1
|
Huang J, Peng H, Yang D. Research advances in protein lysine 2-hydroxyisobutyrylation: From mechanistic regulation to disease relevance. J Cell Physiol 2024; 239:e31435. [PMID: 39351825 DOI: 10.1002/jcp.31435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Collapse
Affiliation(s)
- Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
2
|
Kuang C, Li D, Zhou X, Lin H, Zhang R, Xu H, Huang S, Tang F, Liu F, Tang D, Dai Y. Proteomic analysis of lysine 2-hydroxyisobutyryl in SLE reveals protein modification alteration in complement and coagulation cascades and platelet activation Pathways. BMC Med Genomics 2023; 16:247. [PMID: 37845672 PMCID: PMC10577913 DOI: 10.1186/s12920-023-01656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Post-translational modifications (PTMs) are considered to be an important factor in the pathogenesis of Systemic lupus erythematosus (SLE). Lysine 2-hydroxyisobutyryl (Khib), as an emerging post-translational modification of proteins, is involved in some important biological metabolic activities. However, there are poor studies on its correlation with diseases, especially SLE. OBJECTIVE We performed quantitative, comparative, and bioinformatic analysis of Khib proteins in Peripheral blood mononuclear cells (PBMCs) of SLE patients and PBMCs of healthy controls. Searching for pathways related to SLE disease progression and exploring the role of Khib in SLE. METHODS Khib levels in SLE patients and healthy controls were compared based on liquid chromatography tandem mass spectrometry, then proteomic analysis was conducted. RESULTS Compared with healthy controls, Khib in SLE patients was up-regulated at 865 sites of 416 proteins and down-regulated at 630 sites of 349 proteins. The site abundance, distribution and function of Khib protein were investigated further. Bioinformatics analysis showed that Complement and coagulation cascades and Platelet activation in immune-related pathways were significantly enriched, suggesting that differentially modified proteins among them may affect SLE. CONCLUSION Khib in PBMCs of SLE patients was significantly up- or down-regulated compared with healthy controls. Khib modification of key proteins in the Complement and coagulation cascades and Platelet activation pathways affects platelet activation and aggregation, coagulation functions in SLE patients. This result provides a new direction for the possible significance of Khib in the pathogenesis of SLE patients.
Collapse
Affiliation(s)
- Chaoying Kuang
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Dandan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
- Experimental Center, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong, 518118, China
| | - Xianqing Zhou
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Hua Lin
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Ruohan Zhang
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Huixuan Xu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Shaoying Huang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Fang Tang
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
| | - Yong Dai
- Department of Nephrology, The 924th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China.
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
| |
Collapse
|
3
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
4
|
Zheng F, Tan L, Zhang F, Li S, Lai Z, Xu H, Xiong Z, Dai Y. The circRNA-miRNA-mRNA regulatory network in plasma and peripheral blood mononuclear cells and the potential associations with the pathogenesis of systemic lupus erythematosus. Clin Rheumatol 2023:10.1007/s10067-023-06560-5. [PMID: 36862342 DOI: 10.1007/s10067-023-06560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES This study aimed to explore the possible role of plasma and peripheral blood mononuclear cells (PBMCs) circular RNA (circRNA) in systemic lupus erythematosus (SLE). METHOD Total RNA was extracted from blood plasma samples obtained from 10 patients with SLE and 10 healthy controls and subjected to microarray analysis to define the profile of circRNA expression. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) amplification was conducted. The overlapped circRNA between PBMCs and plasma was performed, the interactions with microRNAs were predicted, the miRNA target mRNA was predicted, and the GEO database was used. The Gene ontology and pathway analysis was performed. RESULTS One hundred thirty-one upregulated and 314 significantly downregulated circRNAs were identified in the plasma of patients with SLE by the Fold change criteria (≥ 2.0) and P < 0.05. The qRT-PCR results showed that the expression of has-circRNA-102531, has-circRNA-103984, and has-circRNA-104262 was increased in plasma of SLE, and the expression of has-circRNA-102972, has-circRNA-102006, has-circRNA-104313 was decreased in plasma of SLE. Twenty-eight upregulated circRNAs and 119 downregulated circRNAs were overlapped from PBMCs and plasma, and ubiquitination was enriched. Furthermore, the circRNA-miRNA-mRNA network was constructed in SLE after analyzing dataset GSE61635 from GEO. The circRNA-miRNA-mRNA network comprises 54 circRNAs, 41 miRNAs, and 580 mRNAs. In addition, the TNF signaling pathway and the MAPK pathway were enriched from the mRNA of the miRNA target. CONCLUSION We first revealed the differentially expressed circRNAs in plasma and PBMCs, and then the circRNA-miRNA-mRNA network was constructed. The network's circRNAs could be a potential diagnostic biomarker and potentially play an important role in the pathogenesis and development of SLE. Key Points • This study analyzed the circRNAs expression profiles combined with the plasma and PBMCs, which provided a comprehensive overview of circRNAs expression patterns in SLE. • The network of the circRNA-miRNA-mRNA in SLE was constructed, which contributes to a better understanding of the pathogenesis and development of SLE.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sanmu Li
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhiwei Lai
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
5
|
Mei Y, Xin Y, Li X, Yin H, Xiong F, Yang M, Wu H. Aberrant expression of JMJD3 in SLE promotes B-cell differentiation. Immunobiology 2023; 228:152347. [PMID: 36791533 DOI: 10.1016/j.imbio.2023.152347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease distinguished by multiple organ dysfunction, which is related to a variety of causative factors. B-cell overactivation is a key factor in SLE. However, the pathogenesis underlying anomalous B cells has not been well elucidated. B-cell fate is regulated in diverse epigenetic ways apart from traditional ways. As one of the mechanisms of epigenetics, histone modification mainly affects transcription and translation by changing the chemical groups on histones by histone modification enzymes. JMJD3, a histone demethylase, can promote T-cell proliferation in SLE patients, which exacerbates SLE. However, the mechanism of JMJD3 in B cells in SLE has not been studied. Here, we found that the mean fluorescence intensity (MFI) of JMJD3 in classical memory B cells (CMBs) was higher than that in naïve B cells (NBs) from human tonsil tissue; JMJD3 was overexpressed in B cells from the peripheral blood of SLE patients compared with healthy controls (HCs). In vitro, our experiment showed that JMJD3 could regulate B-cell differentiation by promoting naïve B-cell differentiation into CD27+ B cells, and Blimp-1 and Bcl-6 also decreased after inhibitor treatment. These findings provide a new direction for the pathogenesis of SLE and may supply a new idea for subsequent drug development.
Collapse
Affiliation(s)
- Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yue Xin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xi Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Heng Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Feng Xiong
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
6
|
Callery EL, Morais CLM, Nugent L, Rowbottom AW. Classification of Systemic Lupus Erythematosus Using Raman Spectroscopy of Blood and Automated Computational Detection Methods: A Novel Tool for Future Diagnostic Testing. Diagnostics (Basel) 2022; 12:diagnostics12123158. [PMID: 36553165 PMCID: PMC9777204 DOI: 10.3390/diagnostics12123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to explore the proof of concept for using Raman spectroscopy as a diagnostic platform in the setting of systemic lupus erythematosus (SLE). We sought to identify unique Raman signatures in serum blood samples to successfully segregate SLE patients from healthy controls (HC). In addition, a retrospective audit was undertaken to assess the clinical utility of current testing platforms used to detect anti-double stranded DNA (dsDNA) antibodies (n = 600). We examined 234 Raman spectra to investigate key variances between SLE patients (n = 8) and HC (n = 4). Multi-variant analysis and classification model construction was achieved using principal component analysis (PCA), PCA-linear discriminant analysis and partial least squares-discriminant analysis (PLS-DA). We achieved the successful segregation of Raman spectra from SLE patients and healthy controls (p-value < 0.0001). Classification models built using PLS-DA demonstrated outstanding performance characteristics with 99% accuracy, 100% sensitivity and 99% specificity. Twelve statistically significant (p-value < 0.001) wavenumbers were identified as potential diagnostic spectral markers. Molecular assignments related to proteins and DNA demonstrated significant Raman intensity changes between SLE and HC groups. These wavenumbers may serve as future biomarkers and offer further insight into the pathogenesis of SLE. Our audit confirmed previously reported inconsistencies between two key methodologies used to detect anti-dsDNA, highlighting the need for improved laboratory testing for SLE. Raman spectroscopy has demonstrated powerful performance characteristics in this proof-of-concept study, setting the foundations for future translation into the clinical setting.
Collapse
Affiliation(s)
- Emma L. Callery
- Department of Immunology, Royal Preston Hospital, Preston PR2 9HT, UK
- Correspondence: (E.L.C.); (A.W.R.)
| | - Camilo L. M. Morais
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Lucy Nugent
- Department of Immunology, Whiston Hospital, Prescot L35 5DR, UK
| | - Anthony W. Rowbottom
- Department of Immunology, Royal Preston Hospital, Preston PR2 9HT, UK
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
- Correspondence: (E.L.C.); (A.W.R.)
| |
Collapse
|
7
|
Yang Y, Liu K, Liu M, Zhang H, Guo M. EZH2: Its regulation and roles in immune disturbance of SLE. Front Pharmacol 2022; 13:1002741. [DOI: 10.3389/fphar.2022.1002741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is related to immune homeostasis imbalance. Epigenetic mechanisms have played a significant role in breaking immune tolerance. Enhancer of zeste homolog 2 (EZH2), the specific methylation transferase of lysine at position 27 of histone 3, is currently found to participate in the pathogenesis of SLE through affecting multiple components of the immune system. This review mainly expounds the mechanisms underlying EZH2-mediated disruption of immune homeostasis in SLE patients, hoping to provide new ideas in the pathogenesis of SLE and new targets for future treatment.
Collapse
|
8
|
Monahan RC, van den Beukel MD, Borggreven NV, Fronczek R, Huizinga TWJ, Kloppenburg M, Steup-Beekman GM, Trouw LA. Autoantibodies against specific post-translationally modified proteins are present in patients with lupus and associate with major neuropsychiatric manifestations. RMD Open 2022; 8:rmdopen-2021-002079. [PMID: 35450955 PMCID: PMC9024229 DOI: 10.1136/rmdopen-2021-002079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/27/2022] [Indexed: 11/08/2022] Open
Abstract
Background Although autoantibodies are an important hallmark of systemic lupus erythematosus (SLE), most are not specific for SLE or any of its clinical manifestations. Autoantibodies against post-translationally modified (PTM) proteins have been studied extensively in rheumatoid arthritis and associate with disease progression. While PTMs have also been detected in patients with SLE, studies on anti-PTM antibodies remain scarce. We studied the presence of anti-PTM antibodies in SLE and neuropsychiatric SLE (NPSLE), a manifestation that lacks serological markers. Methods IgG antibody responses against six PTMs (malondialdehyde–acetaldehyde adducts (MAA), advanced glycation end-products (AGE), carbamylation (CarP), citrullination, acetylation and nitration) were tested using ELISA in sera of 349 patients with SLE (mean age 44±13 years; 87% female) and compared with 108 healthy controls. Levels and positivity were correlated with clinical features and SLE manifestations. Results Anti-MAA, anti-AGE and anti-CarP antibodies were more prevalent in SLE compared with controls (MAA: 29% vs 3%, AGE: 18% vs 4%, CarP: 14% vs 5%, all p≤0.0001). Anti-MAA and anti-AGE antibodies correlated with clinical manifestations and serological inflammatory markers. Patients with major NPSLE showed higher positivity of anti-MAA (39% vs 24%, p=0.01) and anti-CarP antibodies (20% vs 11%, p=0.04) than patients without major NPSLE. In addition, anti-PTM antibody levels correlated with brain volumes, an objective measure of nervous system involvement. Conclusions In our NPSLE cohort, a subset of patients with SLE have anti-PTM antibodies against MAA, AGE and CarP modified proteins. Interestingly, anti-MAA and anti-CarP were more prevalent in NPSLE, a manifestation for which no biomarkers exist.
Collapse
Affiliation(s)
- Rory C Monahan
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Rolf Fronczek
- Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.,Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.,Rheumatology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Leendert A Trouw
- Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Bülbül EF, Melesina J, Ibrahim HS, Abdelsalam M, Vecchio A, Robaa D, Zessin M, Schutkowski M, Sippl W. Docking, Binding Free Energy Calculations and In Vitro Characterization of Pyrazine Linked 2-Aminobenzamides as Novel Class I Histone Deacetylase (HDAC) Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082526. [PMID: 35458724 PMCID: PMC9032825 DOI: 10.3390/molecules27082526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Class I histone deacetylases, HDAC1, HDAC2, and HDAC3, represent potential targets for cancer treatment. However, the development of isoform-selective drugs for these enzymes remains challenging due to their high sequence and structural similarity. In the current study, we applied a computational approach to predict the selectivity profile of developed inhibitors. Molecular docking followed by MD simulation and calculation of binding free energy was performed for a dataset of 2-aminobenzamides comprising 30 previously developed inhibitors. For each HDAC isoform, a significant correlation was found between the binding free energy values and in vitro inhibitory activities. The predictive accuracy and reliability of the best preforming models were assessed on an external test set of newly designed and synthesized inhibitors. The developed binding free-energy models are cost-effective methods and help to reduce the time required to prioritize compounds for further studies.
Collapse
Affiliation(s)
- Emre F. Bülbül
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
| | - Hany S. Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Anita Vecchio
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
| | - Matthes Zessin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.Z.); (M.S.)
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.Z.); (M.S.)
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.F.B.); (J.M.); (H.S.I.); (M.A.); (A.V.); (D.R.)
- Correspondence:
| |
Collapse
|
10
|
Colasanti T, Spinelli FR, Barbati C, Ceccarelli F, Scarpa S, Vomero M, Alessandri C, Valesini G, Conti F. Belimumab Decreases Autophagy and Citrullination in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus. Cells 2022; 11:262. [PMID: 35053379 PMCID: PMC8773843 DOI: 10.3390/cells11020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Belimumab (BLM) is a B lymphocyte stimulator (BLyS) inhibitor approved for the treatment of systemic lupus erythematosus (SLE). Autophagy is a cell survival mechanism involved in the pathogenesis of SLE. Citrullination is a post-translational modification catalyzed by peptidylarginine deiminase (PAD) enzymes. Autophagy and citrullination may generate neoepitopes, evoking an autoimmune response. No previous studies have investigated the connection of these processes, and how BLM could affect them, in SLE. Ex vivo autophagy and protein citrullination were analyzed by western blot in lysates from 26 SLE patients' PBMCs at baseline and after 2, 4, and 12 weeks of BLM administration, and from 16 healthy donors' PBMCs. Autophagic PBMCs were identified by the immunofluorescent detection of the autophagy-associated proteins LC3B (LC3 puncta) and LAMP-1. Autophagosome accumulation was evaluated in CD14- (PBLs) and CD14+ (monocytes) SLE cells. The presence of the BLyS receptors BAFF-R, BCMA, and TACI on SLE CD4+, CD8+ T cells and monocytes, as well as serum IL-18 levels, was also assessed. Following BLM administration, we observed a decrease in autophagy and citrullination, with a lowering of LC3-II, citrullinated vimentin, and PAD4 expression levels in PBMCs from SLE patients. LC3-II levels showed a correlation with the SLE Disease Activity Index 2000 (SLEDAI-2K) after 12 weeks of therapy. The LC3B/LAMP-1 analysis confirmed the reduction in autophagy. A lesser autophagosome accumulation occurred in PBLs and monocytes which, in turn, seemed to be the main cellular populations contributing to autophagy. A reduction in patients' serum IL-18 concentrations occurred. CD4+ and CD8+ cells weakly expressed BAFF receptors; monocytes expressed only BAFF-R. BLM could impact on autophagy and citrullination, offering an opportunity for a deeper understanding of these mechanisms in SLE, and a possible tool for the clinical management of SLE.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD/metabolism
- Autophagy/drug effects
- B-Cell Activation Factor Receptor/metabolism
- B-Cell Maturation Antigen/metabolism
- Biomarkers/blood
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Citrullination/drug effects
- Female
- Humans
- Interleukin-18/blood
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/pathology
- Lysosomal Membrane Proteins/metabolism
- Male
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Transmembrane Activator and CAML Interactor Protein/metabolism
Collapse
Affiliation(s)
- Tania Colasanti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Francesca Romana Spinelli
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Cristiana Barbati
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Fulvia Ceccarelli
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Marta Vomero
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Cristiano Alessandri
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Guido Valesini
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (F.R.S.); (C.B.); (F.C.); (M.V.); (C.A.); (G.V.); (F.C.)
| |
Collapse
|
11
|
Castro-Webb N, Cozier YC, Barbhaiya M, Ruiz-Narváez EA, Li S, Costenbader KH, Rosenberg L. Association of macronutrients and dietary patterns with risk of systemic lupus erythematosus in the Black Women's Health Study. Am J Clin Nutr 2021; 114:1486-1494. [PMID: 34225359 PMCID: PMC8488878 DOI: 10.1093/ajcn/nqab224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) affects African-American (AA) women disproportionately. The few prospective studies assessing dietary intake in relation to risk of SLE have been conducted in predominantly white populations and have been null. OBJECTIVES The present study assessed associations of macronutrients and dietary patterns with risk of SLE in AA women. METHODS Data from the Black Women's Health Study was collected prospectively via biennial questionnaires starting in 1995. Participants completed a self-administered 68-item FFQ in 1995. Self-reported SLE was verified through medical record review. We used multivariable (MV) Cox regression models to estimate HRs and 95% CIs for macronutrients, carbohydrates, proteins, total fats, PUFAs, ω-3 fatty acids, ω-6 fatty acids, MUFAs, saturated fats, trans fatty acids, Alternative Healthy Eating Index score, vegetable/fruit and meat/fried food dietary patterns, and a reduced rank regression (RRR)-derived dietary pattern in relation to SLE risk. RESULTS We confirmed a total of 114 incident cases of SLE among 51,934 women during 1995-2015. MVHRs and 95% CIs for the highest quintile of intake versus the lowest were HR: 1.96, 95% CI: 1.02, 3.67 for carbohydrates; HR: 0.66, 95% CI: 0.37, 1.18 for protein; and HR: 0.54, 95% CI: 0.28, 1.01 for total fats. MUFAs, saturated fatty acids, and trans fatty acids were significantly associated with a lower risk of SLE. An RRR-derived factor, rich in fruits and sugar-sweetened drinks and low in margarines and butter, red and processed meats, fried chicken, poultry, and eggs, which explained 53.4% of the total variation of macronutrients, was the only food pattern associated with increased SLE risk (HR: 1.88, 95% CI: 1.06, 3.35). CONCLUSION These analyses suggest that a diet high in carbohydrates and low in fats is associated with increased SLE risk in AA women.
Collapse
Affiliation(s)
| | - Yvette C Cozier
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Medha Barbhaiya
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Edward A Ruiz-Narváez
- Department of Nutritional Services, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shanshan Li
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
13
|
Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021; 199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Systems biology adopted functional and integrative multiomics approaches enable to discover the whole set of interacting regulatory components such as genes, transcripts, proteins, metabolites, and metabolite dependent protein modifications. This interactome build up the midpoint of protein-protein/PTM, protein-DNA/RNA, and protein-metabolite network in a cell. As the key drivers in cellular metabolism, metabolites are precursors and regulators of protein post-translational modifications [PTMs] that affect protein diversity and functionality. The precisely orchestrated core pattern of metabolic networks refer to paradigm 'metabolites regulate PTMs, PTMs regulate enzymes, and enzymes modulate metabolites' through a multitude of feedback and feed-forward pathway loops. The concept represents a flawless PTM-metabolite-enzyme(protein) regulomics underlined in reprogramming cancer metabolism. Immense interconnectivity of those biomolecules in their spectacular network of intertwined metabolic pathways makes integrated proteomics and metabolomics an excellent opportunity, and the central component of integrative multiomics framework. It will therefore be of significant interest to integrate global proteome and PTM-based proteomics with metabolomics to achieve disease related altered levels of those molecules. Thereby, present update aims to highlight role and analysis of interacting metabolites/oncometabolites, and metabolite-regulated PTMs loop which may function as translational monitoring biomarkers along the reprogramming continuum of oncometabolism.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey.
| | - Abdullah Karadag
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey
| |
Collapse
|
14
|
Fernández-Ponce C, Navarro Quiroz R, Díaz Perez A, Aroca Martinez G, Cadena Bonfanti A, Acosta Hoyos A, Gómez Escorcia L, Hernández Agudelo S, Orozco Sánchez C, Villarreal Camacho J, Atencio Ibarra L, Consuegra Machado J, Espinoza Garavito A, García-Cózar F, Navarro Quiroz E. MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clin Epigenetics 2021; 13:39. [PMID: 33602320 PMCID: PMC7890887 DOI: 10.1186/s13148-021-01022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background In this review, we were interested to identify the wide universe of enzymes associated with epigenetic modifications, whose gene expression is regulated by miRNAs with a high relative abundance in Crohn's disease (CD) affected tissues, with the aim to determine their impact in the pathogenesis and evolution of the disease. Methods We used HMDD and Bibliometrix R-package in order to identify the miRNAs overexpressed in CD. The identified enzymes associated with epigenetic mechanisms and post-translational modifications, regulated by miRNAs upregulated in CD, were analyzed using String v11 database. Results We found 190 miRNAs with great abundance in patients with CD, of which 26 miRNAs regulate the gene expression of enzymes known to catalyze epigenetic modifications involved in essentials pathophysiological processes, such as chromatin architecture reorganization, immune response regulation including CD4+ T cells polarization, integrity of gut mucosa, gut microbiota composition and tumorigenesis. Conclusion The integrated analysis of miRNAs with a high relative abundance in patients with CD showed a combined and superimposed gene expression regulation of enzymes associated with relevant epigenetic mechanisms and that could explain, in part, the pathogenesis of CD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01022-8.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Roberto Navarro Quiroz
- CMCC-Centro de Matemática, Computação E Cognição, Laboratório do Biología Computacional e Bioinformática-LBCB, Universidade Federal Do ABC, Sao Paulo, 01023, Brazil
| | - Anderson Díaz Perez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Gustavo Aroca Martinez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Andrés Cadena Bonfanti
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Antonio Acosta Hoyos
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Lorena Gómez Escorcia
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Universidad Rafael Nuñez, 130001, Cartagena, Colombia
| | - Sandra Hernández Agudelo
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia.,Department of Nephrology, Clinica de La Costa, 080001, Barranquilla, Colombia
| | - Christian Orozco Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | | | | | | | - Alberto Espinoza Garavito
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia
| | - Francisco García-Cózar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Cadiz, Spain
| | - Elkin Navarro Quiroz
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simon Bolivar, 080001, Barranquilla, Colombia. .,Centro de Investigación E Innovación en Biomoléculas, C4U S.A.S, 080001, Barranquilla, Colombia.
| |
Collapse
|
15
|
Nair J, Maheshwari A. Epigenetics in Necrotizing Enterocolitis. Curr Pediatr Rev 2021; 17:172-184. [PMID: 33882811 DOI: 10.2174/1573396317666210421110608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic alterations in our genetic material can lead to heritable changes in the risk, clinical manifestations, course, and outcomes of many diseases. Understanding these epigenetic mechanisms can help in identifying potential therapeutic targets. This is especially important in necrotizing enterocolitis (NEC), where prenatal as well as postnatal factors impact susceptibility to this devastating condition, but our therapeutic options are limited. Developmental factors affecting intestinal structure and function, our immune system, gut microbiome, and postnatal enteral nutrition are all thought to play a prominent role in this disease. In this manuscript, we have reviewed the epigenetic mechanisms involved in NEC. These include key developmental changes in DNA methylation in the immature intestine, the role of long non-coding RNA (lncRNA) in maintaining intestinal barrier function, epigenetic influences of prenatal inflammation on immunological pathways in NEC pathogenesis such as Toll-Like Receptor 4 (TLR4) and epigenetic changes associated with enteral feeding causing upregulation of pro-inflammatory genes. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases, including PubMed, EMBASE, and Science Direct.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MA, United States
| |
Collapse
|
16
|
Yang A, Yu G, Wu Y, Wang H. Role of β2-adrenergic receptors in chronic obstructive pulmonary disease. Life Sci 2020; 265:118864. [PMID: 33301808 DOI: 10.1016/j.lfs.2020.118864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 01/14/2023]
Abstract
Beta-2 adrenergic receptors (β2-ARs) have important roles in the pathogenesis and treatment of chronic obstructive pulmonary disease (COPD). In recent years, progress has been made in the study of β2-ARs. Here, we introduce the basic concepts of β2-ARs, related pathways, as well as application of blockers/agonists of β2-ARs, and β2-AR autoantibodies in COPD. Drugs targeting the β2-AR are being developed rapidly, and we expect them to improve the symptoms and prognosis of COPD patients in the future.
Collapse
Affiliation(s)
- Ailin Yang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China
| | - Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
17
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
18
|
Tocut M, Shoenfeld Y, Zandman-Goddard G. Systemic lupus erythematosus: an expert insight into emerging therapy agents in preclinical and early clinical development. Expert Opin Investig Drugs 2020; 29:1151-1162. [PMID: 32755494 DOI: 10.1080/13543784.2020.1807004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic disease that is potentially fatal. There is no cure for SLE and the medications used are associated with toxic side effects. In the era of revolutionary emerging novel biologic agents, the design and investigation of targeted therapy for these patients is necessary. Novel therapies under investigation in phase II-III clinical trials showed promising results. Therapies can target various pathways involved in SLE including cytokines, signal transduction inhibitors, B-cell depletion and interference with co-stimulation. Of interest is the proof of concept of sequential therapy. AREAS COVERED We performed an extensive literature search via PubMed, Medline, Elsevier Science and Springer Link databases between the years 2014-2020 using the following terms: SLE, novel treatments. We have reviewed 232 articles and selected those articles that (i) focus on phase II-III emerging therapies and (ii) offer new findings from existing therapies, which reveal breakthrough concepts in SLE treatment. EXPERT OPINION It is still difficult to crack the puzzle of a successful SLE treatment approach. New strategies with potential may encompass the targeting of more than one protein. Another way forward is to identify each SLE patient and personalize therapy by clinical manifestations, disease activity, serology and activated protein.
Collapse
Affiliation(s)
- Milena Tocut
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel.,Center for Autoimmune Diseases, Sheba Medical Center , Ramat Gan, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - Gisele Zandman-Goddard
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| |
Collapse
|
19
|
Maleknia S, Salehi Z, Rezaei Tabar V, Sharifi-Zarchi A, Kavousi K. An integrative Bayesian network approach to highlight key drivers in systemic lupus erythematosus. Arthritis Res Ther 2020; 22:156. [PMID: 32576231 PMCID: PMC7310461 DOI: 10.1186/s13075-020-02239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A comprehensive intuition of the systemic lupus erythematosus (SLE), as a complex and multifactorial disease, is a biological challenge. Dealing with this challenge needs employing sophisticated bioinformatics algorithms to discover the unknown aspects. This study aimed to underscore key molecular characteristics of SLE pathogenesis, which may serve as effective targets for therapeutic intervention. METHODS In the present study, the human peripheral blood mononuclear cell (PBMC) microarray datasets (n = 6), generated by three platforms, which included SLE patients (n = 220) and healthy control samples (n = 135) were collected. Across each platform, we integrated the datasets by cross-platform normalization (CPN). Subsequently, through BNrich method, the structures of Bayesian networks (BNs) were extracted from KEGG-indexed SLE, TCR, and BCR signaling pathways; the values of the node (gene) and edge (intergenic relationships) parameters were estimated within each integrated datasets. Parameters with the FDR < 0.05 were considered significant. Finally, a mixture model was performed to decipher the signaling pathway alterations in the SLE patients compared to healthy controls. RESULTS In the SLE signaling pathway, we identified the dysregulation of several nodes involved in the (1) clearance mechanism (SSB, MACROH2A2, TRIM21, H2AX, and C1Q gene family), (2) autoantigen presentation by MHCII (HLA gene family, CD80, IL10, TNF, and CD86), and (3) end-organ damage (FCGR1A, ELANE, and FCGR2A). As a remarkable finding, we demonstrated significant perturbation in CD80 and CD86 to CD28, CD40LG to CD40, C1QA and C1R to C2, and C1S to C4A edges. Moreover, we not only replicated previous studies regarding alterations of subnetworks involved in TCR and BCR signaling pathways (PI3K/AKT, MAPK, VAV gene family, AP-1 transcription factor) but also distinguished several significant edges between genes (PPP3 to NFATC gene families). Our findings unprecedentedly showed that different parameter values assign to the same node based on the pathway topology (the PIK3CB parameter values were 1.7 in TCR vs - 0.5 in BCR signaling pathway). CONCLUSIONS Applying the BNrich as a hybridized network construction method, we highlight under-appreciated systemic alterations of SLE, TCR, and BCR signaling pathways in SLE. Consequently, having such a systems biology approach opens new insights into the context of multifactorial disorders.
Collapse
Affiliation(s)
- Samaneh Maleknia
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Rezaei Tabar
- Department of Statistics, Allameh Tabataba'i University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|