contributes to heavy metal stress resistance in plants. In this study, 21 HMA genes (HvHMAs) were identified in barley (Hordeumvulgare L., Hv) using bioinformatics methods. Based on phylogenetic analysis and domain distribution, barley HMA genes were divided into five groups (A-E), and complete analyses were performed in terms of physicochemical properties, structural characteristics, conserved domains, and chromosome localization. The expression pattern analysis showed that most HvHMA genes were expressed in barley and exhibited tissue specificity. According to the fragments per kilobase of exon per million fragments values in shoots from seedlings at the 10 cm shoot stage (LEA) and phylogenetic analysis, five HvHMA genes were selected for expression analysis under Cd stress. Among the five HvHMA genes, three (HvHMA1, HvHMA3, and HvHMA4) were upregulated and two (HvHMA2 and HvHMA6) were downregulated following Cd treatments. This study serves as a foundation for clarifying the functions of HvHMA proteins in the heavy metal stress resistance of barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (C.Z.); (Q.Y.); (X.Z.); (X.Z.); (T.Y.); (Y.W.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (C.Z.); (Q.Y.); (X.Z.); (X.Z.); (T.Y.); (Y.W.)
| |
Collapse
|
20
|
The Interplay between Toxic and Essential Metals for Their Uptake and Translocation Is Likely Governed by DNA Methylation and Histone Deacetylation in Maize. Int J Mol Sci 2020; 21:ijms21186959. [PMID: 32971934 PMCID: PMC7555519 DOI: 10.3390/ijms21186959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
The persistent nature of lead (Pb) and cadmium (Cd) in the environment severely affects plant growth and yield. Conversely, plants acquire zinc (Zn) from the soil for their vital physiological and biochemical functions. However, the interplay and coordination between essential and toxic metals for their uptake and translocation and the putative underlying epigenetic mechanisms have not yet been investigated in maize. Here, we report that the presence of Zn facilitates the accumulation and transport of Pb and Cd in the aerial parts of the maize plants. Moreover, the Zn, Pb, and Cd interplay specifically interferes with the uptake and translocation of other divalent metals, such as calcium and magnesium. Zn, Pb, and Cd, individually and in combinations, differentially regulate the expression of DNA methyltransferases, thus alter the DNA methylation levels at the promoter of Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) genes to regulate their expression. Furthermore, the expression of histone deacetylases (HDACs) varies greatly in response to individual and combined metals, and HDACs expression showed a negative correlation with ZIP transporters. Our study highlights the implication of DNA methylation and histone acetylation in regulating the metal stress tolerance dynamics through Zn transporters and warns against the excessive use of Zn fertilizers in metal contaminated soils.
Collapse
|
21
|
Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21051820. [PMID: 32155784 PMCID: PMC7084258 DOI: 10.3390/ijms21051820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
|
22
|
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments. Int J Mol Sci 2020; 21:ijms21010321. [PMID: 31947720 PMCID: PMC6981504 DOI: 10.3390/ijms21010321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutumHDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G.hirsutumHDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.
Collapse
|