1
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death. Commun Biol 2024; 7:982. [PMID: 39134806 PMCID: PMC11319651 DOI: 10.1038/s42003-024-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA.
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA.
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
2
|
Ayoubi R, Fotouhi M, Alende C, González Bolívar S, Southern K, Laflamme C. A guide to selecting high-performing antibodies for Protein-glutamine gamma-glutamyltransferase 2 (TGM2) for use in western blot, immunoprecipitation and immunofluorescence. F1000Res 2024; 13:481. [PMID: 39220380 PMCID: PMC11362715 DOI: 10.12688/f1000research.150684.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Protein-glutamine gamma-glutamyltransferase 2 (TGM2) is a Ca 2+ dependent enzyme that catalyzes transglutaminase cross-linking modifications. TGM2 is involved in various diseases, either in a protective or contributory manner, making it a crucial protein to study and determine its therapeutic potential. Identifying high-performing TGM2 antibodies would facilitate these investigations. Here we have characterized seventeen TGM2 commercial antibodies for western blot and sixteen for immunoprecipitation, and immunofluorescence. The implemented standardized experimental protocol is based on comparing read-outs in knockout cell lines against their isogenic parental controls. This study is part of a larger, collaborative initiative seeking to address antibody reproducibility issues by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While the use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.
Collapse
Affiliation(s)
- Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Charles Alende
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Sara González Bolívar
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - Neuro/SGC/EDDU collaborative group
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| | - ABIF consortium
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Québec, H3A 2B4, Canada
| |
Collapse
|
3
|
Fischer MS, Rogers HT, Chapman EA, Chan HJ, Krichel B, Gao Z, Larson EJ, Ge Y. Online Mixed-Bed Ion Exchange Chromatography for Native Top-Down Proteomics of Complex Mixtures. J Proteome Res 2024; 23:2315-2322. [PMID: 38913967 PMCID: PMC11344481 DOI: 10.1021/acs.jproteome.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.
Collapse
Affiliation(s)
- Matthew S. Fischer
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Holden T. Rogers
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Hsin-Ju Chan
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Boris Krichel
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- School of Life Sciences, University of Siegen, Adolf-Reichwein Str. 2a, Siegen, Germany, 57076
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI, USA 53706
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Ave., Madison, WI, USA 53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin - 1111 Highland Ave., Madison, WI, USA 53705
| |
Collapse
|
4
|
Navals P, Rangaswamy AMM, Kasyanchyk P, Berezovski MV, Keillor JW. Conformational Modulation of Tissue Transglutaminase via Active Site Thiol Alkylating Agents: Size Does Not Matter. Biomolecules 2024; 14:496. [PMID: 38672511 PMCID: PMC11048362 DOI: 10.3390/biom14040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
TG2 is a unique member of the transglutaminase family as it undergoes a dramatic conformational change, allowing its mutually exclusive function as either a cross-linking enzyme or a G-protein. The enzyme's dysregulated activity has been implicated in a variety of pathologies (e.g., celiac disease, fibrosis, cancer), leading to the development of a wide range of inhibitors. Our group has primarily focused on the development of peptidomimetic targeted covalent inhibitors, the nature and size of which were thought to be important features to abolish TG2's conformational dynamism and ultimately inhibit both its activities. However, we recently demonstrated that the enzyme was unable to bind guanosine triphosphate (GTP) when catalytically inactivated by small molecule inhibitors. In this study, we designed a library of models targeting covalent inhibitors of progressively smaller sizes (15 to 4 atoms in length). We evaluated their ability to inactivate TG2 by measuring their respective kinetic parameters kinact and KI. Their impact on the enzyme's ability to bind GTP was then evaluated and subsequently correlated to the conformational state of the enzyme, as determined via native PAGE and capillary electrophoresis. All irreversible inhibitors evaluated herein locked TG2 in its open conformation and precluded GTP binding. Therefore, we conclude that steric bulk and structural complexity are not necessary factors to consider when designing TG2 inhibitors to abolish G-protein activity.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (P.N.); (A.M.M.R.); (P.K.); (M.V.B.)
| |
Collapse
|
5
|
Zaltron E, Vianello F, Ruzza A, Palazzo A, Brillo V, Celotti I, Scavezzon M, Rossin F, Leanza L, Severin F. The Role of Transglutaminase 2 in Cancer: An Update. Int J Mol Sci 2024; 25:2797. [PMID: 38474044 DOI: 10.3390/ijms25052797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the regulation of several cellular pathways that support the survival, death, and general homeostasis of eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner, making this enzyme an important player in disease development and progression. Moreover, TG2 is capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis. Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein kinase, guanine nucleotide binder, and cytosolic-nuclear translocator. With respect to cancer, TG2's role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.
Collapse
Affiliation(s)
| | | | - Alessia Ruzza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Alberta Palazzo
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Ilaria Celotti
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Filippo Severin
- Department of Biology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
6
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Defining the conformational states that enable transglutaminase 2 to promote cancer cell survival versus cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578794. [PMID: 38370687 PMCID: PMC10871292 DOI: 10.1101/2024.02.04.578794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - William P. Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Liu J, Chen B, Lu H, Chen Q, Li JC. Identification of novel candidate biomarkers for acute myocardial infarction by the Olink proteomics platform. Clin Chim Acta 2023; 548:117506. [PMID: 37549822 DOI: 10.1016/j.cca.2023.117506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Both pathological and normal processes depend on proteins. In this study, plasma protein profiles were analyzed by a novel proximity extension assay (PEA) to identify potential pathogenic mechanisms and diagnostic biomarkers in patients diagnosed with acute myocardial infarction (AMI). METHODS In this study, we identified a total of 92 plasma proteins using the Olink Target 96 Cardiovascular III panel in a cohort consisting of 30 healthy controls (HC), 28 patients with unstable angina (UA) and 30 patients with AMI. Subsequently, we conducted a differential expression analysis to identify protein molecules that were specifically expressed in patients with AMI. To gain insights into the potential functional mechanisms of these differentially expressed molecules, we performed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Following that, the utilization of least absolute shrinkage and selection operator (LASSO) regression facilitated the identification of potential protein biomarkers, enabling the differentiation between AMI and UA. A diagnostic model was subsequently developed through logistic regression, and the effectiveness of these markers was assessed using receiver operating characteristic (ROC) analysis. Ultimately, the diagnostic capabilities of these potential biomarkers were validated in an independent validation cohort consisting of 30 UA cases and 30 AMI cases. RESULTS In this study, a comprehensive analysis of plasma proteins identified a total of 92 proteins. Further analysis using analysis of variance revealed that 25 proteins exhibited specific expression in the AMI group compared to the HC and UA groups. Additionally, KEGG enrichment analysis indicated that these differentially expressed proteins were primarily associated with the activation of cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and GnRH signaling pathway. AGRP, TGM2, IL6, GH1, and CA5A were identified through LASSO regression as prospective protein biomarkers for distinguishing between UA and AMI. The diagnostic model comprising these five proteins exhibited exceptional performance in both the discovery and validation datasets, surpassing AUC values of 0.9. CONCLUSION The findings of our study provide additional insights into the involvement of the inflammatory response and AKT cascade response in the development of AMI. Moreover, we have identified potential protein markers that could be utilized for the accurate diagnosis of AMI. These results offer a fresh perspective for clinical decision-making in the context of AMI.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Hongsheng Lu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Qi Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Ji-Cheng Li
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Lisetto M, Fattorini M, Lanza A, Gerdol M, Griffin M, Wang Z, Ferrara F, Sblattero D. Biochemical and Functional Characterization of the Three Zebrafish Transglutaminases 2. Int J Mol Sci 2023; 24:12041. [PMID: 37569416 PMCID: PMC10419279 DOI: 10.3390/ijms241512041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein widely distributed in various tissues and involved in many physiological and pathological processes. However, its actual role in biological processes is often controversial as TG2 shows different effects in these processes depending on its localization, cell type, or experimental conditions. We characterized the enzymatic and functional properties of TG2 proteins expressed in Danio rerio (zebrafish) to provide the basis for using this established animal model as a reliable tool to characterize TG2 functions in vivo. We confirmed the existence of three genes orthologous to human TG2 (zTGs2) in the zebrafish genome and their expression and function during embryonic development. We produced and purified the zTGs2s as recombinant proteins and showed that, like the human enzyme, zTGs2 catalyzes a Ca2+ dependent transamidation reaction that can be inhibited with TG2-specific inhibitors. In a cell model of human fibroblasts, we also demonstrated that zTGs2 can mediate RGD-independent cell adhesion in the extracellular environment. Finally, we transfected and selected zTGs2-overexpressing HEK293 cells and demonstrated that intracellular zTGs2 plays a very comparable protective/damaging role in the apoptotic process, as hTG2. Overall, our results suggest that zTGs2 proteins behave very similarly to the human ortholog and pave the way for future in vivo studies of TG2 functions in zebrafish.
Collapse
Affiliation(s)
- Manuel Lisetto
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Mariagiulia Fattorini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Andrea Lanza
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| | - Martin Griffin
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.G.); (Z.W.)
| | - Zhuo Wang
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.G.); (Z.W.)
| | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.L.); (M.F.); (A.L.); (M.G.)
| |
Collapse
|
9
|
Gao Q, He S, Peng Y, Su P, Zhao L. Proteomic profiling of epicardial fat in heart failure with preserved versus reduced and mildly reduced ejection fraction. J Cell Mol Med 2023; 27:727-735. [PMID: 36808702 PMCID: PMC9983313 DOI: 10.1111/jcmm.17695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
In order to explore the proteomic signatures of epicardial adipose tissue (EAT) related to the mechanism of heart failure with reduced and mildly reduced ejection fraction (HFrEF/HFmrEF) and heart failure (HF) with preserved ejection fraction (HFpEF), a comprehensive proteomic analysis of EAT was made in HFrEF/HFmrEF (n = 5) and HFpEF (n = 5) patients with liquid chromatography-tandem mass spectrometry experiments. The selected differential proteins were verified between HFrEF/HFmrEF (n = 20) and HFpEF (n = 40) by ELISA (enzyme-linked immunosorbent assay). A total of 599 EAT proteins were significantly different in expression between HFrEF/HFmrEF and HFpEF. Among the 599 proteins, 58 proteins increased in HFrEF/HFmrEF compared to HFpEF, whereas 541 proteins decreased in HFrEF/HFmrEF. Of these proteins, TGM2 in EAT was down-regulated in HFrEF/HFmrEF patients and was confirmed to decrease in circulating plasma of the HFrEF/HFmrEF group (p = 0.019). Multivariate logistic regression analysis confirmed plasma TGM2 could be an independent predictor of HFrEF/HFmrEF (p = 0.033). Receiver operating curve analysis indicated that the combination of TGM2 and Gensini score improved the diagnostic value of HFrEF/HFmrEF (p = 0.002). In summary, for the first time, we described the proteome in EAT in both HFpEF and HFrEF/HFmrEF and identified a comprehensive dimension of potential targets for the mechanism behind the EF spectrum. Exploring the role of EAT may offer potential targets for preventive intervention of HF.
Collapse
Affiliation(s)
- Qian Gao
- Emergency Department, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Shan He
- Heart Center, Beijing Chaoyang Hospital Jingxi BranchCapital Medical UniversityBeijingChina
| | - Yuanshu Peng
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pixiong Su
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Lei Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Proteomic landscape of the extracellular matrix in the fibrotic kidney. Kidney Int 2023; 103:1063-1076. [PMID: 36805449 DOI: 10.1016/j.kint.2023.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/19/2023]
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of proteins surrounding cells, forming a niche that controls cell adhesion, proliferation, migration and differentiation. The ECM network provides an architectural scaffold for surrounding cells and undergoes dynamic changes in composition and contents during the evolution of chronic kidney disease (CKD). Here, we unveiled the proteomic landscape of the ECM by delineating proteome-wide and ECM-specific alterations in normal and fibrotic kidneys. Decellularized kidney tissue scaffolds were made and subjected to proteomic profiling by liquid chromatography with tandem mass spectrometry. A total of 172 differentially expressed proteins were identified in these scaffolds from mice with CKD. Through bioinformatics analysis and experimental validation, we identified a core set of nine signature proteins, which could play a role in establishing an oxidatively stressed, profibrotic, proinflammatory and antiangiogenetic microenvironment. Among these nine proteins, glutathione peroxidase 3 (GPX3) was the only protein with downregulated expression during CKD. Knockdown of GPX3 in vivo augmented ECM expression and aggravated kidney fibrotic lesions after obstructive injury. Transcriptomic profiling revealed that GPX3 depletion resulted in an altered expression of the genes enriched in hypoxia pathway. Knockdown of GPX3 induced NADPH oxidase 2 expression, promoted kidney generation of reactive oxygen species and activated p38 mitogen-activated protein kinase. Conversely, overexpression of exogenous GPX3 alleviated kidney fibrosis, inhibited NADPH oxidase 2 and p38 mitogen-activated protein kinase. These findings suggest that oxidative stress is a pivotal element of the fibrogenic microenvironment. Thus, our studies represent a comprehensive proteomic characterization of the ECM in the fibrotic kidney and provide novel insights into molecular composition of the fibrogenic microenvironment.
Collapse
|
11
|
Canella R, Brugnoli F, Gallo M, Keillor JW, Terrazzan A, Ferrari E, Grassilli S, Gates EWJ, Volinia S, Bertagnolo V, Bianchi N, Bergamini CM. A Multidisciplinary Approach Establishes a Link between Transglutaminase 2 and the Kv10.1 Voltage-Dependent K + Channel in Breast Cancer. Cancers (Basel) 2022; 15:cancers15010178. [PMID: 36612174 PMCID: PMC9818547 DOI: 10.3390/cancers15010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Since the multifunctionality of transglutaminase 2 (TG2) includes extra- and intracellular functions, we investigated the effects of intracellular administration of TG2 inhibitors in three breast cancer cell lines, MDA-MB-231, MDA-MB-436 and MDA-MB-468, which are representative of different triple-negative phenotypes, using a patch-clamp technique. The first cell line has a highly voltage-dependent a membrane current, which is low in the second and almost absent in the third one. While applying a voltage protocol to responsive single cells, injection of TG2 inhibitors triggered a significant decrease of the current in MDA-MB-231 that we attributed to voltage-dependent K+ channels using the specific inhibitors 4-aminopyridine and astemizole. Since the Kv10.1 channel plays a dominant role as a marker of cell migration and survival in breast cancer, we investigated its relationship with TG2 by immunoprecipitation. Our data reveal their physical interaction affects membrane currents in MDA-MB-231 but not in the less sensitive MDA-MB-436 cells. We further correlated the efficacy of TG2 inhibition with metabolic changes in the supernatants of treated cells, resulting in increased concentration of methyl- and dimethylamines, representing possible response markers. In conclusion, our findings highlight the interference of TG2 inhibitors with the Kv10.1 channel as a potential therapeutic tool depending on the specific features of cancer cells.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455854
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Kim GE, Park HH. Structures of Human Transglutaminase 2: Finding Clues for Interference in Cross-linking Mediated Activity. Int J Mol Sci 2020; 21:ijms21062225. [PMID: 32210142 PMCID: PMC7139744 DOI: 10.3390/ijms21062225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Human transglutaminase 2 (TGase2) has various functions, including roles in various cellular processes such as apoptosis, development, differentiation, wound healing, and angiogenesis, and is linked to many diseases such as cancer. Although TGase2 has been considered an optimized drug target for the treatment of cancer, fibrosis, and neurodegenerative disorders, it has been difficult to generate TGase2-targeted drugs for clinical use because of the relatively flat and broad active site on TGase2. To design more specific and powerful inhibitors, detailed structural information about TGase2 complexed with various effector and inhibitor molecules is required. In this review, we summarized the current structural studies on TGase2, which will aid in designing drugs that can overcome the aforementioned limitations.
Collapse
|