1
|
Wu C, Yuan J, Zhang X, Zhu H. A rare case report of echocardiographic manifestations of cardiac involvement in mucopolysaccharidosis type I after hematopoietic stem cell transplantation. Asian J Surg 2024:S1015-9584(24)02279-6. [PMID: 39426886 DOI: 10.1016/j.asjsur.2024.09.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Affiliation(s)
- Chengkai Wu
- Xinxiang Medical University, 453000, Xinxiang, China; Department of Ultrasound, Henan Provincial People's Hospital, 450003, Zhengzhou, China
| | - Jianjun Yuan
- Department of Ultrasound, Henan Provincial People's Hospital, 450003, Zhengzhou, China
| | - Xijun Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, 450003, Zhengzhou, China
| | - Haohui Zhu
- Department of Ultrasound, Henan Provincial People's Hospital, 450003, Zhengzhou, China.
| |
Collapse
|
2
|
Cyske Z, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis-Plus Syndrome: Is This a Type of Mucopolysaccharidosis or a Separate Kind of Metabolic Disease? Int J Mol Sci 2024; 25:9570. [PMID: 39273517 PMCID: PMC11395409 DOI: 10.3390/ijms25179570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Several years ago, dozens of cases were described in patients with symptoms very similar to mucopolysaccharidosis (MPS). This new disease entity was described as mucopolysaccharidosis-plus syndrome (MPSPS). The name of the disease indicates that in addition to the typical symptoms of conventional MPS, patients develop other features such as congenital heart defects and kidney and hematopoietic system disorders. The symptoms are highly advanced, and patients usually do not survive past the second year of life. MPSPS is inherited in an autosomal recessive manner and is caused by a homozygous-specific mutation in the gene encoding the VPS33A protein. To date, it has been described in 41 patients. Patients with MPSPS exhibited excessive excretion of glycosaminoglycans (GAGs) in the urine and exceptionally high levels of heparan sulfate in the plasma, but the accumulation of substrates is not caused by a decrease in the activity of any lysosomal enzymes. Here, we discuss the pathomechanisms and symptoms of MPSPS, comparing them to those of MPS. Moreover, we asked the question whether MPSPS should be classified as a type of MPS or a separate disease, as contrary to 'classical' MPS types, despite GAG accumulation, no defects in lysosomal enzymes responsible for degradation of these compounds could be detected in MPSPS. The molecular mechanism of the appearance of GAG accumulation in MPSPS is suggested on the basis of results available in the literature.
Collapse
Affiliation(s)
- Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Wiśniewska K, Wolski J, Żabińska M, Szulc A, Gaffke L, Pierzynowska K, Węgrzyn G. Mucopolysaccharidosis Type IIIE: A Real Human Disease or a Diagnostic Pitfall? Diagnostics (Basel) 2024; 14:1734. [PMID: 39202222 PMCID: PMC11353205 DOI: 10.3390/diagnostics14161734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdansk, Polanki 117, 80-305 Gdansk, Poland;
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Aneta Szulc
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (K.W.); (M.Ż.); (A.S.); (L.G.); (K.P.)
| |
Collapse
|
4
|
do Valle DA, Bara TDS, Furlin V, Santos MLSF, Cordeiro ML. Psychobehavioral factors and family functioning in mucopolysaccharidosis: preliminary studies. Front Public Health 2024; 12:1305878. [PMID: 38327584 PMCID: PMC10847341 DOI: 10.3389/fpubh.2024.1305878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Mucopolysaccharidoses (MPS) constitute a group of progressive and multisystemic inherited metabolic diseases that profoundly affect both the mental health of patients and the wellbeing of their families. This study aims to evaluate the impact of MPS on family functioning and related factors. Methods and results Twenty-five patients with MPS, including types I (n = 4), II (n = 11), IIIB (n = 2), IVA (n = 3), and VI (n = 5), and their families participated in this study. The mean patient age was 13 years [standard deviation (SD): 7.7 years]. Behavioral and emotional problems were noted in 9.1% of all patients. While the type of MPS did not directly influence mental problems, the presence of neuronal involvement did (p = 0.006). Patients with MPS III exhibited difficulties primarily in emotional areas, conduct, hyperactivity, and peer problems. Importantly, both patients with MPS II and those with MPS III experienced a significant impact on communication [mean scores for communication domain: MPS II, 35.6 (SD: 24.3); MPS III, 35.0 (SD: 22.6)]; poorer communication was directly linked to worse adaptive behavior (p = 0.012), and worse adaptive behavior was associated with lower quality of life (p = 0.001). Quality of life and caregiver burden among family members did not significantly differ across MPS types; however, higher caregiver burden was negatively associated with quality of life (p = 0.002). Concerning family functioning, the most impacted domains included independence, intellectual/cultural orientation, activity/recreation, and expressiveness. Domain scores did not vary based on MPS type, treatment, or neurological involvement. Quality-of-life scores were positively associated with the cultural/intellectual domain score. Conclusion The impacts of quality of life and family extend beyond clinical characteristics and MPS type, strongly influenced by patient cognition and communication, as well as type of family functioning, especially those with greater cultural/intellectual skills of their family members. A multidisciplinary approach addressing the broader needs of individuals with MPS becomes essential. Techniques aimed at improving communication, including prompt interventions such as speech therapy and augmentative and alternative communication strategies, can contribute to overall family functioning improvement.
Collapse
Affiliation(s)
- Daniel Almeida do Valle
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Department of Child Neurology Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Tiago dos Santos Bara
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Vanessa Furlin
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | - Mara L. Cordeiro
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Department of Psychiatry and Biological Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
6
|
Terawaki S, Vasilev F, Moriwaki T, Otomo T. HOPS, CORVET and newly-identified Hybrid tethering complexes contribute differentially towards multiple modes of endocytosis. Sci Rep 2023; 13:18734. [PMID: 37907479 PMCID: PMC10618185 DOI: 10.1038/s41598-023-45418-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Vesicular transport driven by membrane trafficking systems conserved in eukaryotes is critical to cellular functionality and homeostasis. It is known that homotypic fusion and vacuole protein sorting (HOPS) and class C core endosomal vacuole tethering (CORVET) interact with Rab-GTPases and SNARE proteins to regulate vesicle transport, fusion, and maturation in autophagy and endocytosis pathways. In this study, we identified two novel "Hybrid" tethering complexes in mammalian cells in which one of the subunits of HOPS or CORVET is replaced with the subunit from the other. Substrates taken up by receptor-mediated endocytosis or pinocytosis were transported by distinctive pathways, and the newly identified hybrid complexes contributed to pinocytosis in the presence of HOPS, whereas receptor-mediated endocytosis was exclusively dependent on HOPS. Our study provides new insights into the molecular mechanisms of the endocytic pathway and the function of the vacuolar protein sorting-associated (VPS) protein family.
Collapse
Affiliation(s)
- Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Filipp Vasilev
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
7
|
Brokowska J, Gaffke L, Pierzynowska K, Węgrzyn G. Enhanced Efficiency of the Basal and Induced Apoptosis Process in Mucopolysaccharidosis IVA and IVB Human Fibroblasts. Int J Mol Sci 2023; 24:14119. [PMID: 37762422 PMCID: PMC10531891 DOI: 10.3390/ijms241814119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Morquio disease, also called mucopolysaccharidosis IV (MPS IV), belongs to the group of lysosomal storage diseases (LSD). Due to deficiencies in the activities of galactose-6-sulfate sulfatase (in type A) or β-galactosidase (in type B), arising from mutations in GALNS or GLB1, respectively, keratan sulfate (one of glycosaminoglycans, GAGs) cannot be degraded efficiently and accumulates in lysosomes. This primary defect leads to many cellular dysfunctions which then cause specific disease symptoms. Recent works have indicated that different secondary effects of GAG accumulation might significantly contribute to the pathomechanisms of MPS. Apoptosis is among the cellular processes that were discovered to be affected in MPS cells on the basis of transcriptomic studies and some cell biology experiments. However, Morquio disease is the MPS type which is the least studied in light of apoptosis dysregulation, while RNA-seq analyses suggested considerable changes in the expression of genes involved in apoptosis in MPS IVA and IVB fibroblasts. Here we demonstrate that cytochrome c release from mitochondria is more efficient in MPS IVA and IVB fibroblasts relative to control cells, both under the standard cultivation conditions and after treatment with staurosporine, an apoptosis inducer. This indication of apoptosis stimulation was corroborated by measurements of the levels of caspases 9, 3, 6, and 7, as well as PARP, cleaved at specific sites, in Morquio disease and control fibroblasts. The more detailed analyses of the transcriptomic data revealed which genes related to apoptosis are down- and up-regulated in MPS IVA and IVB fibroblasts. We conclude that apoptosis is stimulated in Morquio disease under both standard cell culture conditions and after induction with staurosporine which may contribute to the pathomechanism of this disorder. Dysregulation of apoptosis in other MPS types is discussed.
Collapse
Affiliation(s)
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (L.G.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (L.G.)
| |
Collapse
|
8
|
Sofronova V, Gotovtseva L, Danilova A, Sukhomyasova A, Moriwaki T, Terawaki S, Otomo T, Maksimova N. Prenatal Diagnosis of Mucopolysaccharidosis-Plus Syndrome (MPSPS). Genes (Basel) 2023; 14:1581. [PMID: 37628632 PMCID: PMC10454871 DOI: 10.3390/genes14081581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mucopolysaccharidosis-plus syndrome (MPSPS) is an autosomal-recessive disorder caused by c.1492C>T (p.R498W) in the VPS33A gene. MPSPS is a severe disorder that causes a short lifespan in patients. Currently, there is no specific treatment for patients. The Yakut population is more prone to this disease than others. Diagnosing MPSPS relies on clinical manifestations, and genetic testing (GT) is used to confirm the diagnosis. In this research, we examined two pregnancy cases, one of which involved a prenatal diagnosis for MPSPS. Notably, neither pregnant woman had a known family history of the disorder. During their pregnancies, both women underwent prenatal ultrasonography, which revealed increased prenasal thickness during the second trimester. In the first case, ultrasonography indicated increased prenasal thickness in the second trimester, but a definitive diagnosis was not made at that time. The patient was eventually diagnosed with MPSPS at 11 months of age. On the contrary, in the second case, GT uncovered that the parents were carriers of MPSPS. Consequently, a placental biopsy was performed, leading to an early diagnosis of MPSPS. This study emphasizes the importance of ultrasonography findings in prenatal MPSPS diagnosis. Combining ultrasonography with GT can be a valuable approach to confirming MPSPS at an early stage, allowing for the appropriate planning of delivery methods and medical care. Ultimately, this comprehensive approach can significantly enhance the quality of life of both affected patients and their parents.
Collapse
Affiliation(s)
- Viktoriia Sofronova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Lyutsiya Gotovtseva
- Medical Genetics Center, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia
| | - Anastasia Danilova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia
| | - Aitalina Sukhomyasova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia
- Medical Genetics Center, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia
| | - Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Nadezhda Maksimova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia
| |
Collapse
|
9
|
Wiesinger AM, Bigger B, Giugliani R, Lampe C, Scarpa M, Moser T, Kampmann C, Zimmermann G, Lagler FB. An Innovative Tool for Evidence-Based, Personalized Treatment Trials in Mucopolysaccharidosis. Pharmaceutics 2023; 15:1565. [PMID: 37242808 PMCID: PMC10221776 DOI: 10.3390/pharmaceutics15051565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Mucopolysaccharidosis (MPS) is a group of rare metabolic diseases associated with reduced life expectancy and a substantial unmet medical need. Immunomodulatory drugs could be a relevant treatment approach for MPS patients, although they are not licensed for this population. Therefore, we aim to provide evidence justifying fast access to innovative individual treatment trials (ITTs) with immunomodulators and a high-quality evaluation of drug effects by implementing a risk-benefit model for MPS. The iterative methodology of our developed decision analysis framework (DAF) consists of the following steps: (i) a comprehensive literature analysis on promising treatment targets and immunomodulators for MPS; (ii) a quantitative risk-benefit assessment (RBA) of selected molecules; and (iii) allocation phenotypic profiles and a quantitative assessment. These steps allow for the personalized use of the model and are in accordance with expert and patient representatives. The following four promising immunomodulators were identified: adalimumab, abatacept, anakinra, and cladribine. An improvement in mobility is most likely with adalimumab, while anakinra might be the treatment of choice for patients with neurocognitive involvement. Nevertheless, a RBA should always be completed on an individual basis. Our evidence-based DAF model for ITTs directly addresses the substantial unmet medical need in MPS and characterizes a first approach toward precision medicine with immunomodulatory drugs.
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, 5020 Salzburg, Austria;
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, 33100 Udine, Italy; (B.B.); (C.L.); (M.S.)
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, 33100 Udine, Italy; (B.B.); (C.L.); (M.S.)
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, Portal Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Casa dos Raros, Porto Alegre 90610-261, Brazil;
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, 33100 Udine, Italy; (B.B.); (C.L.); (M.S.)
- Department of Child Neurology, Epilepetology and Social Pediatrics, Center of Rare Diseases, University Hospital Giessen/Marburg, 35392 Giessen, Germany
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, 33100 Udine, Italy; (B.B.); (C.L.); (M.S.)
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, 33100 Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, 55131 Mainz, Germany;
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria;
- Research and Innovation Management, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, 5020 Salzburg, Austria;
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, 33100 Udine, Italy; (B.B.); (C.L.); (M.S.)
| |
Collapse
|
10
|
Gaffke L, Pierzynowska K, Cyske Z, Podlacha M, Węgrzyn G. Contribution of vesicle trafficking dysregulation to the pathomechanism of mucopolysaccharidosis. Biochem Biophys Res Commun 2023; 665:107-117. [PMID: 37149983 DOI: 10.1016/j.bbrc.2023.04.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Although mucopolysaccharidoses (MPS) are monogenic diseases, caused by mutations in genes coding for enzymes involved in degradation of glycosaminoglycans (GAGs), recent studies suggested that changes in expressions of various genes might cause secondary and tertiary cellular dysfunctions modulating the course of these diseases. In this report, we demonstrate that vesicle trafficking regulation is affected in fibroblasts derived from patients suffering from 11 different types of MPS due to changes in levels of crucial proteins (estimated by automated Western-blotting) involved in this process, including caveolin, clathrin, huntingtin (Htt), APPL1, EEA1, GOPC, Rab5, and Rab7. Microscopic studies confirmed these results, while investigations of tissue samples derived from the MPS I mouse model indicated differences between various organs in this matter. Moreover, transcriptomic analyses provided a global picture for changes in expressions of genes related to vesicle trafficking in MPS cells. We conclude that vesicle trafficking is dysregulated in MPS cells and changes in this process might contribute to the molecular mechanisms of this disease. Most probably, primary GAG storage might cause a cellular stress response leading to dysregulation of expression of many genes which, in turn, results in changes in cellular processes like vesicle trafficking. This can significantly modulate the course of the disease due to enhancing accumulation of GAGs and altering crucial cellular processes. This hypothesis has been supported by normalization of levels of clathrin in MPS cells treated with either an active form of the deficient GAG-degrading enzyme or a compound (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) indirectly reducing the efficiency of GAG synthesis.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
11
|
Decreased Levels of Chaperones in Mucopolysaccharidoses and Their Elevation as a Putative Auxiliary Therapeutic Approach. Pharmaceutics 2023; 15:pharmaceutics15020704. [PMID: 36840025 PMCID: PMC9967431 DOI: 10.3390/pharmaceutics15020704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body. Many of the therapies proposed thus far require the participation of chaperone proteins, regardless of whether they are therapies in common use (enzyme replacement therapy) or remain in the experimental phase (gene therapy, STOP-codon-readthrough therapy). Chaperones, which include heat shock proteins, are responsible for the correct folding of other proteins to the most energetically favorable conformation. Without their appropriate levels and activities, the correct folding of the lysosomal enzyme, whether supplied from outside or synthesized in the cell, would be impossible. However, the baseline level of nonspecific chaperone proteins in MPS has never been studied. Therefore, the purpose of this work was to determine the basal levels of nonspecific chaperone proteins of the Hsp family in MPS cells and to study the effect of normalizing GAG concentrations on these levels. Results of experiments with fibroblasts taken from patients with MPS types I, II, IIIA, IIIB, IIIC, IID, IVA, IVB, VI, VII, and IX, as well as from the brains of MPS I mice (Idua-/-), indicated significantly reduced levels of the two chaperones, Hsp70 and Hsp40. Interestingly, the reduction in GAG levels in the aforementioned cells did not lead to normalization of the levels of these chaperones but caused only a slight increase in the levels of Hsp40. An additional transcriptomic analysis of MPS cells indicated that the expression of other genes involved in protein folding processes and the cell response to endoplasmic reticulum stress, resulting from the appearance of abnormally folded proteins, was also modulated. To summarize, reduced levels of chaperones may be an additional cause of the low activity or inactivity of lysosomal enzymes in MPS. Moreover, this may point to causes of treatment failure where the correct structure of the enzyme supplied or synthesized in the cell is crucial to lower GAG levels.
Collapse
|
12
|
Zandl-Lang M, Plecko B, Köfeler H. Lipidomics-Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. Int J Mol Sci 2023; 24:ijms24021709. [PMID: 36675224 PMCID: PMC9866746 DOI: 10.3390/ijms24021709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Even though the application of Next-Generation Sequencing (NGS) has significantly facilitated the identification of disease-associated mutations, the diagnostic rate of rare diseases is still below 50%. This causes a diagnostic odyssey and prevents specific treatment, as well as genetic counseling for further family planning. Increasing the diagnostic rate and reducing the time to diagnosis in children with unclear disease are crucial for a better patient outcome and improvement of quality of life. In many cases, NGS reveals variants of unknown significance (VUS) that need further investigations. The delineation of novel (lipid) biomarkers is not only crucial to prove the pathogenicity of VUS, but provides surrogate parameters for the monitoring of disease progression and therapeutic interventions. Lipids are essential organic compounds in living organisms, serving as building blocks for cellular membranes, energy storage and signaling molecules. Among other disorders, an imbalance in lipid homeostasis can lead to chronic inflammation, vascular dysfunction and neurodegenerative diseases. Therefore, analyzing lipids in biological samples provides great insight into the underlying functional role of lipids in healthy and disease statuses. The method of choice for lipid analysis and/or huge assemblies of lipids (=lipidome) is mass spectrometry due to its high sensitivity and specificity. Due to the inherent chemical complexity of the lipidome and the consequent challenges associated with analyzing it, progress in the field of lipidomics has lagged behind other omics disciplines. However, compared to the previous decade, the output of publications on lipidomics has increased more than 17-fold within the last decade and has, therefore, become one of the fastest-growing research fields. Combining multiple omics approaches will provide a unique and efficient tool for determining pathogenicity of VUS at the functional level, and thereby identifying rare, as well as novel, genetic disorders by molecular techniques and biochemical analyses.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
13
|
Alfadhel M, Umair M, Al Tuwaijri A, Al Mutairi F. A Patient with Coarse Facial Features and Molecular Odyssey: Lessons Learned and Best Practice. Clin Chem 2023; 69:17-20. [PMID: 36598549 DOI: 10.1093/clinchem/hvac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Majid Alfadhel
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 14611, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11426, Saudi Arabia
| | - Fuad Al Mutairi
- Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 14611, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
| |
Collapse
|
14
|
Pavlova EV, Lev D, Michelson M, Yosovich K, Michaeli HG, Bright NA, Manna PT, Dickson VK, Tylee KL, Church HJ, Luzio JP, Cox TM. Juvenile mucopolysaccharidosis plus disease caused by a missense mutation in VPS33A. Hum Mutat 2022; 43:2265-2278. [PMID: 36153662 PMCID: PMC10091966 DOI: 10.1002/humu.24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.
Collapse
Affiliation(s)
- Elena V Pavlova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Lev
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel.,The Rina Mor Institute of Medical Genetics, Holon, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Keren Yosovich
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Hila Gur Michaeli
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Nicholas A Bright
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK.,Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Kane Dickson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Lipiński P, Szczałuba K, Buda P, Zakharova EY, Baydakova G, Ługowska A, Różdzyńska-Świątkowska A, Cyske Z, Węgrzyn G, Pollak A, Płoski R, Tylki-Szymańska A. Mucopolysaccharidosis-Plus Syndrome: Report on a Polish Patient with a Novel VPS33A Variant with Comparison with Other Described Patients. Int J Mol Sci 2022; 23:ijms231911424. [PMID: 36232726 PMCID: PMC9570340 DOI: 10.3390/ijms231911424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Eleven patients from Yakutia with a new lysosomal disease assumed then as mucopolysaccharidosis-plus syndrome (MPS-PS) were reported by Gurinova et al. in 2014. Up to now, a total number of 39 patients have been reported; in all of them, the c.1492C>T (p.Arg498Trp) variant of the VPS33A gene was detected. Here, we describe the first Polish MPS-PS patient with a novel homozygous c.599G>C (p.Arg200Pro) VPS33A variant presenting over 12 years of follow-up with some novel clinical features, including fetal ascites (resolved spontaneously), recurrent joint effusion and peripheral edemas, normal growth, and visceral obesity. Functional analyses revealed a slight presence of chondroitin sulphate (only) in urine glycosaminoglycan electrophoresis, presence of sialooligosaccharides in urine by thin-layer chromatography, and normal results of lysosomal enzymes activity and lysosphingolipids concentration in dried blood spot. The comparison with other MPS-PS described cases was also provided. The presented description of the natural history of MPS-PS in our patient may broaden the spectrum of phenotypes in this disease.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Piotr Buda
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | | | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
- Correspondence:
| |
Collapse
|
16
|
Sofronova V, Iwata R, Moriya T, Loskutova K, Gurinova E, Chernova M, Timofeeva A, Shvedova A, Vasilev F, Novgorodova S, Terawaki S, Moriwaki T, Sukhomyasova A, Maksimova N, Otomo T. Hematopoietic Disorders, Renal Impairment and Growth in Mucopolysaccharidosis-Plus Syndrome. Int J Mol Sci 2022; 23:ijms23105851. [PMID: 35628659 PMCID: PMC9145135 DOI: 10.3390/ijms23105851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are rare lysosomal storage disorders (LSD) characterized by the excessive accumulation of glycosaminoglycans (GAG). Conventional MPS, caused by inborn deficiencies of lysosomal enzymes involved in GAG degradation, display various multisystemic symptoms—including progressive neurological complications, ophthalmological disorders, hearing loss, gastrointestinal and hepatobiliary issues, cardiorespiratory problems, bone and joint abnormalities, dwarfism, and coarse facial features. Mucopolysaccharidosis-Plus Syndrome (MPSPS), an autosomal recessive disease caused by a mutation in the endo-lysosomal tethering protein VPS33A, shows additional renal and hematopoietic abnormalities (“Plus symptoms”) uncommon in conventional MPS. Here, we analyze data from biochemical, histological, and physical examinations—particularly of blood counts and kidney function—to further characterize the clinical phenotype of MPSPS. A series of blood tests indicate hematopoietic symptoms including progressive anemia and thrombocytopenia, which correlate with histological observations of hypoplastic bone marrow. High urinary excretion of protein (caused by impairments in renal filtration), hypoalbuminemia, and elevated levels of creatinine, cholesterol, and uric acid indicate renal dysfunction. Histological analyses of MPSPS kidneys similarly suggest the extensive destruction of glomerular structures by foamy podocytes. Height and weight did not significantly deviate from the average, but in some cases, growth began to decline at around six months or one year of age.
Collapse
Affiliation(s)
- Viktoriia Sofronova
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan; (V.S.); (R.I.); (S.T.); (T.M.)
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia; (F.V.); (S.N.); (A.S.); (N.M.)
| | - Rina Iwata
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan; (V.S.); (R.I.); (S.T.); (T.M.)
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki 701-0192, Japan;
| | - Kiunniai Loskutova
- Department of Pathological Anatomy, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia;
- Medical Institute, North-Eastern Federal University, 677013 Yakutsk, Russia
| | - Elizaveta Gurinova
- Medical Genetics Center, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia;
| | - Mairanush Chernova
- Department of Children’s Health and Pathological Anatomy, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia; (M.C.); (A.T.); (A.S.)
| | - Anastasia Timofeeva
- Department of Children’s Health and Pathological Anatomy, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia; (M.C.); (A.T.); (A.S.)
| | - Anna Shvedova
- Department of Children’s Health and Pathological Anatomy, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia; (M.C.); (A.T.); (A.S.)
| | - Filipp Vasilev
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia; (F.V.); (S.N.); (A.S.); (N.M.)
| | - Saina Novgorodova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia; (F.V.); (S.N.); (A.S.); (N.M.)
| | - Seigo Terawaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan; (V.S.); (R.I.); (S.T.); (T.M.)
| | - Takahito Moriwaki
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan; (V.S.); (R.I.); (S.T.); (T.M.)
| | - Aitalina Sukhomyasova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia; (F.V.); (S.N.); (A.S.); (N.M.)
- Medical Genetics Center, Republic Hospital No. 1—National Center of Medicine, 677019 Yakutsk, Russia;
| | - Nadezhda Maksimova
- Laboratory of Molecular Medicine and Human Genetics, North-Eastern Federal University, 677013 Yakutsk, Russia; (F.V.); (S.N.); (A.S.); (N.M.)
| | - Takanobu Otomo
- Department of Molecular and Genetic Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan; (V.S.); (R.I.); (S.T.); (T.M.)
- Correspondence: ; Tel.: +81-86-462-1111
| |
Collapse
|
17
|
Wiśniewska K, Wolski J, Gaffke L, Cyske Z, Pierzynowska K, Węgrzyn G. Misdiagnosis in mucopolysaccharidoses. J Appl Genet 2022; 63:475-495. [PMID: 35562626 DOI: 10.1007/s13353-022-00703-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of 13 hereditary metabolic diseases identified in humans (or 14 diseases if considering one MPS type described to date only in mice) in which an enzymatic defect results in the accumulation of glycosaminoglycans (GAG) in the lysosomes of cells. First of all, as a result of GAG storage, the proper functioning of the lysosome is disturbed; then, the cells, and finally, tissue, organs, and the whole organism malfunctions are observed. Due to the rarity, heterogeneity, and multi-systemic and progressive nature of MPS, they present a major diagnostic challenge. Due to the wide variation in symptoms and their similarity to other diseases, MPS is often misdiagnosed, usually as neurological diseases (like autism spectrum disorders, psychomotor hyperactivity, and intellectual disability) or rheumatology and orthopedic disorders (like juvenile idiopathic arthritis, Perthes disease, rickets, and muscular dystrophy). In this review article, we present the problems associated with the possibility of misdiagnosing MPS, discuss what diseases they can be confused with, and suggest ways to reduce these problems in the future.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jakub Wolski
- Psychiatry Ward, 7th Navy Hospital in Gdańsk, Polanki 117, 80-305, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
18
|
Leal AF, Nieto WG, Candelo E, Pachajoa H, Alméciga-Díaz CJ. Hematological Findings in Lysosomal Storage Disorders: A Perspective from the Medical Laboratory. EJIFCC 2022; 33:28-42. [PMID: 35645695 PMCID: PMC9092717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysosomal storage disorders (LSDs) are a group of rare and genetic diseases produced by mutations in genes coding for proteins involved in lysosome functioning. Protein defect leads to the lysosomal accumulation of undegraded macromolecules including glycoproteins, glycosaminoglycans, lipids, and glycogen. Depending on the stored substrate, several pathogenic cascades may be activated leading to multisystemic and progressive disorders affecting the brain, eye, ear, lungs, heart, liver, spleen, kidney, skin, or bone. In addition, for some of these disorders, hematological findings have been also reported. In this paper, we review the major hematological alterations in LSDs based on 56 case reports published between 2010 and 2020. Hematological alterations were reported in sphingolipidosis, mucopolysaccharidoses, mucolipidoses, neuronal ceroid lipofuscinosis, glycogenosis, glycoproteinosis, cystinosis, and cholesteryl ester storage disease. They were reported alterations in red cell linage and leukocytes, such as anemia and morphology changes in eosinophils, neutrophils, monocytes, and lymphocytes. In addition, changes in platelet counts (thrombocytopenia) and leukocyte abnormalities on non-peripheral blood samples were also reported for some LSDs. Although in most of the cases these hematological alterations are not pathognomonic of a specific disease or group of LSDs, since they can be easily identified in general clinical laboratories, their identification may contribute to the diagnosis of these disorders. In this sense, we hope that this review contributes to the awareness of the importance of hematological alterations in the diagnosis of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia,Co-corresponding authors: Andrés Felipe Leal, B.Sc., M.Sc. Carlos J. Alméciga-Díaz, BPharm, Ph.D. Institute for the Study of Inborn Errors of Metabolism, Faculty of Science Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A Bogotá D.C., 110231 Colombia Tel: +57-1 3208320 Ext 4140 Fax: +57-1 3208320 Ext 4099 E-mail: E-mail:
| | - Wendy G. Nieto
- Translational Biomedical Research Group, Centro de Investigaciones, Fundación Cardiovascular de Colombia, Santander, Colombia
| | - Estephania Candelo
- Department of Medical Basic Sciences, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia,Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia,Congenital Abnormalities and Rare Disease Centre (CIACER), Cali, Colombia
| | - Harry Pachajoa
- Department of Medical Basic Sciences, Faculty of Health Sciences, Universidad Icesi, Cali, Colombia, Department of Medical Genetics, Fundación Valle del Lili, Cali, Colombia,Congenital Abnormalities and Rare Disease Centre (CIACER), Cali, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
19
|
Mucopolysaccharidosis-Plus Syndrome, a Rapidly Progressive Disease: Favorable Impact of a Very Prolonged Steroid Treatment on the Clinical Course in a Child. Genes (Basel) 2022; 13:genes13030442. [PMID: 35327996 PMCID: PMC8951474 DOI: 10.3390/genes13030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mucopolysaccharidosis-plus syndrome (MPS-PS) is a novel autosomal recessive disorder caused by a mutation in the VPS33A gene. This syndrome presents with typical symptoms of mucopolysaccharidosis, as well as congenital heart defects, renal, and hematopoietic system disorders. To date, twenty-four patients have been described. There is no specific therapy for MPS-PS; clinical management is therefore limited to symptoms management. The clinical course is rapidly progressive, and most patients die before 1–2 years of age. We describe a currently 6-year-old male patient with MPS-PS presenting with multiorgan involvement. Symptoms started at four months of age when he progressively suffered from numerous acute and potentially life-threatening events. When he was two years old, he developed secondary hemophagocytic lymphohistiocytosis (HLH), which was successfully treated with steroids. To date, this child represents the oldest patient affected by MPS-PS described in the literature and the first one presenting with a life-threatening secondary HLH. The prolonged steroid treatment allowed a stabilization of his general and hematological conditions and probably determined an improvement of his psychomotor milestones and new neurological acquisitions with an improvement of quality of life. HLH should be suspected and adequately treated in MPS-PS patients presenting with suggestive symptoms of the disease. The usefulness of a prolonged steroid treatment to improve the clinical course of children with MPS-PS deserves further investigation.
Collapse
|
20
|
Węgrzyn G, Pierzynowska K, Pavone LM. Editorial: Molecular Aspects of Mucopolysaccharidoses. Front Mol Biosci 2022; 9:874267. [PMID: 35295844 PMCID: PMC8918541 DOI: 10.3389/fmolb.2022.874267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
- *Correspondence: Grzegorz Węgrzyn,
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Fang X, Zhu C, Zhu X, Feng Y, Jiao Z, Duan H, Kong X, Liu N. Molecular analysis and novel variation identification of Chinese pedigrees with mucopolysaccharidosis using targeted next-generation sequencing. Clin Chim Acta 2022; 524:194-200. [PMID: 34813777 DOI: 10.1016/j.cca.2021.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mucopolysaccharidosis (MPS) refers to a group of lysosomal storage disorders for which seven types and 11 subtypes are currently recognized. Targeted next-generation sequencing (NGS) offers an important method of disease typing, diagnosis, prenatal diagnosis, and treatment. METHODS Gene variations in 48 Chinese MPS patients were evaluated using NGS, and the pathogenicity of the DNA alterations was evaluated using PolyPhen2, SIFT, and Mutation Taster. The effect of amino acid substitution on protein structure was also assessed. RESULTS Four pedigrees with MPS I (8.3%), 28 with MPS II (58.3%), two with MPS IIIA (4.2%), two with MPS IIIB (4.2%), six with MPS IVA (12.5%), one with MPS IVB (2.1%), and five with MPS VI (10.4%) were identified. Of the 69 variations identified, 11 were novel variants (three in IDUA, five in IDS, and three in GALNS), all of which were predicted to be disease-causing except for one, and were associated with impaired protein structure and function. CONCLUSIONS Targeted NGS technology is effective for the gene-based testing of MPS disorders, which show high allelic heterogeneity. MPS II was the predominant form in Chinese. Our study expands the existing variation spectrum of MPS, which is important for disease management and genetic counseling.
Collapse
Affiliation(s)
- Xiaohua Fang
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Chaofeng Zhu
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Xiaofan Zhu
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Yin Feng
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Zhihui Jiao
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Huikun Duan
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Xiangdong Kong
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China
| | - Ning Liu
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, 450052 PR China.
| |
Collapse
|
22
|
Yıldız Y, Koşukcu C, Aygün D, Akçaboy M, Öztek Çelebi FZ, Taşcı Yıldız Y, Şahin G, Aytekin C, Yüksel D, Lay İ, Özgül RK, Dursun A. Homozygous missense VPS16 variant is associated with a novel disease, resembling mucopolysaccharidosis-plus syndrome in two siblings. Clin Genet 2021; 100:308-317. [PMID: 34013567 DOI: 10.1111/cge.14002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Disorders of intracellular trafficking are a group of inherited disorders, which often display multisystem phenotypes. Vacuolar protein sorting (VPS) subunit C, composed of VPS11, VPS18, VPS16, and VPS33A proteins, is involved in tethering of endosomes, lysosomes, and autophagosomes. Our group and others have previously described patients with a specific homozygous missense VPS33A variant, exhibiting a storage disease phenotype resembling mucopolysaccharidosis (MPS), termed "MPS-plus syndrome." Here, we report two siblings from a consanguineous Turkish-Arabic family, who have overlapping features of MPS and intracellular trafficking disorders, including short stature, coarse facies, developmental delay, peripheral neuropathy, splenomegaly, spondylar dysplasia, congenital neutropenia, and high-normal glycosaminoglycan excretion. Whole exome sequencing and familial segregation analyses led to the homozygous NM_022575.3:c.540G>T; p.Trp180Cys variant in VPS16 in both siblings. Multiple bioinformatic methods supported the pathogenicity of this variant. Different monoallelic null VPS16 variants and a homozygous missense VPS16 variant had been previously associated with dystonia. A biallelic intronic, probably splice-altering variant in VPS16, causing an MPS-plus syndrome-like disease has been very recently reported in two individuals. The siblings presented herein display no dystonia, but have features of a multisystem storage disorder, representing a novel MPS-plus syndrome-like disease, associated for the first time with VPS16 missense variants.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Pediatric Metabolic Diseases, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Can Koşukcu
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Damla Aygün
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meltem Akçaboy
- Department of Pediatrics, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Fatma Zehra Öztek Çelebi
- Department of Pediatrics, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Yasemin Taşcı Yıldız
- Department of Pediatric Radiology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Gülseren Şahin
- Department of Pediatric Gastroenterology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Caner Aytekin
- Department of Pediatric Allergy and Immunology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - İncilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rıza Köksal Özgül
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|