1
|
Joshi N, Alavala RR. Sulfonamido, amido heterocyclic adducts of tetrazole derivatives as BACE1 inhibitors: in silico exploration. Mol Divers 2024; 28:4017-4049. [PMID: 38267751 DOI: 10.1007/s11030-023-10792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder accounting for 60-80% of dementia cases and is accompanied by a high mortality rate in patients above 70 years of age. The formation of senile plaques composed of amyloid-β protein is a hallmark of Alzheimer's disease. Beta-site APP cleaving enzyme 1 (BACE1) is a proteolytic enzyme involved in the degradation of amyloid precursor protein, which further degrades to form toxic amyloid-β fragments. Hence, inhibition of BACE1 was stated to be an effective strategy for Alzheimer's therapeutics. Keeping in mind the structures of different BACE1 inhibitors that had reached the clinical trials, we designed a library of compounds (total 164) based on a substituted 5-amino tetrazole scaffold which was an isosteric replacement of the cyclic amidine moiety, a common component of the BACE1 inhibitors which reached the clinical trials. The scaffold was linked to different structural moieties with the aid of an amide or sulfonamide bond to design some novel molecules. Molecular docking was initially performed and the top 5 molecules were selected based on docking scores and protein-ligand interactions. Furthermore, molecular dynamic simulations were performed for these molecules (3g, 7k, 8n, 9d, 9g) for 100 ns and MM-GBSA calculations were performed for each of these complexes. After critical evaluation of the obtained results, three potential molecules (9d, 8n, and 7k) were forwarded for prolonged stability studies by performing molecular dynamic simulations for 250 ns and simultaneous MM-GBSA calculations. It was observed that the compounds (9d, 8n, and 7k) were forming good interactions with the amino acid residues of the catalytic site of the enzyme with multiple non-covalent interactions. In MD simulations, the compounds have shown better stability and better binding energy throughout the runtime.
Collapse
Affiliation(s)
- Nachiket Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V L Mehta Road, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Rajasekhar Reddy Alavala
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V L Mehta Road, Vile Parle West, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
2
|
Yang KF, Zhang JY, Feng M, Yao K, Liu YY, Zhou MS, Jia H. Secretase promotes AD progression: simultaneously cleave Notch and APP. Front Aging Neurosci 2024; 16:1445470. [PMID: 39634655 PMCID: PMC11615878 DOI: 10.3389/fnagi.2024.1445470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) involves complex pathological mechanisms. Secretases include membrane protein extracellular structural domain proteases and intramembrane proteases that cleave the topology to type I or type II. Secretases can effectively regulate the activation of Notch and amyloid precursor protein (APP), key factors in the progression of AD and cancer. This article systematically summarizes the intracellular localization, cleavage sites and products, and biological functions of six subtypes of secretases (α-secretase, β-secretase, γ-secretase, δ-secretase, ε-secretase, and η-secretase), and for the first time, elucidates the commonalities and differences between these subtypes of secretases. We found that each subtype of secretase primarily cleaves APP and Notch as substrates, regulating Aβ levels through APP cleavage to impact the progression of AD, while also cleaving Notch receptors to affect cancer progression. Finally, we review the chemical structures, indications, and research stages of various secretase inhibitors, emphasizing the promising development of secretase inhibitors in the fields of cancer and AD.
Collapse
Affiliation(s)
- Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yue-Yang Liu
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming-Sheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Jia
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Gyebi GA, Ejoh JC, Ogunyemi OM, Afolabi SO, Ibrahim IM, Anyanwu GO, Olorundare OE, Adebayo JO, Koketsu M. Cholinergic Inhibition and Antioxidant Potential of Gongronema latifolium Benth Leaf in Neurodegeneration: Experimental and In Silico Study. Cell Biochem Biophys 2024:10.1007/s12013-024-01467-7. [PMID: 39120857 DOI: 10.1007/s12013-024-01467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The use of Gongronema latifolium for the management of various forms of neurological disorders has generated a lot of interest in the need to further investigate its neurotherapeutic constituents. This work, therefore, focused on assessing the inhibitory potential of selected bioactive components derived from G. latifolium against key neurotherapeutic targets and oxidant species associated with neurodegeneration using in vitro analysis and biomolecular modelling. G. latifolium methanol extract (GLME), solvent partition, chromatographic fractions (A-F) of GLME and pregnane compounds (Iloneoside and marsectohexol) derived from fraction-B with the highest activity were investigated for in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidase (MAO) inhibition in addition to their in vitro antioxidant activities. The interactions of iloneoside, marsectohexol, and reference drugs with human acetylcholinesterase, butyrylcholinesterase, and β-secretase (BACE-1) were further assessed using molecular docking, binding free energy calculations, cluster analysis, and molecular dynamics simulations. The GLME and fractions inhibited the activities of both acetylcholinesterase and butyrylcholinesterase in a dose-dependent manner. Iloneoside and marsectohexol exhibited in vitro concentration-dependent inhibitory activities against acetylcholinesterase (IC50 = 19.28, 184.9 µM, respectively) and butyrylcholinesterase (IC50 = 30.75, 43.4 µM, respectively). These compounds also possess ferric ion-reducing, hydroxyl, and superoxide radical-scavenging activities. Iloneoside had the highest docking scores of -9.8, -9.9 -9.4 Kcal for AChE, BChE, and BACE1, respectively. The stability of the interaction of the bioactive compounds with the catalytic residues of the protein targets was preserved in a 100 ns molecular dynamics simulation. Iloneoside, a rare pregnane glycoside, was identified as a neurotherapeutic constituent of G. latifolium leaf. Further studies are suggested to investigate the neurotherapeutic potential in animal models.
Collapse
Affiliation(s)
- Gideon A Gyebi
- Department of Biochemistry, Bingham University, Karu, Nigeria.
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4000, South Africa.
| | - Joseph C Ejoh
- Department of Biochemistry, Bingham University, Karu, Nigeria
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Saheed O Afolabi
- Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | | | | | | | - Joseph O Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Gyebi GA, Ogunyemi OM, Ibrahim IM, Ogunro OB, Afolabi SO, Ojo RJ, Anyanwu GO, El-Saber Batiha G, Adebayo JO. Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis. Mol Divers 2024; 28:1305-1322. [PMID: 37338673 DOI: 10.1007/s11030-023-10658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/13/2023] [Indexed: 06/21/2023]
Abstract
Neurodegenerative disorders (NDDs) are associated with increased activities of the brain acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase enzyme (BACE1). Inhibition of these enzymes affords therapeutic option for managing NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD). Although, Gongronema latifolium Benth (GL) has been widely documented in ethnopharmacological and scientific reports for the management of NDDs, there is paucity of information on its underlying mechanism and neurotherapeutic constituents. Herein, 152 previously reported Gongronema latifolium derived-phytochemicals (GLDP) were screened against hAChE, hBChE and hBACE-1 using molecular docking, molecular dynamics (MD) simulations, free energy of binding calculations and cluster analysis. The result of the computational analysis identified silymarin, alpha-amyrin and teraxeron with the highest binding energies (-12.3, -11.2, -10.5 Kcal/mol) for hAChE, hBChE and hBACE-1 respectively as compared with those of the reference inhibitors (-12.3, -9.8 and - 9.4 for donepezil, propidium and aminoquinoline compound respectively). These best docked phytochemicals were found to be orientated in the hydrophobic gorge where they interacted with the choline-binding pocket in the A-site and P-site of the cholinesterase and subsites S1, S3, S3' and flip (67-75) residues of the pocket of the BACE-1. The best docked phytochemicals complexed with the target proteins were stable in a 100 ns molecular dynamic simulation. The interactions with the catalytic residues were preserved during the simulation as observed from the MMGBSA decomposition and cluster analyses. The presence of these phytocompounds most notably silymarin, which demonstrated dual high binding tendencies to both cholinesterases, were identified as potential neurotherapeutics subject to further investigation.
Collapse
Affiliation(s)
- Gideon Ampoma Gyebi
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria.
- Natural Products and Structural (Bio-Chem)-informatics Research Laboratory (NpsBC-Rl), Bingham University, Nasarawa, Nigeria.
| | - Oludare M Ogunyemi
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Olalekan B Ogunro
- Department of Biological Sciences, KolaDaisi University, Ibadan, Nigeria
| | - Saheed O Afolabi
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Rotimi J Ojo
- Department of Biochemistry, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria
| | - Gabriel O Anyanwu
- Department of Biochemistry, Faculty of Science and Technology, P.M.B 005, Karu, Nasarawa State, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Joseph O Adebayo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Velazquez Toledano J, Bello M, Correa Basurto J, Guerrero González I, Pacheco-Yépez J, Rosales Hernández MC. Determining Structural Changes for Ligand Recognition between Human and Rat Phosphorylated BACE1 in Silico and Its Phosphorylation by GSK3β at Thr252 by in Vitro Studies. ACS Chem Neurosci 2024; 15:629-644. [PMID: 38227464 DOI: 10.1021/acschemneuro.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting older adults. AD pathogenesis involves the production of the highly neurotoxic amyloid-β peptide 1-42 (Aβ1-42) from β-site amyloid precursor protein cleaving enzyme 1 (BACE1). The phosphorylation of BACE1 at Thr252 increases its enzymatic activity. This study examined the phosphorylation of BACE1 from human and rat BACE1 in silico through phosphorylation predictors. Besides, we explored how phosphorylation at various sites affected the BACE1 structure and its affinity with amyloid precursor protein (APP) and six BACE1 inhibitors. Additionally, we evaluated the phosphorylation of Thr252-BACE1 by glycogen synthase kinase 3 β (GSK3β) in vitro. The phosphorylation predictors showed that Thr252, Ser59, Tyr76, Ser71, and Ser83 could be phosphorylated. Also, Ser127 in rat BACE1 can be phosphorylated, but human BACE1 has a Gly at this position. Molecular dynamics simulations showed that Ser127 plays an important role in the open and closed BACE1 conformational structures. Docking studies and the molecular mechanics generalized Born surface area (MMGBSA) approach showed that human BACE1 phosphorylated at Thr252 and rat BACE1 phosphorylated at Ser71 have the best binding and free energy with APP, forming hydrogen bonds with Asp672. Importantly, inhibitors have a higher affinity for the phosphorylated rat BACE1 than for its human counterpart, which could explain their failure during clinical trials. Finally, in vitro experiments showed that GSK3β could phosphorylate BACE1. In conclusion, BACE1 phosphorylation influences the BACE1 conformation and its recognition of ligands and substrates. Thus, these features should be carefully considered in the design of BACE1 inhibitors.
Collapse
Affiliation(s)
- Jazziel Velazquez Toledano
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Isaac Guerrero González
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, México
| |
Collapse
|
6
|
Adebayo GP, Oduselu GO, Aderohunmu DV, Klika KD, Olasehinde GI, Ajani OO, Adebiyi E. Structure-based design, and development of amidinyl, amidoximyl and hydroxamic acid based organic molecules as novel antimalarial drug candidates. ARAB J CHEM 2024; 17:105573. [PMID: 38283036 PMCID: PMC10810238 DOI: 10.1016/j.arabjc.2023.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Malaria remains a significant global health concern causing numerous fatalities and the emergence of antimalarial drug resistance highlights the urgent need for novel therapeutic options with innovative mechanisms of action and targets. This study aimed to design potential inhibitors of Plasmodium falciparum 6-pyruvoyltetrahydropterin synthase (PfPTPS), synthesize them, and experimentally validate their efficacy as antimalarial agents. A structure-based approach was employed to design a series of novel derivatives, including amidinyl, amidoximyl and hydroxamic acid analogs (1c, 1d, 2b, and 3b), with a focus on their ability to bind to the Zn2+ present in the active site of PfPTPS. The syntheses of these compounds were accomplished through various multi-step synthetic pathways and their structural identities were confirmed using 1H and 13C NMR spectra, mass spectra, and elemental analysis. The compounds were screened for their antiplasmodial activity against the NF54 strain of P. falciparum and in vitro cytotoxicity testing was performed using L-6 cells. The in vivo acute toxicity of the compounds was evaluated in mice. Docking studies of the compounds with the 3D structure of PfPTPS revealed their strong binding affinities, with compound 3b exhibiting notable metal-acceptor interaction with the Zn2+ in the protein binding pocket thereby positioning it as a lead compound for PfPTPS inhibition. The in vitro antiplasmodial studies revealed moderate efficacies against the Pf NF54 strain, particularly compounds 1d and 3b which displayed IC50 < 0.2 μM. No significant cytotoxicity was noted on the L-6 rat cell line. Moreover, in vivo studies suggested that compound 3b exhibited both safety and efficacy in treating rodent malaria. The identified lead compound in this study represents a possible candidate for antimalarial drug development and can be further explored in the search for alternative antifolate drugs to combat the malaria menace.
Collapse
Affiliation(s)
- Glory P. Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Biological Sciences Department, Covenant University, Ota, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | | | - Karel D. Klika
- NMR Structural Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Grace I. Olasehinde
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Biological Sciences Department, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota 112233, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota 112233, Nigeria
- Department of Chemistry, Covenant University, Covenant University, Km 10 Idiroko Road, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota 112233, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
8
|
Zhang W, Zhang L, Lv M, Fu Y, Meng X, Wang M, Wang H. Advances in Developing Small Molecule Drugs for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:221-231. [PMID: 39136501 DOI: 10.2174/0115672050329828240805074938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD. This paper reviews the pathogenesis of AD, the latest developments in CADD and other small-molecule docking technologies for drug discovery and development; the current research status of small-molecule compounds for AD at home and abroad from the perspective of drug action targets; the future of AD drug development.
Collapse
Affiliation(s)
- Wei Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liujie Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingti Lv
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yun Fu
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaowen Meng
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
- Department of Medical Technology, Shangqiu Medical College, Shangqiu, Henan, China
| | - Hecheng Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- School of Life and Pharmaceutical Science, Dalin University of Technology, Panjin, China
| |
Collapse
|
9
|
Geravand S, Karami M, Sahraei H, Rahimi F. Protective effects of L-arginine on Alzheimer's disease: Modulating hippocampal nitric oxide levels and memory deficits in aluminum chloride-induced rat model. Eur J Pharmacol 2023; 958:176030. [PMID: 37660966 DOI: 10.1016/j.ejphar.2023.176030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
There is evidence that high daily intake of aluminum (Al) is associated with an increased risk of dementia or cognitive decline. We injected L-arginine into the dorsal hippocampus (DH) of an AlCl3-induced Alzheimer's model and studied memory deficit, β-amyloid (βA) accumulation, neurodegeneration, and molecular changes. Male Wistar rats were cannulated unilaterally in the DH under a stereotaxic apparatus and a dose of AlCl3 (1-200 μg/rat) was injected into the CA1. After recovery, L-arginine and L-NAME (0.05-25 μg/rat) were injected into CA1 and animals were tested in novelty seeking task. One group received βA (2 μg/rat, intra CA1) as a reference group. Control groups received saline (1 μL/rat, intra-CA1) and galantamine (25 μg/rat, intra-CA1), respectively. Finally, rats were anesthetized and hippocampal tissues were isolated on ice. Levels of neuronal NO synthase (nNOS), β-secretase and soluble guanylyl cyclase (sGC) were measured by western blotting. βA formation and the number of CA1 neurons were assessed by Congo red and Nissl staining. NOS activation by NADPH-diaphorase (NADPH-d) was investigated. All data were analyzed using analysis of variance (ANOVA) at α = 0.05 level. Like βA, AlCl3 (25 μg/rat) caused accumulation of βA in the DH and increased stopping of the animal on the novel side (indicating a recall deficit). CA1 neurons decreased, and nNOS and β-secretase, but not sGC, showed a change consistent with Alzheimer's. However, prophylactic intervention of L-arginine at 3-9 μg/rat was protective, probably by nNOS stimulation in DH, as shown by NADPH-d assay. L-arginine may protect against Alzheimer's by increasing hippocampal NO levels.
Collapse
Affiliation(s)
- Samira Geravand
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Manizheh Karami
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Hedayat Sahraei
- Department of Physiology, School of Medicine, Baghiyatallah University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Mohiuddin A, Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-133706. [PMID: 37584349 PMCID: PMC11348471 DOI: 10.2174/1871526523666230816151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Positive strides have been achieved in developing vaccines to combat the coronavirus-2019 infection (COVID-19) pandemic. Still, the outline of variations, particularly the most current delta divergent, has posed significant health encounters for people. Therefore, developing strong treatment strategies, such as an anti-COVID-19 medicine plan, may help deal with the pandemic more effectively. During the COVID-19 pandemic, some drug design techniques were effectively used to develop and substantiate relevant critical medications. Extensive research, both experimental and computational, has been dedicated to comprehending and characterizing the devastating COVID-19 disease. The urgency of the situation has led to the publication of over 130,000 COVID-19-related research papers in peer-reviewed journals and preprint servers. A significant focus of these efforts has been the identification of novel drug candidates and the repurposing of existing drugs to combat the virus. Many projects have utilized computational or computer-aided approaches to facilitate their studies. In this overview, we will explore the key computational methods and their applications in the discovery of small-molecule therapeutics for COVID-19, as reported in the research literature. We believe that the true effectiveness of computational tools lies in their ability to provide actionable and experimentally testable hypotheses, which in turn facilitate the discovery of new drugs and combinations thereof. Additionally, we recognize that open science and the rapid sharing of research findings are vital in expediting the development of much-needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Abu Mohiuddin
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| | - Sumanta Mondal
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| |
Collapse
|
11
|
Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Molecules 2023; 28:4544. [PMID: 37299020 PMCID: PMC10254443 DOI: 10.3390/molecules28114544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Tau is a protein characterized by large structural portions displaying extended conformational changes. Unfortunately, the accumulation of this protein into toxic aggregates in neuronal cells leads to a number of severe pathologies, collectively named tauopathies. In the last decade, significant research advancements were achieved, including a better understanding of Tau structures and their implication in different tauopathies. Interestingly, Tau is characterized by a high structural variability depending on the type of disease, the crystallization conditions, and the formation of pathologic aggregates obtained from in vitro versus ex vivo samples. In this review, we reported an up-to-date and comprehensive overview of Tau structures reported in the Protein Data Bank, with a special focus on discussing the connections between structural features, different tauopathies, different crystallization conditions, and the use of in vitro or ex vivo samples. The information reported in this article highlights very interesting links between all these aspects, which we believe may be of particular relevance for a more informed structure-based design of compounds able to modulate Tau aggregation.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Bisi
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| | - Nicolò Tonali
- Centre National de la Recherche Scientifique (CNRS), Université de Paris-Saclay, BioCIS, Bat. Henri Moissan, 17 Av. des Sciences, 91400 Orsay, France; (N.B.); (N.T.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (C.S.); (S.F.)
| |
Collapse
|
12
|
Koutroumpa NM, Papavasileiou KD, Papadiamantis AG, Melagraki G, Afantitis A. A Systematic Review of Deep Learning Methodologies Used in the Drug Discovery Process with Emphasis on In Vivo Validation. Int J Mol Sci 2023; 24:6573. [PMID: 37047543 PMCID: PMC10095548 DOI: 10.3390/ijms24076573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The discovery and development of new drugs are extremely long and costly processes. Recent progress in artificial intelligence has made a positive impact on the drug development pipeline. Numerous challenges have been addressed with the growing exploitation of drug-related data and the advancement of deep learning technology. Several model frameworks have been proposed to enhance the performance of deep learning algorithms in molecular design. However, only a few have had an immediate impact on drug development since computational results may not be confirmed experimentally. This systematic review aims to summarize the different deep learning architectures used in the drug discovery process and are validated with further in vivo experiments. For each presented study, the proposed molecule or peptide that has been generated or identified by the deep learning model has been biologically evaluated in animal models. These state-of-the-art studies highlight that even if artificial intelligence in drug discovery is still in its infancy, it has great potential to accelerate the drug discovery cycle, reduce the required costs, and contribute to the integration of the 3R (Replacement, Reduction, Refinement) principles. Out of all the reviewed scientific articles, seven algorithms were identified: recurrent neural networks, specifically, long short-term memory (LSTM-RNNs), Autoencoders (AEs) and their Wasserstein Autoencoders (WAEs) and Variational Autoencoders (VAEs) variants; Convolutional Neural Networks (CNNs); Direct Message Passing Neural Networks (D-MPNNs); and Multitask Deep Neural Networks (MTDNNs). LSTM-RNNs were the most used architectures with molecules or peptide sequences as inputs.
Collapse
Affiliation(s)
- Nikoletta-Maria Koutroumpa
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| | - Konstantinos D. Papavasileiou
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
- Department of ChemoInformatics, NovaMechanics MIKE., 185 45 Piraeus, Greece
| | - Anastasios G. Papadiamantis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 166 73 Vari, Greece
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
- Department of ChemoInformatics, NovaMechanics MIKE., 185 45 Piraeus, Greece
| |
Collapse
|
13
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Bao H, Shen Y. Unmasking BACE1 in aging and age-related diseases. Trends Mol Med 2023; 29:99-111. [PMID: 36509631 DOI: 10.1016/j.molmed.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
The beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) has long been considered a conventional target for Alzheimer's disease (AD). Unfortunately, AD clinical trials of most BACE1 inhibitors were discontinued due to ineffective cognitive improvement or safety challenges. Recent studies investigating the involvement of BACE1 in metabolic, vascular, and immune functions have indicated a role in aging, diabetes, hypertension, and cancer. These novel BACE1 functions have helped to identify new 'druggable' targets for BACE1 against aging comorbidities. In this review, we discuss BACE1 regulation during aging, and then provide recent insights into its enzymatic and nonenzymatic involvement in aging and age-related diseases. Our study not only proposes the perspective of BACE1's actions in various systems, but also provides new directions for using BACE1 inhibitors and modulators to delay aging and to treat age-related diseases.
Collapse
Affiliation(s)
- Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Brain Function and Disease, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
15
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
16
|
Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI, Adegboyega AE. Modern drug discovery for inflammatory bowel disease: The role of computational methods. World J Gastroenterol 2023; 29:310-331. [PMID: 36687123 PMCID: PMC9846937 DOI: 10.3748/wjg.v29.i2.310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn’s disease and microscopic colitis are characterized by chronic inflammation of the gastrointestinal tract. IBD has spread around the world and is becoming more prevalent at an alarming rate in developing countries whose societies have become more westernized. Cell therapy, intestinal microecology, apheresis therapy, exosome therapy and small molecules are emerging therapeutic options for IBD. Currently, it is thought that low-molecular-mass substances with good oral bio-availability and the ability to permeate the cell membrane to regulate the action of elements of the inflammatory signaling pathway are effective therapeutic options for the treatment of IBD. Several small molecule inhibitors are being developed as a promising alternative for IBD therapy. The use of highly efficient and time-saving techniques, such as computational methods, is still a viable option for the development of these small molecule drugs. The computer-aided (in silico) discovery approach is one drug development technique that has mostly proven efficacy. Computational approaches when combined with traditional drug development methodology dramatically boost the likelihood of drug discovery in a sustainable and cost-effective manner. This review focuses on the modern drug discovery approaches for the design of novel IBD drugs with an emphasis on the role of computational methods. Some computational approaches to IBD genomic studies, target identification, and virtual screening for the discovery of new drugs and in the repurposing of existing drugs are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jane-Rose Oche
- Department of Biochemistry, University of Jos, Jos 930222, Plateau, Nigeria
| | - Grace Inioluwa Johnson
- Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos 930222, Plateau, Nigeria
| | | |
Collapse
|
17
|
Zheng W, Tu B, Zhang Z, Li J, Yan Z, Su K, Deng D, Sun Y, Wang X, Zhang B, Zhang K, Wong WL, Wu P, Hong WD, Ang S. Ligand and structure-based approaches for the exploration of structure-activity relationships of fusidic acid derivatives as antibacterial agents. Front Chem 2023; 10:1094841. [PMID: 36688047 PMCID: PMC9852990 DOI: 10.3389/fchem.2022.1094841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Fusidic acid (FA) has been widely applied in the clinical prevention and treatment of bacterial infections. Nonetheless, its clinical application has been limited due to its narrow antimicrobial spectrum and some side effects. Purpose: Therefore, it is necessary to explore the structure-activity relationships of FA derivatives as antibacterial agents to develop novel ones possessing a broad antimicrobial spectrum. Methods and result: First, a pharmacophore model was established on the nineteen FA derivatives with remarkable antibacterial activities reported in previous studies. The common structural characteristics of the pharmacophore emerging from the FA derivatives were determined as those of six hydrophobic centers, two atom centers of the hydrogen bond acceptor, and a negative electron center around the C-21 field. Then, seven FA derivatives have been designed according to the reported structure-activity relationships and the pharmacophore characteristics. The designed FA derivatives were mapped on the pharmacophore model, and the Qfit values of all FA derivatives were over 50 and FA-8 possessed the highest value of 82.66. The molecular docking studies of the partial target compounds were conducted with the elongation factor G (EF-G) of S. aureus. Furthermore, the designed FA derivatives have been prepared and their antibacterial activities were evaluated by the inhibition zone test and the minimum inhibitory concentration (MIC) test. The derivative FA-7 with a chlorine group as the substituent group at C-25 of FA displayed the best antibacterial property with an MIC of 3.125 µM. Subsequently, 3D-QSAR was carried on all the derivatives by using the CoMSIA mode of SYBYL-X 2.0. Conclusion: Hence, a computer-aided drug design model was developed for FA, which can be further used to optimize FA derivatives as highly potent antibacterial agents.
Collapse
Affiliation(s)
- Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Zhen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Jinxuan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Zhenping Yan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Kaize Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Duanyu Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Ying Sun
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Xu Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Bingjie Zhang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China,*Correspondence: Panpan Wu, ; Weiqian David Hong, ; Song Ang,
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China,*Correspondence: Panpan Wu, ; Weiqian David Hong, ; Song Ang,
| | - Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,International Healthcare Innovation Institute, Jiangmen, China,*Correspondence: Panpan Wu, ; Weiqian David Hong, ; Song Ang,
| |
Collapse
|
18
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
19
|
Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022; 12:996. [PMID: 35883551 PMCID: PMC9312829 DOI: 10.3390/biom12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease remains a prevailing neurodegenerative condition which has an array physical, emotional, and financial consequences to patients and society. In the past decade, there has been a greater degree of investigation on therapeutic small peptides. This group of biomolecules have a profile of fundamentally sound characteristics which make them an intriguing area for drug development. Among these biomolecules, there are four modulatory mechanisms of interest in this review: alpha-, beta-, gamma-secretases, and amylin. These protease-based biomolecules all have a contributory role in the amyloid cascade hypothesis. Moreover, the involvement of various biochemical pathways intertwines these peptides to have shared regulators (i.e., retinoids). Further clinical and translational investigation must occur to gain a greater understanding of its potential application in patient care. The aim of this narrative review is to evaluate the contemporary literature on these protease biomolecule modulators and determine its utility in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA; (S.S.); (F.Y.); (A.S.); (V.C.)
| |
Collapse
|
20
|
Ugbaja SC, Lawal IA, Abubakar BH, Mushebenge AG, Lawal MM, Kumalo HM. Allostery Inhibition of BACE1 by Psychotic and Meroterpenoid Drugs in Alzheimer's Disease Therapy. Molecules 2022; 27:4372. [PMID: 35889246 PMCID: PMC9320338 DOI: 10.3390/molecules27144372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In over a century since its discovery, Alzheimer's disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.
Collapse
Affiliation(s)
- Samuel C. Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Isiaka A. Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vanderbijlpark Campus, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Bahijjahtu H. Abubakar
- The Renewable Energy Programme, Federal Ministry of Environment, Aguiyi Ironsi St, Maitama, Abuja 904101, Nigeria;
| | - Aganze G. Mushebenge
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| |
Collapse
|
21
|
do Bomfim MR, Barbosa DB, de Carvalho PB, da Silva AM, de Oliveira TA, Taranto AG, Leite FHA. Identification of potential human beta-secretase 1 inhibitors by hierarchical virtual screening and molecular dynamics. J Biomol Struct Dyn 2022:1-15. [DOI: 10.1080/07391102.2022.2069155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mayra Ramos do Bomfim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Deyse Brito Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alisson Marques da Silva
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
| | - Tiago Alves de Oliveira
- Departamento de Informática, Gestão e Design, Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis, Brazil
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Alex Gutterres Taranto
- Departamento de Bioengenharia, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
- Faculty of Computing, University of Latvia (UL), Riga, Latvia
| | - Franco Henrique Andrade Leite
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
22
|
Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Brief Bioinform 2022; 23:bbab484. [PMID: 34850817 PMCID: PMC8690229 DOI: 10.1093/bib/bbab484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.
Collapse
Affiliation(s)
- Jinxian Wang
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Yi Luo
- School of Science, The University of Auckland,Auckland 1010, Auckland, New Zealand
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| |
Collapse
|
23
|
Jabir NR, Rehman MT, Alsolami K, Shakil S, Zughaibi TA, Alserihi RF, Khan MS, AlAjmi MF, Tabrez S. Concatenation of molecular docking and molecular simulation of BACE-1, γ-secretase targeted ligands: in pursuit of Alzheimer's treatment. Ann Med 2021; 53:2332-2344. [PMID: 34889159 PMCID: PMC8667905 DOI: 10.1080/07853890.2021.2009124] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the most predominant cause of dementia, has evolved tremendously with an escalating frequency, mainly affecting the elderly population. An effective means of delaying, preventing, or treating AD is yet to be achieved. The failure rate of dementia drug trials has been relatively higher than in other disease-related clinical trials. Hence, multi-targeted therapeutic approaches are gaining attention in pharmacological developments. AIMS As an extension of our earlier reports, we have performed docking and molecular dynamic (MD) simulation studies for the same 13 potential ligands against beta-site APP cleaving enzyme 1 (BACE-1) and γ-secretase as a therapeutic target for AD. The In-silico screening of these ligands as potential inhibitors of BACE-1 and γ-secretase was performed using AutoDock enabled PyRx v-0.8. The protein-ligand interactions were analyzed in Discovery Studio 2020 (BIOVIA). The stability of the most promising ligand against BACE-1 and γ-secretase was evaluated by MD simulation using Desmond-2018 (Schrodinger, LLC, NY, USA). RESULTS The computational screening revealed that the docking energy values for each of the ligands against both the target enzymes were in the range of -7.0 to -10.1 kcal/mol. Among the 13 ligands, 8 (55E, 6Z2, 6Z5, BRW, F1B, GVP, IQ6, and X37) showed binding energies of ≤-8 kcal/mol against BACE-1 and γ-secretase. For the selected enzyme targets, BACE-1 and γ-secretase, 6Z5 displayed the lowest binding energy of -10.1 and -9.8 kcal/mol, respectively. The MD simulation study confirmed the stability of BACE-6Z5 and γ-secretase-6Z5 complexes and highlighted the formation of a stable complex between 6Z5 and target enzymes. CONCLUSION The virtual screening, molecular docking, and molecular dynamics simulation studies revealed the potential of these multi-enzyme targeted ligands. Among the studied ligands, 6Z5 seems to have the best binding potential and forms a stable complex with BACE-1 and γ-secretase. We recommend the synthesis of 6Z5 for future in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Thanjavur, India
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F. Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- 3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd. Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Malik AA, Ojha SC, Schaduangrat N, Nantasenamat C. ABCpred: a webserver for the discovery of acetyl- and butyryl-cholinesterase inhibitors. Mol Divers 2021; 26:467-487. [PMID: 34609711 DOI: 10.1007/s11030-021-10292-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .
Collapse
Affiliation(s)
- Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
25
|
Kaitoh K, Yamanishi Y. TRIOMPHE: Transcriptome-Based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning. J Chem Inf Model 2021; 61:4303-4320. [PMID: 34528432 DOI: 10.1021/acs.jcim.1c00967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most challenging tasks in the drug-discovery process is the efficient identification of small molecules with desired phenotypes. In this study, we propose a novel computational method for omics-based de novo drug design, which we call TRIOMPHE (transcriptome-based inference and generation of molecules with desired phenotypes). We investigated the correlation between chemically induced transcriptome profiles (reflecting cellular responses to compound treatment) and genetically perturbed transcriptome profiles (reflecting cellular responses to gene knock-down or gene overexpression of target proteins) in terms of ligand-target interactions. Subsequently, we developed novel machine learning methods to generate the chemical structures of new molecules with desired transcriptome profiles in the framework of a variational autoencoder. The use of desired transcriptome profiles enables the automatic design of molecules that are likely to have bioactivities for target proteins of interest. We showed that our methods can generate chemically valid molecules that are likely to have biological activities on 10 target proteins; moreover, they can outperform previous methods that had the same objective. Our omics-based structure generator is expected to be useful for the de novo design of drugs for a variety of target proteins.
Collapse
Affiliation(s)
- Kazuma Kaitoh
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
26
|
Papadopoulou D, Drakopoulos A, Lagarias P, Melagraki G, Kollias G, Afantitis A. In Silico Identification and Evaluation of Natural Products as Potential Tumor Necrosis Factor Function Inhibitors Using Advanced Enalos Asclepios KNIME Nodes. Int J Mol Sci 2021; 22:10220. [PMID: 34638561 PMCID: PMC8508374 DOI: 10.3390/ijms221910220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor (TNF) is a regulator of several chronic inflammatory diseases, such as rheumatoid arthritis. Although anti-TNF biologics have been used in clinic, they render several drawbacks, such as patients' progressive immunodeficiency and loss of response, high cost, and intravenous administration. In order to find new potential anti-TNF small molecule inhibitors, we employed an in silico approach, aiming to find natural products, analogs of Ampelopsin H, a compound that blocks the formation of TNF active trimer. Two out of nine commercially available compounds tested, Nepalensinol B and Miyabenol A, efficiently reduced TNF-induced cytotoxicity in L929 cells and production of chemokines in mice joints' synovial fibroblasts, while Nepalensinol B also abolished TNF-TNFR1 binding in non-toxic concentrations. The binding mode of the compounds was further investigated by molecular dynamics and free energy calculation studies, using and advancing the Enalos Asclepios pipeline. Conclusively, we propose that Nepalensinol B, characterized by the lowest free energy of binding and by a higher number of hydrogen bonds with TNF, qualifies as a potential lead compound for TNF inhibitors' drug development. Finally, the upgraded Enalos Asclepios pipeline can be used for improved identification of new therapeutics against TNF-mediated chronic inflammatory diseases, providing state-of-the-art insight on their binding mode.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16673 Vari, Greece
| | - George Kollias
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | | |
Collapse
|
27
|
Ugbaja S, Lawal I, Kumalo H, Lawal M. Alzheimer's Disease and β-Secretase Inhibition: An Update With a Focus on Computer-Aided Inhibitor Design. Curr Drug Targets 2021; 23:266-285. [PMID: 34370634 DOI: 10.2174/1389450122666210809100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is an intensifying neurodegenerative illness due to its irreversible nature. Identification of β-site amyloid precursor protein (APP) cleaving enzyme1 (BACE1) has been a significant medicinal focus towards AD treatment, and this has opened ground for several investigations. Despite the numerous works in this direction, no BACE1 inhibitor has made it to the final approval stage as an anti-AD drug. METHOD We provide an introductory background of the subject with a general overview of the pathogenesis of AD. The review features BACE1 inhibitor design and development with a focus on some clinical trials and discontinued drugs. Using the topical keywords BACE1, inhibitor design, and computational/theoretical study in the Web of Science and Scopus database, we retrieved over 49 relevant articles. The search years are from 2010 and 2020, with analysis conducted from May 2020 to March 2021. RESULTS AND DISCUSSION Researchers have employed computational methodologies to unravel potential BACE1 inhibitors with a significant outcome. The most used computer-aided approach in BACE1 inhibitor design and binding/interaction studies are pharmacophore development, quantitative structure-activity relationship (QSAR), virtual screening, docking, and molecular dynamics (MD) simulations. These methods, plus more advanced ones including quantum mechanics/molecular mechanics (QM/MM) and QM, have proven substantial in the computational framework for BACE1 inhibitor design. Computational chemists have embraced the incorporation of in vitro assay to provide insight into the inhibition performance of identified molecules with potential inhibition towards BACE1. Significant IC50 values up to 50 nM, better than clinical trial compounds, are available in the literature. CONCLUSION The continuous failure of potent BACE1 inhibitors at clinical trials is attracting many queries prompting researchers to investigate newer concepts necessary for effective inhibitor design. The considered properties for efficient BACE1 inhibitor design seem enormous and require thorough scrutiny. Lately, researchers noticed that besides appreciable binding affinity and blood-brain barrier (BBB) permeation, BACE1 inhibitor must show low or no affinity for permeability-glycoprotein. Computational modeling methods have profound applications in drug discovery strategy. With the volume of recent in silico studies on BACE1 inhibition, the prospect of identifying potent molecules that would reach the approved level is feasible. Investigators should try pushing many of the identified BACE1 compounds with significant anti-AD properties to preclinical and clinical trial stages. We also advise computational research on allosteric inhibitor design, exosite modeling, and multisite inhibition of BACE1. These alternatives might be a solution to BACE1 drug discovery in AD therapy.
Collapse
Affiliation(s)
- Samuel Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Isiaka Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, 1900, Vanderbijlpark, Saudi Arabia
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, Saudi Arabia
| |
Collapse
|
28
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
30
|
Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R. Advances in Applying Computer-Aided Drug Design for Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4688. [PMID: 33925236 PMCID: PMC8124449 DOI: 10.3390/ijms22094688] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Zaid Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf 54001, Iraq;
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala 56001, Iraq
| | - Philip Kitchen
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Andrea Loreto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Roslyn M. Bill
- School of Biosciences, College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (P.K.); (R.M.B.)
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
31
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
32
|
Zeng Y, Yang J, Zhang B, Gao M, Su Z, Huang Y. The structure and phase of tau: from monomer to amyloid filament. Cell Mol Life Sci 2021; 78:1873-1886. [PMID: 33078207 PMCID: PMC11073437 DOI: 10.1007/s00018-020-03681-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Tau is a microtubule-associated protein involved in regulation of assembly and spatial organization of microtubule in neurons. However, in pathological conditions, tau monomers assemble into amyloid filaments characterized by the cross-β structures in a number of neurodegenerative diseases known as tauopathies. In this review, we summarize recent progression on the characterization of structures of tau monomer and filament, as well as the dynamic liquid droplet assembly. Our aim is to reveal how post-translational modifications, amino acid mutations, and interacting molecules modulate the conformational ensemble of tau monomer, and how they accelerate or inhibit tau assembly into aggregates. Structure-based aggregation inhibitor design is also discussed in the context of dynamics and heterogeneity of tau structures.
Collapse
Affiliation(s)
- Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Bailing Zhang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
33
|
Mouchlis VD, Afantitis A, Serra A, Fratello M, Papadiamantis AG, Aidinis V, Lynch I, Greco D, Melagraki G. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Int J Mol Sci 2021; 22:1676. [PMID: 33562347 PMCID: PMC7915729 DOI: 10.3390/ijms22041676] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
. De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including machine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been employed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and highlights hot topics for further development.
Collapse
Affiliation(s)
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
| | - Michele Fratello
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
| | - Anastasios G. Papadiamantis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia 1046, Cyprus;
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Vassilis Aidinis
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Fleming 34, 16672 Athens, Greece;
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (M.F.); (D.G.)
- BioMEdiTech Institute, Tampere University, 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Finnish Center for Alternative Methods (FICAM), Tampere University, 33520 Tampere, Finland
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece
| |
Collapse
|
34
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
35
|
Das S, Sengupta S, Chakraborty S. Scope of β-Secretase (BACE1)-Targeted Therapy in Alzheimer's Disease: Emphasizing the Flavonoid Based Natural Scaffold for BACE1 Inhibition. ACS Chem Neurosci 2020; 11:3510-3522. [PMID: 33073981 DOI: 10.1021/acschemneuro.0c00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia in the world. Studies report the presence of extracellular amyloid plaques consisting of β-amyloid peptide and intracellular tangles consisting of hyperphosphorylated tau proteins as the histopathological indicators of AD. The process of β-amyloid peptide generation by sequential cleavage of amyloid precursor protein by β-secretase (BACE1) and γ-secretase, followed by its aggregation to form amyloid plaques, is the mechanistic basis of the amyloid hypothesis. Other popular hypotheses related to the pathogenesis of AD include the tau hypothesis and the oxidative stress hypothesis. Various targets of the amyloid cascade are now in prime focus to develop drugs for AD. Many BACE1 inhibitors, β-amyloid aggregation inhibitors, and Aβ clearance strategies using monoclonal antibodies are in various stages of clinical trials. This review provides an in-depth evaluation of the role of BACE1 in disease pathogenesis and also highlights the therapeutic approaches developed to find more potent but less toxic inhibitors for BACE1, particularly emphasizing the natural scaffold as a nontoxic lead for BACE1 inhibition. Cellular targets and signaling cascades involving BACE1 have been highlighted to understand the physiological role of BACE1. This knowledge is extremely crucial to understand the toxicity evaluations for BACE1-targeted therapy. We have particularly highlighted the scope of flavonoids as a new generation of nontoxic BACE1 inhibitory scaffolds. The structure-activity relationship of BACE1 inhibition for this group of compounds has been highlighted to provide a guideline to design more selective highly potent inhibitors. The review aims to provide a holistic overview of BACE1-targeted therapy for AD that paves the way for future drug development.
Collapse
Affiliation(s)
- Sucharita Das
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swaha Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata 700135, India
| | | |
Collapse
|
36
|
Kumar V, Saha A, Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer's disease. Comput Biol Chem 2020; 88:107355. [PMID: 32801088 DOI: 10.1016/j.compbiolchem.2020.107355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023]
Abstract
In this research, we have implemented two-dimensional quantitative structure-activity relationship (2D-QSAR) modeling using two different datasets, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibitors. A third dataset has been derived based on their selectivity and used for the development of partial least squares (PLS) based regression models. The developed models were extensively validated using various internal and external validation parameters. The features appearing in the model against AChE enzyme suggest that a small ring size, higher number of -CH2- groups, higher number of secondary aromatic amines and higher number of aromatic ketone groups may contribute to the inhibitory activity. The features obtained from the model against BuChE enzyme suggest that the sum of topological distances between two nitrogen atoms, higher number of fragments X-C(=X)-X, higher number of secondary aromatic amides, fragment R--CR-X may be more favorable for inhibition. The features obtained from selectivity based model suggest that the number of aromatic ethers, unsaturation content relative to the molecular size and molecular shape may be more specific for the inhibition of the AChE enzyme in comparison to the BuChE enzyme. Moreover, we have implemented the molecular docking studies using the most and least active molecules from the datasets in order to identify the binding pattern between ligand and target enzyme. The obtained information is then correlated with the essential structural features associated with the 2D-QSAR models.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 A P C Road, Kolkata 700 009, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
37
|
Mouchlis VD, Mu C, Hammons R, Dennis EA. Lipidomics-based assays coupled with computational approaches can identify novel phospholipase A 2 inhibitors. Adv Biol Regul 2020; 76:100719. [PMID: 32199750 DOI: 10.1016/j.jbior.2020.100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
Phospholipase A2 (PLA2) enzymes play a major role in many diseases including the inflammatory cascade and specific potent small molecule inhibitors could be useful in studying their physiological role as well as for the development of drugs. In order to discover novel small molecule inhibitor platforms for members of the PLA2 superfamily of enzymes, we have applied computational approaches to determine the binding mode of potent inhibitors specific for particular PLA2s to the screening of chemical libraries. This has including the U.S. National Institutes of Health (NIH) National Cancer Institute (NCI) Diversity Set V and the ChemBridge commercial compound libraries. We have then subjected identified inhibitor structures to recently developed lipidomics based screening assays to determine the XI(50) and specificity of the identified compounds for specific PLA2s. Herein we review this approach and report the identity of initial hits for both the Group IVA cytosolic PLA2 and the Group VIA calcium-independent PLA2 that are worthy of further structural modification to develop novel platforms for inhibitor development.
Collapse
Affiliation(s)
- Varnavas D Mouchlis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093-0601, USA.
| | - Carol Mu
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Renee Hammons
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093-0601, USA.
| |
Collapse
|