1
|
Mohammadloo A, Asgari Y, Esmaeili-Bandboni A, Mazloomi MA, Ghasemi SF, Ameri S, Miri SR, Hamzelou S, Mahmoudi HR, Veisi-Malekshahi Z. The Potential of Circulating miR-193b, miR-146b-3p and miR-483-3p as Noninvasive Biomarkers in Cutaneous Melanoma Patients. Mol Biotechnol 2024; 66:2830-2840. [PMID: 37934389 DOI: 10.1007/s12033-023-00893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Melanoma is a destructive skin disease with few therapeutic options in the developed stage and therefore there is a critical need for reliable biomarkers for early diagnosis. In this context, microRNAs could play an important role as diagnostic biomarkers. Three datasets with accession numbers GSE31568, GSE61741 and GSE20994 were downloaded from the Gene Expression Omnibus (GEO) database. MATLAB software was used to analyze differentially expressed miRNAs between cutaneous melanoma plasma samples and normal plasma samples (control). Plasma levels of miR-193b, miR-146b-3p and miR-483-3p were evaluated by the RT-PCR method. Furthermore, linear regression followed by receiver operating characteristic analyses was performed to estimate whether selected plasma miRNAs were able to distinguish between cases and controls. Finally, the data were analyzed by unpaired Mann-Whitney U test using Graph pad prism 8 computer software. Specifically, miR-193b and miR-146b-3p were downregulated in the plasma of melanoma patients compared with control groups which were decreased 5 × 10 6 -fold in miR-193b and 58-fold in miR-146b-3p, while miR-483-3p was upregulated 3.5-fold. After receiver operating characteristic (ROC) curve analysis, miR-193b with the most area under the curve (AUC: 1.00, 95% confidence interval 1.00-1.00, p < 0.0001) had the best discriminatory power, and miR-146b-3p had the large area under the curve (AUC: 0.96, 95% confidence interval 0.96-1.00, p < 0.0001) and consequently the high discriminatory power. Between these three miRNAs, miR-193b and miR-146b-3p had a high capacity to distinguish between melanoma patients and control groups that are appropriate to be applied in melanoma diagnosis as an early and noninvasive method.
Collapse
Affiliation(s)
- Atefeh Mohammadloo
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Biotechnology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Ali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Ghasemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Ameri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Shahin Hamzelou
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi-Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Bezrookove V, Khan I, Bhattacharjee A, Fan J, Jones R, Sharma A, Nosrati M, Desprez PY, Salomonis N, Shi Y, Dar A, Kashani-Sabet M. miR-876-3p is a tumor suppressor on 9p21 that is inactivated in melanoma and targets ERK. J Transl Med 2024; 22:758. [PMID: 39138582 PMCID: PMC11321151 DOI: 10.1186/s12967-024-05527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND While melanomas commonly harbor losses of 9p21, on which CDKN2A resides, the presence of additional tumor suppressor elements at this locus is incompletely characterized. Here we assess the expression levels and functional role of microRNA-876-3p (miR-876), whose gene also maps to 9p21. METHODS Expression of miR-876 was assessed in human tissues and cell lines using quantitative miRNA reverse transcriptase polymerase chain reaction (qRT-PCR). MIR876 copy number was determined in The Cancer Genome Atlas (TCGA) melanoma cohort. The consequences of regulation of miR-876 expression were assessed on melanoma cell colony formation, migration, invasion, apoptosis, cell cycle progression, and drug sensitivity in culture, and on in vivo tumor growth in a xenograft model. Genome-wide transcriptomic changes induced by miR-876 overexpression were determined using RNA sequencing (RNA-Seq). RESULTS miR-876 expression was significantly decreased in primary melanoma samples when compared with nevi, and in human melanoma cell lines when compared with human melanocytes. Analysis of the TCGA cohort revealed deletions in MIR876 in > 50% of melanomas. miR-876 overexpression resulted in decreased melanoma cell colony formation, migration, and invasion, which was accompanied by cell cycle arrest and increased apoptosis. Intra-tumoral injections of miR-876 significantly suppressed melanoma growth in vivo. RNA-Seq analysis of miR-876-treated tumors revealed downregulation of several growth-promoting genes, along with upregulation of tumor suppressor genes, which was confirmed by qRT-PCR analysis. Computational analyses identified MAPK1 (or ERK2) as a possible target of miR-876 action. Overexpression of miR-876 significantly suppressed luciferase expression driven by the MAPK1/ERK2 3' UTR, and resulted in decreased ERK protein expression in melanoma cells. MAPK1/ERK2 cDNA overexpression rescued the effects of miR-876 on melanoma colony formation. miR-876 overexpression sensitized melanoma cells to treatment with the BRAF inhibitor vemurafenib. CONCLUSIONS These studies identify miR-876 as a distinct tumor suppressor on 9p21 that is inactivated in melanoma and suggest miR-876 loss as an additional mechanism to activate ERK and the mitogen activated protein kinase (MAPK) pathway in melanoma. In addition, they suggest the therapeutic potential of combining miR-876 overexpression with BRAF inhibition as a rational therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Vladimir Bezrookove
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Imran Khan
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juifang Fan
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Robyn Jones
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Anima Sharma
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Mehdi Nosrati
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yihui Shi
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Altaf Dar
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center (CPMC) Research Institute, 475 Brannan St., Suite 130, San Francisco, CA, 94107, USA.
- Center for Melanoma Research and Treatment, CPMC, San Francisco, CA, USA.
| |
Collapse
|
4
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
5
|
Modarresi Chahardehi A, Afrooghe A, Emtiazi N, Rafiei S, Rezaei NJ, Dahmardeh S, Farz F, Naderi Z, Arefnezhad R, Motedayyen H. MicroRNAs and angiosarcoma: are there promising reports? Front Oncol 2024; 14:1385632. [PMID: 38826780 PMCID: PMC11143796 DOI: 10.3389/fonc.2024.1385632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
In recent years, microRNAs (miRNAs) have garnered increasing attention for their potential implications in cancer pathogenesis, functioning either as oncogenes or tumor suppressors. Notably, angiosarcoma, along with various other cardiovascular tumors such as lipomas, rhabdomyomas, hemangiomas, and myxomas, has shown variations in the expression of specific miRNA subtypes. A substantial body of evidence underscores the pivotal involvement of miRNAs in the genesis of angiosarcoma and certain cardiovascular tumors. This review aims to delve into the current literature on miRNAs and their prospective applications in cardiovascular malignancies, with a specific focus on angiosarcoma. It comprehensively covers diagnostic methods, prognostic evaluations, and potential treatments while providing a recapitulation of angiosarcoma's risk factors and molecular pathogenesis, with an emphasis on the role of miRNAs. These insights can serve as the groundwork for designing randomized control trials, ultimately facilitating the translation of these findings into clinical applications. Moving forward, it is imperative for studies to thoroughly scrutinize the advantages and disadvantages of miRNAs compared to current diagnostic and prognostic approaches in angiosarcoma and other cardiovascular tumors. Closing these knowledge gaps will be crucial for harnessing the full potential of miRNAs in the realm of angiosarcoma and cardiovascular tumor research.
Collapse
Affiliation(s)
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Rafiei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sarvin Dahmardeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Farz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Naderi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Prodan M, Costescu S, Elagez A, Laitin SMD, Bloanca V, Crainiceanu Z, Seclaman E, Toma AO, Fericean RM, Puenea G, Cozma GV. Molecular Markers in Melanoma Progression: A Study on the Expression of miRNA Gene Subtypes in Tumoral vs. Benign Nevi. Curr Oncol 2024; 31:2881-2894. [PMID: 38785501 PMCID: PMC11120387 DOI: 10.3390/curroncol31050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the differential expression of miRNA gene subtypes in tumoral versus benign nevi in individuals with melanoma, aiming to identify clinically significant correlations that could serve as reliable markers for assessing tumor stage and progression. Conducted between 2019 and 2022, this descriptive, quantitative observational research analyzed 90 formalin-fixed paraffin-embedded (FFPE) samples from the Pius Brinzeu County Emergency Clinical Hospital, Timisoara, including 45 samples of advanced-stage melanoma and 45 samples of pigmented nevi. miRNA purification and analysis were performed using the miRNeasy Kit and the Human Cancer PathwayFinder miScript miRNA PCR Array, with statistical analysis (including logistic regression) to determine associations with cancer staging, such as high Breslow index risk, number of mitoses, and vascular invasion. After the analysis and comparison of 180 miRNA gene subtypes, we selected 10 of the most upregulated and 10 most downregulated genes. The results revealed that hsa-miR-133b, hsa-miR-335-5p, hsa-miR-200a-3p, and hsa-miR-885-5p were significantly upregulated in melanoma samples, with fold changes ranging from 1.09 to 1.12. Conversely, hsa-miR-451a and hsa-miR-29b-3p showed notable downregulation in melanoma, with fold changes of 0.90 and 0.92, respectively. Additionally, logistic regression analysis identified hsa-miR-29b-3p (OR = 2.51) and hsa-miR-200a-3p (OR = 2.10) as significantly associated with an increased risk of a high Breslow index, while hsa-miR-127-3p and hsa-miR-451a were associated with a reduced risk. Conclusively, this study underscores the significant alterations in miRNA expression in melanoma compared to benign nevi and highlights the potential of specific miRNAs as biomarkers for melanoma progression. The identification of miRNAs with significant associations to melanoma characteristics suggests their utility in developing non-invasive, cost-effective diagnostic tools and in guiding therapeutic decisions, potentially improving patient outcomes in melanoma management.
Collapse
Affiliation(s)
- Mihaela Prodan
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Plastic Surgery, “Pius Brinzeu” Timis County Emergency Clinical Hospital, 300723 Timisoara, Romania
| | - Sergiu Costescu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Department of Obstetrics and Gynecology, Oravita City Hospital, 325600 Oravita, Romania
| | - Ahmed Elagez
- Department of General Medicine, Misr University for Science & Technology, Giza 3236101, Egypt;
| | - Sorina Maria Denisa Laitin
- Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Vlad Bloanca
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.)
| | - Zorin Crainiceanu
- Department of Plastic Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (V.B.); (Z.C.)
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Center for Complex Networks Science, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Ana-Olivia Toma
- Discipline of Dermatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.-O.T.); (R.M.F.)
- Department of Dermatology, Timisoara Municipal Emergency Hospital, 300254 Timisoara, Romania
| | - Roxana Manuela Fericean
- Discipline of Dermatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (A.-O.T.); (R.M.F.)
- Department of Dermatology, Timisoara Municipal Emergency Hospital, 300254 Timisoara, Romania
| | - George Puenea
- Department XVI, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Gabriel Veniamin Cozma
- Department of Surgical Semiology I and Thoracic Surgery, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Naddeo M, Broseghini E, Venturi F, Vaccari S, Corti B, Lambertini M, Ricci C, Fontana B, Durante G, Pariali M, Scotti B, Milani G, Campione E, Ferracin M, Dika E. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers (Basel) 2024; 16:1688. [PMID: 38730639 PMCID: PMC11083009 DOI: 10.3390/cancers16091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) is one of the most lethal tumors among skin cancers and its incidence is rising worldwide. Recent data support the role of microRNAs (miRNAs) in melanoma carcinogenesis and their potential use as disease biomarkers. METHODS We quantified the expression of miR-146a-5p and miR-21-5p in 170 formalin-fixed paraffin embedded (FFPE) samples of CM, namely 116 superficial spreading melanoma (SSM), 26 nodular melanoma (NM), and 28 lentigo maligna melanoma (LMM). We correlated miRNA expression with specific histopathologic features including Breslow thickness (BT), histological subtype, ulceration and regression status, and mitotic index. RESULTS miR-146a-5p and miR-21-5p were significantly higher in NM compared to SSM and LMM. The positive correlation between miR-146a-5p and miR-21-5p expression and BT was confirmed for both miRNAs in SSM. Considering the ulceration status, we assessed that individual miR-21-5p expression was significantly higher in ulcerated CMs. The increased combined expression of the two miRNAs was strongly associated with ulceration (p = 0.0093) and higher mitotic rate (≥1/mm2) (p = 0.0005). We demonstrated that the combination of two-miRNA expression and prognostic features (BT and ulceration) can better differentiate cutaneous melanoma prognostic groups, considering overall survival and time-to-relapse clinical outcomes. Specifically, miRNA expression can further stratify prognostic groups among patients with BT ≥ 0.8 mm but without ulceration. Our findings provide further insights into the characterization of CM with specific prognostic features. The graphical abstract was created with BioRender.com.
Collapse
Affiliation(s)
- Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Elisabetta Broseghini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
| | - Federico Venturi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Sabina Vaccari
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Barbara Corti
- Division of Pathology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy;
| | - Martina Lambertini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Costantino Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Pathology Unit, Ospedale Maggiore, 40133 Bologna, Italy
| | - Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Giorgio Durante
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Milena Pariali
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40126 Bologna, Italy;
| | - Biagio Scotti
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Giulia Milani
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (M.N.); (E.B.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
| | - Emi Dika
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (F.V.); (M.L.); (C.R.); (B.F.); (G.D.)
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy; (S.V.); (B.S.); (G.M.)
| |
Collapse
|
8
|
Huang C, Lau TWS, Smoller BR. Diagnosing Cutaneous Melanocytic Tumors in the Molecular Era: Updates and Review of Literature. Dermatopathology (Basel) 2024; 11:26-51. [PMID: 38247727 PMCID: PMC10801542 DOI: 10.3390/dermatopathology11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Over the past decade, molecular and genomic discoveries have experienced unprecedented growth, fundamentally reshaping our comprehension of melanocytic tumors. This review comprises three main sections. The first part gives an overview of the current genomic landscape of cutaneous melanocytic tumors. The second part provides an update on the associated molecular tests and immunohistochemical stains that are helpful for diagnostic purposes. The third section briefly outlines the diverse molecular pathways now utilized for the classification of cutaneous melanomas. The primary goal of this review is to provide a succinct overview of the molecular pathways involved in melanocytic tumors and demonstrate their practical integration into the realm of diagnostic aids. As the molecular and genomic knowledge base continues to expand, this review hopes to serve as a valuable resource for healthcare professionals, offering insight into the evolving molecular landscape of cutaneous melanocytic tumors and its implications for patient care.
Collapse
Affiliation(s)
- Chelsea Huang
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | | | - Bruce R. Smoller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
9
|
Arasi MB, De Luca G, Chronopoulou L, Pedini F, Petrucci E, Flego M, Stringaro A, Colone M, Pasquini L, Spada M, Lulli V, Perrotta MC, Calin GA, Palocci C, Biffoni M, Felicetti F, Felli N. MiR126-targeted-nanoparticles combined with PI3K/AKT inhibitor as a new strategy to overcome melanoma resistance. Mol Ther 2024; 32:152-167. [PMID: 37990493 PMCID: PMC10787166 DOI: 10.1016/j.ymthe.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.
Collapse
Affiliation(s)
- Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC) Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eleonora Petrucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Michela Flego
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Chiara Perrotta
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - George Adrian Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, 1515 Holcombe Blvd, Houston, TX 77030, USA; The RNA Interference and Non-coding RNA Center, MD Anderson Cancer Center, Texas State University, Houston, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC) Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nadia Felli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
10
|
Spiliopoulou P, Holanda Lopes CD, Spreafico A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2023; 13:19. [PMID: 38201222 PMCID: PMC10777980 DOI: 10.3390/cells13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic landscape of malignant melanoma has been radically reformed in recent years, with novel treatments emerging in both the field of cancer immunotherapy and signalling pathway inhibition. Large-scale tumour genomic characterization has accurately classified malignant melanoma into four different genomic subtypes so far. Despite this, only somatic mutations in BRAF oncogene, as assessed in tumour biopsies, has so far become a validated predictive biomarker of treatment with small molecule inhibitors. The biology of tumour evolution and heterogeneity has uncovered the current limitations associated with decoding genomic drivers based only on a single-site tumour biopsy. There is an urgent need to develop minimally invasive biomarkers that accurately reflect the real-time evolution of melanoma and that allow for streamlined collection, analysis, and interpretation. These will enable us to face challenges with tumour tissue attainment and process and will fulfil the vision of utilizing "liquid biopsy" to guide clinical decisions, in a manner akin to how it is used in the management of haematological malignancies. In this review, we will summarize the most recent published evidence on the role of minimally invasive biomarkers in melanoma, commenting on their future potential to lead to practice-changing discoveries.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| |
Collapse
|
11
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci 2023; 24:15881. [PMID: 37958863 PMCID: PMC10650804 DOI: 10.3390/ijms242115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a comprehensive overview of the multifactorial etiology of CM, underscore the importance of early detection, discuss the molecular mechanisms behind melanoma development and progression, and shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet radiation exposure being the predominant environmental risk factor. The emergence of new biomarkers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome protein expressions, holds promise for improved early detection, and prognostic and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
13
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
14
|
Antonova E, Hambikova A, Shcherbakov D, Sukhov V, Vysochanskaya S, Fadeeva I, Gorshenin D, Sidorova E, Kashutina M, Zhdanova A, Mitrokhin O, Avvakumova N, Zhernov Y. Determination of Common microRNA Biomarker Candidates in Stage IV Melanoma Patients and a Human Melanoma Cell Line: A Potential Anti-Melanoma Agent Screening Model. Int J Mol Sci 2023; 24:ijms24119160. [PMID: 37298110 DOI: 10.3390/ijms24119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play an important role in regulating gene expression. Dysregulation of miRNA expression is commonly observed in cancer, and it can contribute to malignant cell growth. Melanoma is the most fatal type of skin malignant neoplasia. Some microRNAs can be prospective biomarkers for melanoma in stage IV (advanced) at higher risk of relapses and require validation for diagnostic purposes. This work aimed to (1) determine the most significant microRNA biomarker candidates in melanoma using content analysis of the scientific literature, (2) to show microRNA biomarker candidates' diagnostic efficacy between melanoma patients and healthy control groups in a small-scale preliminary study by blood plasma PCR analysis, (3) to determine significant microRNA markers of the MelCher human melanoma cell line, which are also detected in patients with melanoma, that can be used as markers of drug anti-melanoma activity, and (4) test anti-melanoma activity of humic substances and chitosan by their ability to reduce level of marker microRNAs. The content analysis of the scientific literature showed that hsa-miR-149-3p, hsa-miR-150-5p, hsa-miR-193a-3p, hsa-miR-21-5p, and hsa-miR-155-5p are promising microRNA biomarker candidates for diagnosing melanoma. Estimating microRNA in plasma samples showed that hsa-miR-150-5p and hsa-miR-155-5p may have a diagnostic value for melanoma in stage IV (advanced). When comparing ΔCt hsa-miR-150-5p and ΔCt hsa-miR-155-5p levels in melanoma patients and healthy donors, statistically significant differences were found (p = 0.001 and p = 0.001 respectively). Rates ΔCt were significantly higher among melanoma patients (medians concerning the reference gene miR-320a were 1.63 (1.435; 2.975) and 6.345 (4.45; 6.98), respectively). Therefore, they persist only in plasma from the melanoma patients group but not in the healthy donors group. In human wild-type stage IV melanoma (MelCher) cell culture, the presence of hsa-miR-150-5p and hsa-miR-155-5p in supernatant was detected. The ability of humic substance fractions and chitosan to reduce levels of hsa-miR-150-5p and hsa-miR-155-5p was tested on MelCher cultures, which is associated with anti-melanoma activity. It was found that the hymatomelanic acid (HMA) fraction and its subfraction UPLC-HMA statistically significantly reduced the expression of miR-150-5p and miR-155-5p (p ≤ 0.05). For the humic acid (HA) fraction, this activity was determined only to reduce miR-155-5p (p ≤ 0.05). Ability to reduce miR-150-5p and miR-155-5p expression on MelCher cultures was not determined for chitosan fractions with a molecular weight of 10 kDa, 120 kDa, or 500 kDa. Anti-melanoma activity was also determined in the MTT test on MelCher cultures for explored substances. The median toxic concentration (TC50) was determined for HA, HMA and UPLC-HMA (39.3, 39.7 and 52.0 μg/mL, respectively). For 10 kDa, 120 kDa, or 500 kDa chitosan fractions TC50 was much higher compared to humic substances (508.9, 6615.9, 11352.3 μg/mL, respectively). Thus, our pilot study identified significant microRNAs for testing the in vitro anti-melanoma activity of promising drugs and melanoma diagnostics in patients. Using human melanoma cell cultures gives opportunities to test new drugs on a culture that has a microRNA profile similar to that of patients with melanoma, unlike, for example, murine melanoma cell cultures. It is necessary to conduct further studies with a large number of volunteers, which will make it possible to correlate the profile of individual microRNAs with specific patient data, including the correlation of the microRNA profile with the stage of melanoma.
Collapse
Affiliation(s)
- Elena Antonova
- Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology, I.N. Ulyanov Ulyanovsk State Pedagogical University, 432700 Ulyanovsk, Russia
| | - Anastasia Hambikova
- Research Center for Fundamental and Applied Problems of Bioecology and Biotechnology, I.N. Ulyanov Ulyanovsk State Pedagogical University, 432700 Ulyanovsk, Russia
| | - Denis Shcherbakov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Vitaly Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Sonya Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Inna Fadeeva
- Department of English Language, Institute of World Economy, Diplomatic Academy of the Russian Foreign Ministry, 119992 Moscow, Russia
| | - Denis Gorshenin
- Laboratory of Innate Immunity, National Research Center-Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
| | - Ekaterina Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Maria Kashutina
- Loginov Moscow Clinical Scientific and Practical Center, 111123 Moscow, Russia
- Department of Public Health Promotion, National Research Centre for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy, Clinical Pharmacology and Emergency Medicine, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Alina Zhdanova
- Department of Medical Chemistry, Samara State Medical University, 443099 Samara, Russia
| | - Oleg Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Nadezhda Avvakumova
- Department of Medical Chemistry, Samara State Medical University, 443099 Samara, Russia
| | - Yury Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Medical Anthropology, N.N. Miklukho-Maclay Institute of Ethnology and Anthropology of the Russian Academy of Sciences, 119017 Moscow, Russia
| |
Collapse
|
15
|
Rafat M, Kohsarian M, Bahiraei M, Nikpoor AR. A Comprehensive Study on Signal Transduction and Therapeutic Role of miR-877 in Human Cancers. Adv Biomed Res 2023; 12:118. [PMID: 37434921 PMCID: PMC10331537 DOI: 10.4103/abr.abr_412_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 07/13/2023] Open
Abstract
MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence in order to reach the molecular mechanism and clinical significance of miR-877 in different types of cancer. Dysregulation of miR-877 level in various types of malignancies as bladder cancer, cervical cancer, cholangiocarcinoma, colorectal cancer (CRC), gastric cancer, glioblastoma, head and neck squamous cell carcinoma (HNSCC), hepatocellular carcinoma, laryngeal squamous cell carcinoma, melanoma, non-small cell lung cancer (NSCLC), oral squamous cell carcinoma, ovarian cancer (OC), pancreatic ductal adenocarcinoma, and renal cell carcinoma (RCC) have reported, significantly increase or decrease in its level, which can be indicated to its function as oncogene or tumor suppressor. MiR-877 is involved in cell proliferation, migration, and invasion through cell cycle pathways in cancer. MiR-877 could be potential a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-877 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.
Collapse
Affiliation(s)
- Milad Rafat
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdis Kohsarian
- Department of Biology, Faculty of Science, Guilan University, Rasht, Iran
| | - Mohamad Bahiraei
- Department of Radiology, Besat Hospital, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Amin R. Nikpoor
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
16
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
17
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
18
|
Zhang G, Wang Z, Liu J, Feng S, Ji S, Ai D. LINC00511 promotes melanoma progression by targeting miR-610/NUCB2. Open Med (Wars) 2023; 18:20230628. [PMID: 36874361 PMCID: PMC9979001 DOI: 10.1515/med-2023-0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 03/05/2023] Open
Abstract
Long intergenic noncoding RNA 00511 (LINC00511) predicts poor prognosis in various malignancies and functions as an oncogene in distinct malignant tumors. The role of LINC00511 in melanoma progression was assessed. In our research, expression of LINC00511 in melanoma cells was detected by quantitative reverse transcription PCR. Colony formation and CCK8 assays were used to detect cell proliferation. Cell metastasis was evaluated by transwell and wound healing assays. Downstream target of LINC00511 was investigated by luciferase activity assay. As a results, LINC00511 was elevated in melanoma cells and tissues. Loss of LINC00511 decreased cell viability, reduced proliferation, invasion, and migration of melanoma. miR-610 was target of LINC00511, and miR-610 binds to 3'UTR of nucleobindin-2 (NUCB2). Inhibition of miR-610 attenuated LINC00511 deficiency-induced decrease of NUCB2 in melanoma cells. Loss of miR-610 weakened LINC00511 deficiency-induced decrease of cell viability, proliferation, invasion, and migration of melanoma. In conclusion, silence of LINC00511 reduced cell proliferation and metastasis of melanoma through down-regulation of miR-610-mediated NUCB2.
Collapse
Affiliation(s)
- Guangjing Zhang
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Zhengxiang Wang
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Jie Liu
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Shijun Feng
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, Hebei, 061001, China
| | - Shanshan Ji
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| | - Dongfang Ai
- Department of Dermatology, Hebei Province Cangzhou Central Hospital, Hebei, 061001, China
| |
Collapse
|
19
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
20
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
21
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
22
|
Study on the Mechanism of miR-125b-5p Affecting Melanocyte Biological Behavior and Melanogenesis in Vitiligo through Regulation of MITF. DISEASE MARKERS 2022; 2022:6832680. [DOI: 10.1155/2022/6832680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
Objective. The goal was to confirm the mechanism by which miR-125b-5p influences melanocyte biological behavior and melanogenesis in vitiligo by regulating MITF. Methods. oe-MITF, sh-MITF, miR-125b-5p mimic, NC-mimic, NC-inhibitor, and miR-125b-5p inhibitor were transfected into cells by cell transfection. Western blotting was used to detect the related protein expression, qRT–PCR was used to detect miR-125b-5p and MITF expression, immunohistochemistry was used to detect the MITF-positive cells in vitiligo patients tissues, and a dual-luciferase reporter system was used to detect the target of miR-125b-5p and MITF. PIG1 and PIG3V cell proliferation by the CCK-8 method, cell cycle progression and apoptosis by flow cytometry, apoptosis was detected by TUNEL, Tyr activity and melanin content were measured using Tyr and melanin content assay kits. Results. Compared with the healthy control group, the expression of miR-125b-5p in the tissues and serum of vitiligo patients was upregulated, and the expression of MITF was downregulated; compared with PIG1 cells, the expression of miR-125b-5p and MITF in the PIG3V group was consistent with the above. Compared with the NC-minic group, the cell proliferation activity of the miR-125b-5p mimic group decreased, apoptosis increased, and the expression levels of melanogenesis-related proteins Tyr, Tyrp1, Tyrp2, and DCT were downregulated. Compared with the NC-inhibitor group, the above indices in the miR-125b-5p inhibitor group were all opposite to those in the miR-125b-5p mimic group. Transfection of oe-MITF into the miR-125b-5p mimic group reversed the effect of the miR-125b-5p mimic, while transfection of sh-MITF enhanced the effect of the miR-125b-5p mimic. Conclusion. miR-125b-5p affects vitiligo melanocyte biological behavior and melanogenesis by downregulating MITF expression.
Collapse
|
23
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
24
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
25
|
Levati L, Bassi C, Mastroeni S, Lupini L, Antonini Cappellini GC, Bonmassar L, Alvino E, Caporali S, Lacal PM, Narducci MG, Molineris I, De Galitiis F, Negrini M, Russo G, D’Atri S. Circulating miR-1246 and miR-485-3p as Promising Biomarkers of Clinical Response and Outcome in Melanoma Patients Treated with Targeted Therapy. Cancers (Basel) 2022; 14:cancers14153706. [PMID: 35954369 PMCID: PMC9367338 DOI: 10.3390/cancers14153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the significant improvements in advanced melanoma therapy, there is still a pressing need for biomarkers that can predict patient response and prognosis, and therefore support rational treatment decisions. Here, we investigated whether circulating miRNAs could be biomarkers of clinical outcomes in patients treated with targeted therapy. Using next-generation sequencing, we profiled plasma miRNAs at baseline and at progression in patients treated with BRAF inhibitors (BRAFi) or BRAFi + MEKi. Selected miRNAs associated with response to therapy were subjected to validation by real-time quantitative RT-PCR . Receiver Operating Characteristics (ROC), Kaplan–Meier and univariate and multivariate Cox regression analyses were performed on the validated miR-1246 and miR-485-3p baseline levels. The median baseline levels of miR-1246 and miR-485-3p were significantly higher and lower, respectively, in the group of patients not responding to therapy (NRs) as compared with the group of responding patients (Rs). In Rs, a trend toward an increase in miR-1246 and a decrease in miR-485-3p was observed at progression. Baseline miR-1246 level and the miR-1246/miR-485-3p ratio showed a good ability to discriminate between Rs and NRs. Poorer PFS and OS were observed in patients with unfavorable levels of at least one miRNA. In multivariate analysis, a low level of miR-485-3p and a high miR-1246/miR-485-3p ratio remained independent negative prognostic factors for PFS, while a high miR-1246/miR-485-3p ratio was associated with an increased risk of mortality, although statistical significance was not reached. Evaluation of miR-1246 and miR-485-3p baseline plasma levels might help clinicians to identify melanoma patients most likely to be unresponsive to targeted therapy or at higher risk for short-term PFS and mortality, thus improving their management.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Cristian Bassi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Simona Mastroeni
- Clinical Epidemiology Unit, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy;
| | - Laura Lupini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Simona Caporali
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Maria Grazia Narducci
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Ivan Molineris
- Department of Life Science and System Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (G.C.A.C.); (F.D.G.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (C.B.); (L.L.); (M.N.)
- LTTA Center, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (L.L.); (L.B.); (S.C.); (P.M.L.); (M.G.N.); (G.R.)
- Correspondence:
| |
Collapse
|
26
|
Pecorelli A, Valacchi G. Oxidative-Stress-Sensitive microRNAs in UV-Promoted Development of Melanoma. Cancers (Basel) 2022; 14:3224. [PMID: 35804995 PMCID: PMC9265047 DOI: 10.3390/cancers14133224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the most aggressive and life-threatening form of skin cancer. Key molecular events underlying the melanocytic transformation into malignant melanoma mainly involve gene mutations in which exposure to ultraviolet (UV) radiation plays a prominent role. However, several aspects of UV-induced melanomagenesis remain to be explored. Interestingly, redox-mediated signaling and perturbed microRNA (miRNA) profiles appear to be interconnected contributing factors able to act synergistically in melanoma initiation and progression. Since UV radiation can promote both redox imbalance and miRNA dysregulation, a harmful crosstalk between these two key cellular networks, with UV as central hub among them, is likely to occur in skin tissue. Therefore, decoding the complex circuits that orchestrate the interaction of UV exposure, oxidative stress, and dysregulated miRNA profiling can provide a deep understanding of the molecular basis of the melanomagenesis process. Furthermore, these mechanistic insights into the reciprocal regulation between these systems could have relevant implications for future therapeutic approaches aimed at counteracting UV-induced redox and miRNome imbalances for the prevention and treatment of malignant melanoma. In this review, we illustrate current information on the intricate connection between UV-induced dysregulation of redox-sensitive miRNAs and well-known signaling pathways involved in the malignant transformation of normal melanocytes to malignant melanoma.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Giuseppe Valacchi
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
27
|
Vitiligo-specific soluble biomarkers as early indicators of response to immune checkpoint inhibitors in metastatic melanoma patients. Sci Rep 2022; 12:5448. [PMID: 35361879 PMCID: PMC8971439 DOI: 10.1038/s41598-022-09373-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy with checkpoint inhibitors (CPIs) strongly improved the outcome of metastatic melanoma patients. However, not all the patients respond to treatment and identification of prognostic biomarkers able to select responding patients is currently of outmost importance. Considering that development of vitiligo-like depigmentation in melanoma patients represents both an adverse event of CPIs and a favorable prognostic factor, we analyzed soluble biomarkers of vitiligo to validate them as early indicators of response to CPIs. Fifty-seven metastatic melanoma patients receiving CPIs were enrolled and divided according to the best overall response to treatment. Patient sera were evaluated at pre-treatment and after 1 and 3 months of therapy. We found that basal CD25 serum levels were higher in stable and responding patients and remained higher during the first 3 months of CPI therapy compared to non-responders. CXCL9 was absent in non-responding patients before therapy beginning. Moreover, an increase of CXCL9 levels was observed at 1 and 3 months of therapy for all patients, although higher CXCL9 amounts were present in stable and responding compared to non-responding patients. Variations in circulating immune cell subsets was also analyzed, revealing a reduced number of regulatory T lymphocytes in responding patients. Altogether, our data indicate that a pre-existing and maintained activation of the immune system could be an indication of response to CPI treatment in melanoma patients.
Collapse
|
28
|
Understanding Molecular Mechanisms of Phenotype Switching and Crosstalk with TME to Reveal New Vulnerabilities of Melanoma. Cells 2022; 11:cells11071157. [PMID: 35406721 PMCID: PMC8997563 DOI: 10.3390/cells11071157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.
Collapse
|
29
|
Sánchez-Sendra B, González-Muñoz JF, Pérez-Debén S, Monteagudo C. The Prognostic Value of miR-125b, miR-200c and miR-205 in Primary Cutaneous Malignant Melanoma Is Independent of BRAF Mutational Status. Cancers (Basel) 2022; 14:cancers14061532. [PMID: 35326682 PMCID: PMC8946551 DOI: 10.3390/cancers14061532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Melanoma accounts for the majority of skin cancer-related deaths. On the one hand, most melanomas contain mutations in the BRAF gene (predominantly V600E), and on the other hand, miRNAs modulate different steps in melanoma development and progression, but there are no reports that study the relation between BRAF mutational status and the expression of miRNAs, which is important for an accurate patient prognosis. The aim of our retrospective study was to know whether BRAF mutations influence the prognostic value of miR-125b, miR-200c and miR-205 intratumoral expression in primary cutaneous melanomas. Globally, our results showed that miR-125b, miR-200c and miR-205 expression predicted the clinical outcome of primary melanomas independently of BRAF status. Thus, our findings support that BRAF mutations alone do not predict the risk of metastasis development or melanoma survival and that miR-125b, miR-200c and miR-205 may be considered as accurate prognostic biomarkers in melanoma regardless of BRAF mutational status. Abstract BRAF mutations are present in around 50% of cutaneous malignant melanomas and are related to a poor outcome in advanced-stage melanoma patients. miRNAs are epigenetic regulators that modulate different cellular processes in cancer, including melanoma development and progression. However, there are no studies on the potential associations of the genetic alterations of the BRAF gene with miRNA expression in primary cutaneous melanomas. Here, in order to analyze the influence of BRAF mutations in the ability of selected miRNAs to predict clinical outcome and patient survival at the time of diagnosis, we studied the prognostic value of miR-125b, miR-200c and miR-205 expression depending on the BRAF mutational status in fresh, frozen primary tumor specimens. For this purpose, RNA was extracted for studying both BRAF mutations by Sanger sequencing and miRNA expression. Our results indicate that, although there seems to be a slight preference for their predictive ability in the BRAF mutated group, the expression of these three miRNAs serves effectively to predict the clinical outcome of melanoma patients independently of BRAF mutational status at the time of primary tumor diagnosis.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | | | - Silvia Pérez-Debén
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, 46010 Valencia, Spain;
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (J.F.G.-M.); (S.P.-D.)
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-398-3953
| |
Collapse
|
30
|
Wang X, Cui Z, Zeng B, Qiong Z, Long Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark 2022; 34:533-543. [PMID: 35275523 DOI: 10.3233/cbm-210409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melanoma, a skin cancer derived from malignant melanocytes, is characterized by high aggressiveness and mortality. However, its exact etiology is unknown. Recently, the roles of exosomes and exosomal microRNAs (miRNAs) in the progression and therapy of various disorders, including melanoma, have gained attention. We investigated the impact of miR-138-5p from exosomes released by human mesenchymal stem cells (HMSCs) on the pathogenesis of melanoma. We isolated exosomes from HMSCs (HMSC-exos) by ultracentrifugation and verified them by specific biomarkers and transmission electron microscopy. We used CCK8, flow cytometry, quantitative real-time PCR (qRT-PCR), and Western blots to investigate cell proliferation, apoptosis, and mRNA and protein levels, respectively. Additionally, we used luciferase assays to examine the relationship between miR-138-5p and SOX4. Administration of HMSC-exos dramatically repressed the growth of melanoma cells. Elevated miR-138-5p levels in HMSC-exos were linked to increased cell apoptosis, and miR-138-5p downregulation had the opposite effects on cells. SOX4 was targeted by miR-138-5p through direct binding to the SOX4 3'UTR. In melanoma tissues, miR-138-5p was downregulated, and SOX4 was upregulated and was negatively correlated. MiR-138-5p plays a crucial role in melanoma progression. The negative regulation of SOX4 transcription mediates the function of miR-138-5p. These findings provide a novel concept of melanoma pathogenesis and identify a valuable target (miR-138-5p/SOX4 axis) in treating this disease.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhengfeng Cui
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China.,Department of Dermatology, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Basangdan Zeng
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Zhaxi Qiong
- Department of Medical and Political Science, Shigatse People's Hospital, Shigatse, The Tibet Autonomous Region, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Korfiati A, Grafanaki K, Kyriakopoulos GC, Skeparnias I, Georgiou S, Sakellaropoulos G, Stathopoulos C. Revisiting miRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int J Mol Sci 2022; 23:1299. [PMID: 35163222 PMCID: PMC8836065 DOI: 10.3390/ijms23031299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The diagnostic and prognostic value of miRNAs in cutaneous melanoma (CM) has been broadly studied and supported by advanced bioinformatics tools. From early studies using miRNA arrays with several limitations, to the recent NGS-derived miRNA expression profiles, an accurate diagnostic panel of a comprehensive pre-specified set of miRNAs that could aid timely identification of specific cancer stages is still elusive, mainly because of the heterogeneity of the approaches and the samples. Herein, we summarize the existing studies that report several miRNAs as important diagnostic and prognostic biomarkers in CM. Using publicly available NGS data, we analyzed the correlation of specific miRNA expression profiles with the expression signatures of known gene targets. Combining network analytics with machine learning, we developed specific non-linear classification models that could successfully predict CM recurrence and metastasis, based on two newly identified miRNA signatures. Subsequent unbiased analyses and independent test sets (i.e., a dataset not used for training, as a validation cohort) using our prediction models resulted in 73.85% and 82.09% accuracy in predicting CM recurrence and metastasis, respectively. Overall, our approach combines detailed analysis of miRNA profiles with heuristic optimization and machine learning, which facilitates dimensionality reduction and optimization of the prediction models. Our approach provides an improved prediction strategy that could serve as an auxiliary tool towards precision treatment.
Collapse
Affiliation(s)
- Aigli Korfiati
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | - Katerina Grafanaki
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - George Sakellaropoulos
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece; (A.K.); (G.S.)
| | | |
Collapse
|
32
|
Rafat M, Yadegar N, Dadashi Z, Shams K, Mohammadi M, Abyar M. The prominent role of miR-942 in carcinogenesis of tumors. Adv Biomed Res 2022; 11:63. [PMID: 36133499 PMCID: PMC9483553 DOI: 10.4103/abr.abr_226_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
As a family of short noncoding RNAs, MicroRNAs have been identified as possible biomarkers for cancer discovery and assist in therapy control due to their epigenetic involvement in gene expression and other cellular biological processes. In the present review, the evidence for reaching the clinical effect and the molecular mechanism of miR-942 in various kinds of cancer is amassed. Dysregulation of miR-942 amounts in different kinds of malignancies, as bladder cancer, esophageal squamous cell carcinoma, breast cancer, cervical cancer, gastric cancer, colorectal cancer, Kaposi's sarcoma, melanoma, Hepatocellular carcinoma, nonsmall-cell lung cancer, oral squamous cell carcinoma, osteosarcoma, ovarian cancer, pancreatic ductal adenocarcinoma, renal cell carcinoma, and prostate cancer has stated a considerable increase or decrease in its level indicating its function as oncogene or tumor suppressor. MiR-942 is included in cell proliferation, migration, and invasion through cell cycle pathways, including pathways of transforming growth factor-beta signaling pathways, Wnt pathway, JAK/STAT pathway, PI3K/AKT pathway, apoptosis pathway, hippo signaling pathway, lectin pathway, interferon-gamma signaling, signaling by G-protein coupled receptor, developmental genes, nuclear factor-kappa B pathway, Mesodermal commitment pathway, and T-cell receptor signaling in cancer. An important biomarker, MiR-942 is a potential candidate for prediction in several cancers. The present investigation introduced miR-942 as a prognostic marker for early discovery of tumor progression, metastasis, and development.
Collapse
|
33
|
Gong Q, Yu H, Ding G, Ma J, Wang Y, Cheng X. Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. Eur J Pharmacol 2021; 916:174726. [PMID: 34954232 DOI: 10.1016/j.ejphar.2021.174726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is commonly used in the clinical treatment of melanoma, but it is prone to resistance leading to the poor effectiveness. The mechanisms of resistance are complicated including the cancer stemness. Astragalus polysaccharide (APS) is one of the active components of traditional Chinese herbal medicine Astragalus Membranaceus. Our previous work was reported that APS had an inhibitory effect on the stemness of melanoma. In this study we established chemo-resistant melanoma cells and found that expression of stemness genes were upregulated in the resistant melanoma cells. And APS could downregulate expression of stemness genes. Furthermore, APS combined with cisplatin (DDP) could significantly slow down the tumor growth in the mouse model induced by DDP-resistant cells. In addition, we found that programmed death-ligand 1 (PD-L1) expression could be downregulated and the PI3K/AKT signaling could be affected by APS. These results suggested that APS could be a potential candidate in combination with chemotherapeutic agents, which might play a role in reducing the occurrence of resistance and improving the prognosis of melanoma patients.
Collapse
Affiliation(s)
- Qianyi Gong
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
34
|
Varrone F, Mandrich L, Caputo E. Melanoma Immunotherapy and Precision Medicine in the Era of Tumor Micro-Tissue Engineering: Where Are We Now and Where Are We Going? Cancers (Basel) 2021; 13:5788. [PMID: 34830940 PMCID: PMC8616100 DOI: 10.3390/cancers13225788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma still remains a cancer with very poor survival rates, although it is at the forefront of personalized medicine. Most patients show partial responses and disease progressed due to adaptative resistance mechanisms, preventing long-lasting clinical benefits to the current treatments. The response to therapies can be shaped by not only taking into account cancer cell heterogeneity and plasticity, but also by its structural context as well as the cellular component of the tumor microenvironment (TME). Here, we review the recent development in the field of immunotherapy and target-based therapy and how, in the era of tumor micro-tissue engineering, ex-vivo assays could help to enhance our melanoma biology knowledge in its complexity, translating it in the development of successful therapeutic strategies, as well as in the prediction of therapeutic benefits.
Collapse
Affiliation(s)
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystem—IRET-CNR Via Pietro Castellino 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics—IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, I-80131 Naples, Italy
| |
Collapse
|
35
|
Welsh M. The Felicitous Success of the Subsection Molecular Oncology of International Journal of Molecular Sciences. Int J Mol Sci 2021; 22:ijms22136939. [PMID: 34203257 PMCID: PMC8268909 DOI: 10.3390/ijms22136939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
The evolvement of the newly started subsection IJMS molecular oncology is discussed. The breadth and depth of the journal articles is alluded to. A bright future for this subsection is anticipated, developing into a top tier cancer journal.
Collapse
Affiliation(s)
- Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, P.O. Box 571, 75123 Uppsala, Sweden
| |
Collapse
|
36
|
Hushcha Y, Blo I, Oton-Gonzalez L, Mauro GD, Martini F, Tognon M, Mattei MD. microRNAs in the Regulation of Melanogenesis. Int J Mol Sci 2021; 22:ijms22116104. [PMID: 34198907 PMCID: PMC8201055 DOI: 10.3390/ijms22116104] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Melanogenesis is the process leading to the synthesis of melanin, the main substance that influences skin color and plays a pivotal role against UV damage. Altered melanogenesis is observed in several pigmentation disorders. Melanogenesis occurs in specialized cells called melanocytes, physically and functionally related by means of autocrine and paracrine interplay to other skin cell types. Several external and internal factors control melanin biosynthesis and operate through different intracellular signaling pathways, which finally leads to the regulation of microphthalmia-associated transcription factor (MITF), the key transcription factor involved in melanogenesis and the expression of the main melanogenic enzymes, including TYR, TYRP-1, and TYRP-2. Epigenetic factors, including microRNAs (miRNAs), are involved in melanogenesis regulation. miRNAs are small, single-stranded, non-coding RNAs, of approximately 22 nucleotides in length, which control cell behavior by regulating gene expression, mainly by binding the 3′ untranslated region (3′-UTR) of target mRNAs. This review collects data on the miRNAs involved in melanogenesis and how these miRNAs can modulate target gene expression. Bringing to light the biological function of miRNAs could lead to a wider understanding of epigenetic melanogenesis regulation and its dysregulation. This knowledge may constitute the basis for developing innovative treatment approaches for pigmentation dysregulation.
Collapse
Affiliation(s)
| | - Irene Blo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Lucia Oton-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Giulia Di Mauro
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b, Fossato di Mortara Street, 44121 Ferrara, Italy; (I.B.); (L.O.-G.); (G.D.M.); (F.M.); (M.T.)
- Correspondence: ; Tel.: +39-0532-455534
| |
Collapse
|
37
|
Vandyck HHLD, Hillen LM, Bosisio FM, van den Oord J, zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev 2021; 40:603-624. [PMID: 33870460 PMCID: PMC8213587 DOI: 10.1007/s10555-021-09960-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.
Collapse
Affiliation(s)
- Hendrik HLD Vandyck
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
38
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
39
|
Gebhardt K, Edemir B, Groß E, Nemetschke L, Kewitz-Hempel S, Moritz RKC, Sunderkötter C, Gerloff D. BRAF/EZH2 Signaling Represses miR-129-5p Inhibition of SOX4 Thereby Modulating BRAFi Resistance in Melanoma. Cancers (Basel) 2021; 13:cancers13102393. [PMID: 34063443 PMCID: PMC8155874 DOI: 10.3390/cancers13102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Approximately 60% of all melanomas are associated with a constitutive activating BRAF mutation. Inhibition of BRAF downstream signaling by targeted therapies significantly improved patient outcomes. However, most patients eventually develop resistance. Here we identified miR-129-5p as a novel tumor suppressor in BRAF mutated melanoma, which expression is increased during response to BRAF inhibition, but repressed in an EZH2 dependent manner during activated BRAF signaling. Overexpression of miR-129-5p decreases melanoma cell proliferation and improves response to BRAF inhibition by targeting SOX4. Taken together our results emphasize SOX4 as a potential therapeutic target in BRAF driven melanoma which could be attacked by pharmaceutically. Abstract Many melanomas are associated with activating BRAF mutation. Targeted therapies by inhibitors of BRAF and MEK (BRAFi, MEKi) show marked antitumor response, but become limited by drug resistance. The mechanisms for this are not fully revealed, but include miRNA. Wishing to improve efficacy of BRAFi and knowing that certain miRNAs are linked to resistance to BRAFi, we wanted to focus on miRNAs exclusively associated with response to BRAFi. We found increased expression of miR-129-5p during BRAFi treatment of BRAF- mutant melanoma cells. Parallel to emergence of resistance we observed mir-129-5p expression to become suppressed by BRAF/EZH2 signaling. In functional analyses we revealed that miR-129-5p acts as a tumor suppressor as its overexpression decreased cell proliferation, improved treatment response and reduced viability of BRAFi resistant melanoma cells. By protein expression analyses and luciferase reporter assays we confirmed SOX4 as a direct target of mir-129-5p. Thus, modulation of the miR-129-5p-SOX4 axis could serve as a promising novel strategy to improve response to BRAFi in melanoma.
Collapse
Affiliation(s)
- Kathleen Gebhardt
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Elisabeth Groß
- Department of Internal Medicine IV, Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (B.E.); (E.G.)
| | - Linda Nemetschke
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Stefanie Kewitz-Hempel
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Rose K. C. Moritz
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.G.); (L.N.); (S.K.-H.); (R.K.C.M.); (C.S.)
- Correspondence: ; Tel.: +49-0345-557-5255
| |
Collapse
|
40
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Fattore L, Ruggiero CF, Liguoro D, Castaldo V, Catizone A, Ciliberto G, Mancini R. The Promise of Liquid Biopsy to Predict Response to Immunotherapy in Metastatic Melanoma. Front Oncol 2021; 11:645069. [PMID: 33816298 PMCID: PMC8013996 DOI: 10.3389/fonc.2021.645069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma is the deadliest form of skin cancer whose incidence has been rising dramatically over the last few decades. Nowadays, the most successful approach in treating advanced melanoma is immunotherapy which encompasses the use of immune checkpoint blockers able to unleash the immune system's activity against tumor cells. Immunotherapy has dramatically changed clinical practice by contributing to increasing long term overall survival. Despite these striking therapeutic effects, the clinical benefits are strongly mitigated by innate or acquired resistance. In this context, it is of utmost importance to develop methods capable of predicting patient response to immunotherapy. To this purpose, one major step forward may be provided by measuring non-invasive biomarkers in human fluids, namely Liquid Biopsies (LBs). Several LB approaches have been developed over the last few years thanks to technological breakthroughs that have allowed to evaluate circulating components also when they are present in low abundance. The elements of this so-called "circulome" mostly encompass: tumor DNA, tumor and immune cells, soluble factors and non-coding RNAs. Here, we review the current knowledge of these molecules as predictors of response to immunotherapy in metastatic melanoma and predict that LB will soon enter into routine practice in order to guide clinical decisions for cancer immunotherapy.
Collapse
Affiliation(s)
- Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ciro Francesco Ruggiero
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittorio Castaldo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
43
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
44
|
Lazăr AD, Dinescu S, Costache M. The Non-Coding Landscape of Cutaneous Malignant Melanoma: A Possible Route to Efficient Targeted Therapy. Cancers (Basel) 2020; 12:cancers12113378. [PMID: 33203119 PMCID: PMC7696690 DOI: 10.3390/cancers12113378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Considered to be highly lethal if not diagnosed in early stages, cutaneous malignant melanoma is among the most aggressive and treatment-resistant human cancers, and its incidence continues to rise, largely due to ultraviolet radiation exposure, which is the main carcinogenic factor. Over the years, researchers have started to unveil the molecular mechanisms by which malignant melanoma can be triggered and sustained, in order to establish specific, reliable biomarkers that could aid the prognosis and diagnosis of this fatal disease, and serve as targets for development of novel efficient therapies. The high mutational burden and heterogeneous nature of melanoma shifted the main focus from the genetic landscape to epigenetic and epitranscriptomic modifications, aiming at elucidating the role of non-coding RNA molecules in the fine tuning of melanoma progression. Here we review the contribution of microRNAs and lncRNAs to melanoma invasion, metastasis and acquired drug resistance, highlighting their potential for clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Andreea D. Lazăr
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
45
|
Bustos MA, Gross R, Rahimzadeh N, Cole H, Tran LT, Tran KD, Takeshima L, Stern SL, O’Day S, Hoon DSB. A Pilot Study Comparing the Efficacy of Lactate Dehydrogenase Levels Versus Circulating Cell-Free microRNAs in Monitoring Responses to Checkpoint Inhibitor Immunotherapy in Metastatic Melanoma Patients. Cancers (Basel) 2020; 12:cancers12113361. [PMID: 33202891 PMCID: PMC7696545 DOI: 10.3390/cancers12113361] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Improvement in melanoma patients with metastatic disease is needed to better assess immunotherapies. Lactate dehydrogenase (LDH) is currently an accepted biomarker for stage IV, but it has limited utility for stage III melanoma patients. Thus, finding biomarkers for metastatic melanoma is important not only to identify progressive melanoma tumors, but also to monitor patients under checkpoint inhibitor immunotherapy (CII). The aim of this pilot study was to demonstrate the utility of circulating cell-free microRNAs (cfmiRs) as potential blood biomarkers for stage III and IV melanoma patients compared to LDH. To accomplish this aim, we profiled for cfmiR the plasma of metastatic melanoma patients before and during CII treatment, and compared them to normal healthy donors’ samples. The cfmiR profiling was performed using an NGS-based miRNA assay, which requires no extraction and a small volume input. We found specific cfmiR signatures in stage III and IV metastatic melanoma patients. As a proof of concept, our results showed that certain cfmiRs are associated with CII outcomes. Abstract Serum lactate dehydrogenase (LDH) is a standard prognostic biomarker for stage IV melanoma patients. Often, LDH levels do not provide real-time information about the metastatic melanoma patients’ disease status and treatment response. Therefore, there is a need to find reliable blood biomarkers for improved monitoring of metastatic melanoma patients who are undergoing checkpoint inhibitor immunotherapy (CII). The objective in this prospective pilot study was to discover circulating cell-free microRNA (cfmiR) signatures in the plasma that could assess melanoma patients’ responses during CII. The cfmiRs were evaluated by the next-generation sequencing (NGS) HTG EdgeSeq microRNA (miR) Whole Transcriptome Assay (WTA; 2083 miRs) in 158 plasma samples obtained before and during the course of CII from 47 AJCC stage III/IV melanoma patients’ and 73 normal donors’ plasma samples. Initially, cfmiR profiles for pre- and post-treatment plasma samples of stage IV non-responder melanoma patients were compared to normal donors’ plasma samples. Using machine learning, we identified a 9 cfmiR signature that was associated with stage IV melanoma patients being non-responsive to CII. These cfmiRs were compared in pre- and post-treatment plasma samples from stage IV melanoma patients that showed good responses. Circulating miR-4649-3p, miR-615-3p, and miR-1234-3p demonstrated potential prognostic utility in assessing CII responses. Compared to LDH levels during CII, circulating miR-615-3p levels were consistently more efficient in detecting melanoma patients undergoing CII who developed progressive disease. By combining stage III/IV patients, 92 and 17 differentially expressed cfmiRs were identified in pre-treatment plasma samples from responder and non-responder patients, respectively. In conclusion, this pilot study demonstrated cfmiRs that identified treatment responses and could allow for real-time monitoring of patients receiving CII.
Collapse
Affiliation(s)
- Matias A. Bustos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (R.G.); (N.R.); (L.T.); (D.S.B.H.)
- Correspondence:
| | - Rebecca Gross
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (R.G.); (N.R.); (L.T.); (D.S.B.H.)
| | - Negin Rahimzadeh
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (R.G.); (N.R.); (L.T.); (D.S.B.H.)
| | - Hunter Cole
- Department of Immuno-Oncology and Clinical Research, JWCI, Providence SJHC, Santa Monica, CA 90404, USA; (H.C.); O' (S.O.)
| | - Linh T. Tran
- Department of Genomic Sequencing Center, JWCI, Providence SJHC, Santa Monica, CA 90404, USA; (L.T.T.); (K.D.T.)
| | - Kevin D. Tran
- Department of Genomic Sequencing Center, JWCI, Providence SJHC, Santa Monica, CA 90404, USA; (L.T.T.); (K.D.T.)
| | - Ling Takeshima
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (R.G.); (N.R.); (L.T.); (D.S.B.H.)
| | - Stacey L. Stern
- Department of Biostatistics, JWCI, Providence SJHC, Santa Monica, CA 90404, USA;
| | - Steven O’Day
- Department of Immuno-Oncology and Clinical Research, JWCI, Providence SJHC, Santa Monica, CA 90404, USA; (H.C.); O' (S.O.)
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John’s Health Center (SJHC), Santa Monica, CA 90404, USA; (R.G.); (N.R.); (L.T.); (D.S.B.H.)
- Department of Genomic Sequencing Center, JWCI, Providence SJHC, Santa Monica, CA 90404, USA; (L.T.T.); (K.D.T.)
| |
Collapse
|
46
|
Zhao S, Tang L, Chen W, Su J, Li F, Chen X, Wu L. Resveratrol-induced apoptosis is associated with regulating the miR-492/CD147 pathway in malignant melanoma cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:797-807. [PMID: 33009925 DOI: 10.1007/s00210-020-01981-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/23/2020] [Indexed: 01/17/2023]
Abstract
Resveratrol (RES) as a natural phytoalexin has anti-tumor effects on various cancers through its pro-apoptotic activities. Our aim was to determine that RES induces apoptosis in melanoma cells by regulating miR-492 resulting in decreased CD147 expression. We treated A375 and SK-MEL-28 melanoma cells via RES at different concentrations and time-points. The results have shown that the inhibition rate of A375 and SK-MEL-28 was significantly increased after RES treatment. Subsequently, we investigated cell apoptosis by flow cytometry, as well as detected apoptotic-associated proteins including PARP, Caspase-3, Bcl-2, and Bax by western blotting. Meanwhile, the expression of miR-492 and CD147 was analyzed. We found that RES remarkably induces apoptosis in melanoma cells, along with an upregulation of miR-492 and the inhibition of CD147 expression. Furthermore, the detection of luciferase reporter activity confirmed that miR-492 could target CD147 mRNA, and transfected with mimic miR-492 in cells reduced CD147 expression. We also performed the rescued experiment by using a miR-492 inhibitor in melanoma cells. The results showed that the ability of induced apoptosis by RES in melanoma cells was to be attenuated via inhibiting miR-492 expression resulting in CD147 augment. Finally, we determined that the effect of RES-induced apoptosis in melanoma cells is associated with, at least in part, its ability to regulate the miR-492/CD147 pathway.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
| | - Ling Tang
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
| | - Fangfang Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
| | - Lisha Wu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China. .,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
47
|
Zhang W, Mao K, Liu S, Xu Y, Ren J. miR-942-5p promotes the proliferation and invasion of human melanoma cells by targeting DKK3. J Recept Signal Transduct Res 2020; 41:180-187. [PMID: 32772782 DOI: 10.1080/10799893.2020.1804280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The purpose of this study was to figure out the dysregulation of miR-942-5p in melanoma and its role in melanoma pathogenesis. METHODS Quantitative real-time PCR (qRT-PCR) assay was used to determine the change of RNA expression. Protein expression was examined by Western blotting. miRNA target was validated through TargetScan and luciferase assay. Cell migration and invasion were detected by wound healing and transwell assay, respectively. RESULTS Results of qRT-PCR manifested miR-942-5p were upregulated in melanoma cell. High expression of miR-942-5p in melanoma patients presented a poor prognosis. Upregulation of miR-942-5p accelerated cell proliferation, migration, and invasion in melanoma cells. Cell apoptosis was inhibited by miR-942-5p mimics. Suppression of miR-942-5p by its inhibitor showed the opposite effects in melanoma cells. TargetScan and luciferase assay showed that miR-942-5p directly targeted to the 3'-untranslated region (3'-UTR) of DKK3. Overexpression of DKK3 inhibited GSK-3β phosphorylation and reduced the expression of β-catenin in both cytoplasm and nucleus, which were induced by miR-942-5p mimics leading to the activation of Wnt/β-catenin pathway. CONCLUSION Upregulation of miR-942-5p was observed in melanoma cells and tissues and significantly associated with a poor prognosis. Though targeting 3'-UTR of DKK3, miR-942-5p could activate Wnt/β-catenin pathway, resulting in melanoma cell proliferation, migration, and invasion, which promoted the development of melanoma. These results showed that miR-942-5p might be a diagnosis and prognosis biomarker in melanoma.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Plastic and Cosmetic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Kaiping Mao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Sumei Liu
- Clinical Teaching and Research Office, Qingdao Health School, Qingdao City, China
| | - Yujiao Xu
- Department of Hemodialysis, Shandong Qingdao Hospital of Intergrated Traditional and Western Medicine, Qingdao City, China
| | - Jizhen Ren
- Department of Plastic and Cosmetic Surgery, The Affiliated Hospital of Qingdao University, Qingdao City, China
| |
Collapse
|
48
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
49
|
Yang T, Wei L, Ma X, Ke H. Columbamine suppresses proliferation and invasion of melanoma cell A375 via HSP90-mediated STAT3 activation. J Recept Signal Transduct Res 2020; 41:99-104. [PMID: 32669028 DOI: 10.1080/10799893.2020.1794003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The goal of this study is to explore the effects of columbamine in melanoma cells and the signaling pathway involved. METHODS Human melanoma cell line A375 cells were used in this study. Cell proliferative ability was detected by MTT assay and clone formation assay. Cell migration and invasion were measured by wound healing assay and transwell assay, respectively. Protein expression was examined by Western blotting. RESULTS Columbamine reduced cell proliferative ability and the number of clone spots in A375 cells. Western blotting results demonstrated that expression of cleaved caspase 3, an activated cell death protease, was upregulated by 20 and 50 µM of columbamine. Wound healing results showed that the scratch width was wider in cell treated with 20 and 50 µM of columbamine than that in cell treated with 0 and 10 µM of columbamine. Phosphorylation of STAT3 and expression of HSP90 was also repressed by columbamine in a concentration-dependent manner. Overexpression of HSP90 attenuated the inhibition of cell proliferation, migration and invasion induced by columbamine. CONCLUSION Columbamine inhibited melanoma cell proliferation, migration, and invasion in A375 cells through inactivation of STAT3, which is mediated by HSP90.
Collapse
Affiliation(s)
- Tao Yang
- Department of Dermatovenerology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Liuliu Wei
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou City, China
| | - Xiang Ma
- Department of Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology Laboratory, Wuhan City, China
| | - Huan Ke
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology Laboratory, Wuhan City, China
| |
Collapse
|
50
|
Yang F, Lei P, Zeng W, Gao J, Wu N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag Res 2020; 12:3131-3144. [PMID: 32440211 PMCID: PMC7211300 DOI: 10.2147/cmar.s243869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 173 (LINC00173) plays crucial roles in lung cancer. However, the expression and biological functions of LINC00173 in melanoma have not yet been investigated. In this study, we aimed to characterize the involvement of LINC00173 in melanoma and elucidate its mechanisms of action. Materials and Methods Reverse-transcription quantitative PCR was performed to measure LINC00173 expression in melanoma. A CCK-8 assay, flow cytometry, and migration and invasion assays were applied to examine melanoma cell proliferation, apoptosis, migration, and invasion, respectively. A xenograft tumor experiment was performed to determine the tumorous growth of melanoma cells in vivo. Results We found that LINC00173 was upregulated in melanoma tissues and cell lines. High LINC00173 expression was closely associated with TNM stage, lymph node metastasis, and shorter overall survival of patients with melanoma. Functional assays revealed that LINC00173 downregulation inhibited melanoma cell proliferation, migration, and invasion and induced apoptosis, suggesting that LINC00173 acts as an oncogenic RNA. LINC00173 knockdown retarded the tumorous growth of melanoma cells in vivo. Mechanistically, LINC00173 increased insulin receptor substrate 4 (IRS4) expression by sponging microRNA-493 (miR-493), thereby acting as a competing endogenous RNA. The effects of LINC00173 knockdown on the malignant phenotype of melanoma cells were reversed by overexpression of IRS4 or knockdown of miR-493. Conclusion The LINC00173–miR-493–IRS4 pathway regulates melanoma characteristics by increasing the expression of IRS4 via competitive binding of LINC00173 to miR-493, suggesting that this pathway is a potential target for the diagnosis, prognosis, and/or treatment of melanoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jianwu Gao
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Na Wu
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|