1
|
Peng C, Li X, Yao Y, Nie Y, Fan L, Zhu C. MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3. Cancer Biol Ther 2024; 25:2373497. [PMID: 38967961 PMCID: PMC11229718 DOI: 10.1080/15384047.2024.2373497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite advances in targeted therapies, primary and acquired resistance make the treatment of colorectal cancer (CRC) a pressing issue to be resolved. According to reports, the development of CRC is linked to miRNA dysregulation. Multiple studies have demonstrated that miR-135b-5p has an aberrant expression level between CRC tissues and adjacent tissues. However, it is unclear whether there is a correlation between miR-135b-5p and cetuximab (CTx) resistance in CRC. Use the GEO database to measure miR-135b-5p expression in CRC. Additionally, RT-qPCR was applied to ascertain the production level of miR-135b-5p in three human CRC cells and NCM460 cells. The capacity of cells to migrate and invade was examined utilizing the wound-healing and transwell assays, while the CCK-8 assay served for evaluating cell viability, as well as colony formation assays for proliferation. The expected target protein of miR-135b-5p in CRC cell cetuximab resistance has been investigated using western blot. Suppression of miR-135b-5p could increase the CTx sensitivity of CTx-resistant CRC cells, as manifested by the attenuation of proliferation, migration, and invasion ability. Mechanistic studies revealed miR-135b-5p regulates the epithelial-to-mesenchymal transition (EMT) process and Wnt/β-catenin signaling pathway through downgulating FOXN3. In short, knockdowning miR-135b-5p could increase FOXN3 expression in CRC cells, promote the EMT process, and simultaneously activate the Wnt/β-catenin signaling pathway to elevate CTx resistance in CRC cells.
Collapse
Affiliation(s)
- Chun Peng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Li
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuhui Yao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Nie
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingyao Fan
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang J, Jia Q, Sun J, Wu S, Wei L, Yao W. Arntl-induced upregulation of DUSP1 inhibits tumor progression in esophageal squamous cell carcinoma by inactivating ERK signaling. Cancer Biol Ther 2024; 25:2408042. [PMID: 39341782 PMCID: PMC11445925 DOI: 10.1080/15384047.2024.2408042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a primary histological type of esophageal carcinoma with high morbidity. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL) is a circadian clock gene associated with the progression of multiple tumors. However, its roles and mechanisms in ESCC remain unknown. METHODS ARNTL expression was analyzed using TCGA database and detected using qRT-PCR, and ARNTL-related pathways were analyzed through GSEA. Cell functional behaviors were assessed in vitro by measuring cell viability, proliferation, and apoptosis. Cell growth in the murine model was investigated through xenograft model and immunofluorescence assays of PCNA and Ki67. The downstream targets of ARNTL were analyzed through sequencing and identified via luciferase report, ChIP, and RNA pull-down analyses. Dual-specificity protein phosphatase-1 (DUSP1) expression was analyzed using GEO datasets and measured using qRT-PCR and western blotting. Protein expression was examined via western blotting. RESULTS ARNTL expression was decreased in esophageal carcinoma and associated with histological types, and elevated expression of ARNTL repressed ESCC cell viability and proliferation and facilitated cell apoptosis. ARNTL upregulation reduced tumor cell growth in murine models and decreased PCNA and Ki67 levels. Furthermore, DUSP1 was downregulated upon ARNTL silencing in ESCC. ARNTL could bind and positively regulate DUSP1 transcription. Additionally, DUSP1 silencing reversed the influences of ARNTL upregulation on cell viability, proliferation, and apoptosis in ESCC cells. ARNTL attenuated the activation of the ERK signaling by decreasing ERK phosphorylation through upregulation of DUSP1. CONCLUSION ARNTL hinders cell growth and contributes to cell apoptosis by inactivating ERK signaling through transcriptional upregulation of DUSP1 in ESCC.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Qifan Jia
- Department of Thoracic Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Jingyao Sun
- Department of Thoracic Surgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Sen Wu
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Wang L, Wang Y, Wu W, Qian L, Jin P. Hsa_circ_0010023 promotes the development of papillary thyroid carcinoma by sponging miR-1250-5p. Endocrine 2024; 86:744-752. [PMID: 38914746 DOI: 10.1007/s12020-024-03936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common thyroid tumor (TC). However, there is still a lack of effective indicators for PTC detection and prognosis. We intended to find a novel tumor marker for the progression of PTC. METHODS The expression of circRNAs was measured by quantitative real-time polymerase chain reaction (qRT-PCR). SiRNA transfection was used to knockdown the expression of hsa_circ_0010023 in K1 cells. Cell proliferation was evaluated using cell counting and CCK8. Cell apoptosis was analyzed using flow cytometry. Hsa_circ_0010023 downstream pathways were predicted with bio-informatics analysis. The miR-1250-5p and MAPK1 were measured by qRT-PCR. The interaction between miR-1250-5p and hsa_circ_0010023 was vertified by dual-luciferase reporter assay. RESULTS Among the four circRNAs screened, only hsa_circ_0010023 and hsa_circ_0128482 were highly expressed in PTC (P < 0.05). The expression of hsa_circ_0010023 was significantly correlated with lymph node metastasis and extrathyroid infiltration (P < 0.05). Compared with the control group, the cell proliferation of the si-circ-0010023 group was significantly inhibited (P < 0.05). Knockdown of hsa_circ_0010023 promotes apoptosis of K1 cells (P < 0.001). The expression of hsa_circ_0010023 was negatively correlated with miR-1250-5p and positively correlated with MAPK1. MiR-1250-5p overexpression significantly reduced the luciferase activity of wild type plasmid (hsa_circ_0010023 WT), but not that of mutant type plasmid (hsa_circ_0010023 MUT). CONCLUSION The expression level of hsa_circ_0010023 was positive related to the progression of PTC, and hsa_circ_0010023 may promote PTC through sponging miR-1250-5p. Hsa_circ_0010023 may be a potential bio-marker for the diagnosis of PTC.
Collapse
Affiliation(s)
- Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007, Changsha, Hunan, China
| | - Yujun Wang
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007, Changsha, Hunan, China
| | - Wei Wu
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, 410007, Changsha, Hunan, China
| | - Liyuan Qian
- Department of Breast & Thyroid Surgery, The Third Xiangya Hospital, Central South University, 410007, Changsha, Hunan, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007, Changsha, Hunan, China.
| |
Collapse
|
4
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
5
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Liu R, Qiu M, Deng X, Zhang M, Gao Z, Wang Y, Mei H, Zhai M, Zhang Q, Hao J, Yang Z, Wang H. Erianin inhibits the progression of pancreatic cancer by directly targeting AKT and ASK1. Cancer Cell Int 2024; 24:348. [PMID: 39456094 PMCID: PMC11515188 DOI: 10.1186/s12935-024-03533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer is a malignant tumor of the digestive tract with a high mortality rate. Erianin has antitumor activity, but the regulatory targets and mechanism of action in pancreatic cancer are unclear. The objective of this study was to evaluate the anti-pancreatic cancer activity of Erianin and explore its underlying mechanisms. METHODS A network pharmacology approach was used to investigate the mechanism of action of Erianin in pancreatic cancer cells. Cell proliferation was analyzed using CCK8, colony-formation, and EdU proliferation assays. Cell migration was evaluated through wound healing and transwell assays, as well as determination of the protein expression levels of EMT markers and β-catenin. Apoptosis and the cell cycle were measured using flow cytometry and JC-1 staining, respectively. The protein expression levels of p-Rb, CyclinB1, P21, Cleaved-PARP, and Cleaved-Caspase3 were assessed using western blotting. RNA sequencing (RNA-seq) and bioinformatics analyses were performed to elucidate the mechanism underlying the action of Erianin in pancreatic cancer. Western blotting was used to examine the expression levels of key proteins in the AKT, JNK, and p38 MAPK signaling pathways. Molecular docking and CETSA were used to test hypotheses. The tumor-suppressive ability of Erianin in vivo was assessed using a tumor-bearing assay in nude mice. RESULTS Network pharmacology revealed that Erianin inhibited pancreatic cancer through multiple pathways. Erianin significantly inhibited pancreatic cancer cell proliferation and migration while promoting intracellular ROS and inducing apoptosis. Mechanistically, Erianin inhibited pancreatic cancer cell proliferation by regulating the AKT/FOXO1 and ASK1/JNK/p38 MAPK signaling pathways. In vivo experiments showed that Erianin inhibited subcutaneous tumor growth and promoted tumor tissue apoptosis in nude mice. CONCLUSIONS The component-target-pathway network revealed that Erianin exerted anti-cancer effects through multiple components, targets, and pathways. Erianin inhibited the proliferation and migration of pancreatic cancer cells and induced apoptosis through the AKT/FOXO1 and ASK1/JNK/p38 MAPK signaling pathways. These results indicate that Erianin is a promising agent for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ruxue Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- School of Medicine, Nankai University, Tianjin, 300121, China.
| | - Xinxin Deng
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
| | - Meng Zhang
- School of Medicine, Nankai University, Tianjin, 300121, China
| | - Zhanhua Gao
- School of Medicine, Nankai University, Tianjin, 300121, China
| | - Yayun Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
| | - Hanwei Mei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengting Zhai
- School of Medicine, Nankai University, Tianjin, 300121, China
| | - Qiaonan Zhang
- School of Medicine, Nankai University, Tianjin, 300121, China
| | - Jie Hao
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China
| | - Zhen Yang
- Department of Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
| | - Huaqing Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, 300121, China.
| |
Collapse
|
8
|
Fatima I, Sahar A, Tariq A, Naz T, Usman M. Exploring the Role of Licorice and Its Derivatives in Cell Signaling Pathway NF- κB and MAPK. J Nutr Metab 2024; 2024:9988167. [PMID: 39479405 PMCID: PMC11524698 DOI: 10.1155/2024/9988167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Licorice is a therapeutic herb in traditional Chinese herbal medicine. Licorice is considered as an anti-inflammatory agent due to its suppression and inhibition of inflammatory pathways. Licorice has many bioactive compounds such as glycyrrhetinic acid, glycyrrhizin, liquiritigenin, and isoliquirtigenin which are principally accountable for its therapeutic benefits. These bioactive components reduce inflammation by preventing the activation of important inflammatory pathways including mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB). As a result of this tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) are among the proinflammatory cytokines whose production is inhibited. Components present in licorice inhibit the activation by suppressing the IκBα phosphorylation and degradation. Moreover, licorice compounds also attenuate the MAPK signaling cascades by inhibiting the MAPK kinase phosphorylation and downstream MAPKs such as extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK). The present review focuses on the current understanding of licorice effect on the NF-κB and MAPK inflammatory cell signaling pathways at molecular level. Furthermore, emerging evidence suggested that licorice-derived bioactive compounds may attenuate the molecular mechanism which is associated with inflammation, providing the additional insights into the therapeutic potential. Further studies explained the precise molecular mechanism at the cellular level underlying the licorice anti-inflammatory effect and potential application in managing inflammatory disorders. In conclusion, licorice has a complex mode of action and is a valuable natural anti-inflammatory. Its natural origin and effectiveness in clinical applications make it an intriguing topic for additional study. As licorice becomes more widely used in medicine, future research should focus on refining its formulations to optimize therapeutic advantages.
Collapse
Affiliation(s)
- Ieaman Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Tabana Naz
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- School of Food and Agriculture Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
9
|
Zhai W, Yang W, Ge J, Xiao X, Wu K, She K, Zhou Y, Kong Y, Wu L, Luo S, Pu X. ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway. Biol Direct 2024; 19:94. [PMID: 39415271 PMCID: PMC11483991 DOI: 10.1186/s13062-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear. METHODS ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays. RESULTS Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway. CONCLUSIONS We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wensheng Yang
- Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 36, Hongqi Road, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Jing Ge
- Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuelian Xiao
- Department of Medical Administration, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Kang Wu
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Kelin She
- Department of Thoracic Surgery, Hunan Provincial Pecople's Hospital, The First Affiliated Hospital of Huan Nomal University, No. 61, Jiefang West Road, Furong District, Changsha, 410013, Hunan, China
| | - Yu Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yi Kong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Shiya Luo
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Huang Y, Liu F, Ren S, Ding Y, Chi M, Huang W, Gu W, Qian H, Yuan Y, Hou S, Chen X, Ma L. Structure Optimization of c-Jun N-terminal Kinase 1 Inhibitors for Treating Idiopathic Pulmonary Fibrosis. J Med Chem 2024; 67:17713-17737. [PMID: 39303278 DOI: 10.1021/acs.jmedchem.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease with an elusive etiology. Aberrant activation of c-Jun N-terminal kinase 1 (JNK1) has been implicated in its pathogenesis. Through a combination of structure-based drug design and structure-activity relationship (SAR) optimization, a series of pyrimidine-2,4-diamine scaffold derivatives have been developed as potent JNK1 inhibitors. Compound E1 was identified with low nanomolar JNK1 inhibitory potency (IC50 = 2.7 nM). The introduction of a dimethylamine side chain has significantly enhanced the ability of E1 to inhibit c-Jun phosphorylation, surpassing the clinical candidate CC-90001. Molecular dynamics simulations revealed a binding free energy of -50.46 kcal/mol for E1. Moreover, E1 displayed satisfactory pharmacokinetic properties, with a bioavailability of 69% in rats. Furthermore, compound E1 exerted significant antifibrotic effects in a bleomycin-induced IPF mouse model and prevented a TGF-β-induced epithelial-to-mesenchymal transition in vitro. These findings position E1 as a promising lead for further drug development targeting IPF.
Collapse
Affiliation(s)
- Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuhua Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanqing Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Weiwei Huang
- Hangzhou Matrix Biopharmaceutical Co., Ltd, Hangzhou, Zhejiang 311121, China
| | - Wenjing Gu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
12
|
Ha X, Li Y, Gao Z, Cui J, Nie Y, Sun L, Gao W. IL1RL2 is related to the expression and prognosis of bladder cancer. Mol Clin Oncol 2024; 21:75. [PMID: 39170626 PMCID: PMC11337083 DOI: 10.3892/mco.2024.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
IL1RL2 has been reported to be highly expressed in a variety of tumor types whereas its role in bladder cancer (BLCA) remains unclear. The aim of the present study was to explore the prognostic value of Il1RL2 in BLCA and its relationship with clinical pathological features. The Cancer Genome Atlas (TCGA) database was used to assess the levels of IL1RL2 expression in BLCA tissues and cells, which were validated by reverse transcription-quantitative polymerase chain reaction and western blotting. Immunohistochemistry was employed to analyze expression of the IL1RL2 gene in 17 pairs of tumor and normal specimens, as well as 112 samples with different stages and grades of tumors. To investigate the biological functions of Il1RL2 in BLCA, co-expression networks and functional enrichment analyses were conducted. A protein-protein interaction network was constructed using interaction gene search tools. IL1RL2 was revealed to be clearly expressed in BLCA cells and tissues. The area under the curve for amplification of IL1RL2 distinguishing between tumor and normal tissues was 0.700 (95% CI: 0.579-0.821) in the TCGA database and 0.647 (95% CI: 0.497-0.797) in Miyun chart database, respectively. Furthermore, in our database, both univariate and multivariate analyses indicated that IL1RL2 expression was an independent risk factor for overall survival (OS). Kaplan-Meier survival analysis revealed an association between high IL1RL2 expression and low OS. Pathway enrichment analysis suggested that IL1RL2 is involved in the regulation of tumor progression through the MAPK signaling pathway. The expression level of IL1RL2 was associated with the stage, grade, lymph node album and prognosis of BLCA.
Collapse
Affiliation(s)
- Xuemei Ha
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| | - Yue Li
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zihui Gao
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| | - Jiazhao Cui
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| | - Yuzhu Nie
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| | - Lihua Sun
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| | - Wenzhi Gao
- Department of Pathology, Peking University First Hospital-Miyun Hospital, Beijing 100034, P.R. China
- Miyun Teaching Hospital, Capital Medical University, Beijing 100034, P.R. China
| |
Collapse
|
13
|
He N, Zhang J, Liu M, Yin L. Elucidating the mechanism of plasticizers inducing breast cancer through network toxicology and molecular docking analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116866. [PMID: 39178760 DOI: 10.1016/j.ecoenv.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE The objective of this study was to elucidate the molecular mechanisms underlying the potential contribution of commonly utilized plasticizers, including Diethyl phthalate (DEP), Dimethyl phthalate (DMP), and Dioctyl phthalate (DOP), to the pathogenesis of breast cancer. This study aimed to highlight the complex interactions between these environmental chemicals and key molecular pathways implicated in tumorigenesis. METHODS We employed network toxicology and molecular docking techniques to analyze the interactions between plasticizers and key proteins implicated in breast cancer. Utilizing databases such as the TCGA, we performed an expression analysis of selected key genes in breast cancer tissue compared to normal controls. Enrichment analysis was conducted to identify the biological pathways associated with these genes. RESULTS Enrichment analysis highlighted the association of these plasticizer-targeted genes with pathways integral to adenocarcinoma development, suggesting a broad impact of plasticizers on hormone-dependent and other forms of cancers. Subsequent expression analysis using data from the TCGA breast cancer database indicated significant upregulation or downregulation of these genes in breast cancer tissues compared to normal controls, confirming their pivotal roles in tumor biology. Furthermore, the molecular docking analysis revealed that plasticizers, including DEP, DMP, and DOP, exhibit specific binding interactions with key proteins such as MAPK1, AKT1, SRC, ESR1, and ALB, which are crucial in the regulation of breast cancer pathogenesis. CONCLUSION The study provides evidence that exposure to plasticizers may influence breast cancer pathogenesis through interactions with critical proteins and signaling pathways. By employing network pharmacology, protein interactions, and molecular docking, our findings highlight the potential risks posed by plasticizers. These results underscore the need for further epidemiological and clinical research to fully understand the implications of plasticizer exposure on breast cancer risk, thus informing future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Na He
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jing Zhang
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Mingyu Liu
- School of stomatology, Hainan Medical university, Haikou, Hainan 571199, China
| | - Li Yin
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
14
|
Huang X, Lian M, Li C. Copper homeostasis and cuproptosis in gynecological cancers. Front Cell Dev Biol 2024; 12:1459183. [PMID: 39386020 PMCID: PMC11461353 DOI: 10.3389/fcell.2024.1459183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Copper (Cu) is an essential trace element involved in a variety of biological processes, such as antioxidant defense, mitochondrial respiration, and bio-compound synthesis. In recent years, a novel theory called cuproptosis has emerged to explain how Cu induces programmed cell death. Cu targets lipoylated enzymes in the tricarboxylic acid cycle and subsequently triggers the oligomerization of lipoylated dihydrolipoamide S-acetyltransferase, leading to the loss of Fe-S clusters and induction of heat shock protein 70. Gynecological malignancies including cervical cancer, ovarian cancer and uterine corpus endometrial carcinoma significantly impact women's quality of life and even pose a threat to their lives. Excessive Cu can promote cancer progression by enhancing tumor growth, proliferation, angiogenesis and metastasis through multiple signaling pathways. However, there are few studies investigating gynecological cancers in relation to cuproptosis. Therefore, this review discusses Cu homeostasis and cuproptosis while exploring the potential use of cuproptosis for prognosis prediction as well as its implications in the progression and treatment of gynecological cancers. Additionally, we explore the application of Cu ionophore therapy in treating gynecological malignancies.
Collapse
Affiliation(s)
- Xiaodi Huang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Mengyi Lian
- Department of Obstetrics and Gynecology, Longquan People’s Hospital, Lishui, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
15
|
Zhang Z, Xu F, Zeng S, Li X, Cai Y, Li J, Peng Z, Chen Y, Huang C, Li T, Mo S, Zhao T, Huang H. A new clinical prognosis model for breast cancer with ADSS as the hub gene. J Cancer 2024; 15:5910-5926. [PMID: 39440049 PMCID: PMC11492999 DOI: 10.7150/jca.95589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Breast cancer (BRCA) is the most common malignant tumor and the leading cause of cancer death worldwide. Adenylosuccinate synthetase (ADSS) is highly expressed in BRCA and its subtypes malignant tumors and is associated with poor prognosis. Methods: By applying ROC curve, survival analysis, WGCNA, enrichment analysis, Cox regression model and other methods, this study explores the role of ADSS in BRCA and constructs a scoring model. Results: In this study, the ADSS demonstrated good diagnostic efficacy and high expression in breast cancer tissues. Further exploration of the role of ADSS in BRCA revealed that its significantly related coexpressed genes are clearly involved in biological functions and signaling pathways associated with cell proliferation and differentiation. Additionally, the ADSS-related scoring model showed a significant prognostic impact on clinical characteristics, such as metastasis to lymph nodes, and it was discovered that the ADSS score and related scoring genes may affect the immune microenvironment of BRCA patients, potentially participating in the occurrence of this disease. Conclusion: In summary, our gene expression analysis of ADSS in BRCA generated a clinical scoring model based on the ADSS that may be used to assess prognostic risk and provide potential clinical applications and rational therapeutic targets.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Affliated Wuming Hospital, Nanning 530199, China
| | - Fei Xu
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Suna Zeng
- Department of Stomatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Li
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
| | - Yuzhe Cai
- The Graduate School of Guangxi Medical University, Nanning, China
| | - Jinghua Li
- Department of General Surgery, Guangxi Medical University Affliated Wuming Hospital, Nanning 530199, China
| | - Zha Peng
- The Graduate School of Guangxi Medical University, Nanning, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
- Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Steven Mo
- Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, Hong Kong 999077, China
| | - Tongling Zhao
- Departments of Developmental Planning, Guangxi Medical University, Nanning, China
| | - Hai Huang
- Department of General Surgery, Guangxi Medical University Affliated Wuming Hospital, Nanning 530199, China
| |
Collapse
|
16
|
Park SWS, Fransson S, Sundquist F, Nilsson JN, Grybäck P, Wessman S, Strömgren J, Djos A, Fagman H, Sjögren H, Georgantzi K, Herold N, Kogner P, Granberg D, Gaze MN, Martinsson T, Karlsson K, Stenman JJE. Heterogeneous SSTR2 target expression and a novel KIAA1549:: BRAF fusion clone in a progressive metastatic lesion following 177Lutetium-DOTATATE molecular radiotherapy in neuroblastoma: a case report. Front Oncol 2024; 14:1408729. [PMID: 39324010 PMCID: PMC11422106 DOI: 10.3389/fonc.2024.1408729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease. Upon enrollment, the patient received two rounds of the radiolabeled somatostatin analogue lutetium-177 octreotate (177Lu-DOTATATE), which was well tolerated. A dosimetry analysis revealed a heterogeneous uptake across tumor lesions, resulting in a significant absorbed dose of 54 Gy in the primary tumor, but only 2 Gy at one of the metastatic sites in the distal femur. While the initial treatment response showed disease stabilization, the distal femoral metastasis continued to progress, leading to the eventual death of the patient. A tissue analysis of the biopsies collected throughout the course of the disease revealed heterogeneous drug target expression of somatostatin receptor 2 (SSTR2) across and within tumor lesions. Furthermore, genomic profiling revealed a novel KIAA1549::BRAF fusion oncogene amplification in the distal femoral metastasis at recurrence that might be related with resistance to radiation, possibly through the downregulation of SSTR2. This case report demonstrates a mixed response to molecular radiotherapy (MRT) with 177Lu-DOTATATE. The observed variation in SSTR2 expression between tumor lesions suggests that heterogeneous target expression may have been the reason for treatment failure in this patient's case. Further investigation within the LuDO-N trial will give a more comprehensive understanding of the correlation between SSTR2 expression levels and treatment outcomes, which will be important to advance treatment strategies based on MRT for children with high-risk NB.
Collapse
Affiliation(s)
- Se Whee Sammy Park
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Sundquist
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Strömgren
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tommy Martinsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasper Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob J E Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|
18
|
Chen Q, Li C, Wei W, Li J, Liu F, Fu Y, Tang L, Han F. Endoplasmic reticulum stress response pathway-mediated cell death in ovarian cancer. Front Oncol 2024; 14:1446552. [PMID: 39319052 PMCID: PMC11420017 DOI: 10.3389/fonc.2024.1446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is one of the largest organelles, and Endoplasmic Reticulum Stress Response Pathway is a series of responses triggered by the homeostatic imbalance of the ER and the state in which unfolded or misfolded proteins accumulate in the ER, which can trigger cell death. Cell death plays a crucial role in the development of diseases such as gynecological oncology. Herein, we review the current research on the response and ovarian cancer, discussing the key sensors (IRE1, PERK, ATF6), and the conditions under which it occurs (Ca2+ homeostasis disruption, hypoxia, others). Using the response as a starting point, provide a comprehensive overview of the relationship with the four types of cell death (apoptosis, autophagy, immunogenic cell death, paraptosis) in an attempt to provide new targeted therapeutic strategies for the organelle-Endoplasmic Reticulum Stress Response Pathway-cell death in ovarian cancer therapy.
Collapse
Affiliation(s)
- Qiaochu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqian Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Tang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Li Z, Wang D, Zhu X. Roles of LncRNA ARSR in tumor proliferation, drug resistance, and lipid and cholesterol metabolism. Clin Transl Oncol 2024:10.1007/s12094-024-03700-4. [PMID: 39251493 DOI: 10.1007/s12094-024-03700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cancer is one of the most serious diseases that threaten human life and health. Among all kinds of diseases, the mortality rate of malignant tumors is the second highest, second only to cardio-cerebrovascular diseases. Cancer treatment typically involves imaging, surgery, and pathological analysis. When patients are identified as carcinoma by the above means, there are often problems of distant metastasis, delayed treatment, and drug tolerance, indicating that patients have some poor prognosis and overall survival. Hence, the development of novel molecular biomarkers is of great clinical importance. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, lncRNA have attracted widespread attention for their roles in tumor development. In this review, we comprehensively summarize the up-to-date knowledge of lncARSR on diverse cancer types which mainly focuses on tumor proliferation, drug tolerance, and lipid and cholesterol metabolism, highlighting the potential of lncARSR as a diagnostic and prognostic biomarker and even a therapeutic target. In our final analysis, we provide a synthesized overview of the directions for future inquiry into lncARSR, and we are eager to witness the advancement of research that will elucidate the multifaceted nature of this lncRNA.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
20
|
Chen Z, Wang C, Li M, Cai S, Liu X. SPRED3 regulates the NF-κB signaling pathway in thyroid cancer and promotes the proliferation. Sci Rep 2024; 14:20506. [PMID: 39227612 PMCID: PMC11372091 DOI: 10.1038/s41598-024-61075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
SPRED3 (Sprouty-related EVH1 domain containing 3) mutants are depicted in various cancers, however, nothing is known about its biofunction in thyroid cancer (THCA). Bioinformatic analyses were conducted to ascertain the level of SPRED3 expression in THCA tissues and its importance in the prognosis of THCA patients. Flag-SPRED3 plasmid and SPRED3-knockout vector were developed to overexpress or deplete the SPRED3 expression in THCA cells. The function of SPRED3 on THCA cell proliferation was examined using the colony formation assay and CCK8 assay. The effect of SPRED3 expression on the transcriptional activity of NF-κB was also examined using luciferase reporter assays. High SPRED3 expression was associated with unfavorable clinical outcomes, advanced tumor characteristics, and traditional molecular markers of papillary thyroid cancer in THCA patients. Genetic analysis revealed differences in mutation rates in key genes between SPRED3-high and SPRED3-low THCA cases. It is also revealed that SPRED3 influenced the immune microenvironment, with increased stromal and immune scores and altered immune cell infiltration. Functionally, SPRED3 overexpression enhanced THCA cell viability and colony formation, while its depletion reduced cell growth and proliferation. In vivo experiments in mice confirmed the inhibitory effect of SPRED3 depletion on tumor growth. Mechanically, we found that SPRED3 activated the NF-κB signaling. For the first time, we found that SPRED3 promotes THCA cell proliferation via the NF-κB signaling pathway. This finding may provide insight into SPRED3's prognostic potential in thyroid cancer and provide the rationale for SPRED3-targeted druggable interventions.
Collapse
Affiliation(s)
- Zhiping Chen
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Congren Wang
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Mingzhu Li
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shaoyang Cai
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoyu Liu
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
21
|
Wang B, Ma Y, Zhang Y, Yin X. Therapeutic potential of ASK1 activators in cancer treatment: Current insights and future directions. Biomed Pharmacother 2024; 178:117214. [PMID: 39079264 DOI: 10.1016/j.biopha.2024.117214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Apoptosis signal-regulated kinase 1 (ASK1) is a member of the mitogen-activated protein kinase kinase (MAP3K) family, whose activation and regulation are intricately associated with apoptosis. ASK1 is activated in response to oxidative stress, among other stimuli, subsequently triggering downstream JNK, p38 MAPK, and mitochondria-dependent apoptotic signaling, which participate in the initiation of tumor cell apoptosis induced by various stimuli. Research has shown that ASK1 plays a crucial role in the apoptosis of lung cancer, breast cancer, and liver cancer cells. Currently, the investigation of effective ASK1 activators is a hot topic in research on tumor cell apoptosis. Synthetic compounds such as human β-defensin, triazolothiazide derivatives and heat shock protein 27 inhibitors; natural compounds such as quercetin, Laminarina japonica polysaccharide-1 peptide and theabrownin; and nanomedicines such as cerium oxide nanoparticles, magnetite FeO nanoparticles and silver nanoparticles can activate ASK1 and induce apoptosis in various tumor cells. This review extensively investigates the roles and activation mechanisms of ASK1, explores its impact on a variety of apoptotic signaling pathways, and discusses the potential therapeutic applications of various ASK1 activators in cancer treatment. In addition, this paper provides an in-depth discussion of the future development of this field and proposes a promising method for further research and clinical progress.
Collapse
Affiliation(s)
- Bo Wang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China
| | - Ying Ma
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130103, China.
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
22
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
23
|
Li X, Guo Y, Xing Z, Gong T, Yang L, Yang T, Chang B, Wang X, Yu B, Guo R. ABT‑737 increases cisplatin sensitivity through the ROS‑ASK1‑JNK MAPK signaling axis in human ovarian cancer cisplatin‑resistant A2780/DDP cells. Oncol Rep 2024; 52:122. [PMID: 39054955 PMCID: PMC11292299 DOI: 10.3892/or.2024.8781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Ovarian cancer is a gynecological malignant tumor with the highest mortality rate, and chemotherapy resistance seriously affects patient therapeutic outcomes. It has been shown that the high expression of anti‑apoptotic proteins Bcl‑2 and Bcl‑xL is closely related to ovarian cancer chemotherapy resistance. Therefore, reducing Bcl‑2 and Bcl‑xL expression levels may be essential for reversing drug resistance in ovarian cancer. ABT‑737 is a BH3‑only protein mimetic, which can effectively inhibit the expression of the anti‑apoptotic proteins Bcl‑xL and Bcl‑2. Although it has been shown that ABT‑737 can increase the sensitivity of ovarian cancer cells to cisplatin, the specific molecular mechanism remains unclear and requires further investigation. In the present study, the results revealed that ABT‑737 can significantly increase the activation levels of JNK and ASK1 induced by cisplatin in A2780/DDP cells, which are cisplatin‑resistant ovarian cancer cells. Inhibition of the JNK and ASK1 pathway could significantly reduce cisplatin cytotoxicity increased by ABT‑737 in A2780/DDP cells, while inhibiting the ASK1 pathway could reduce JNK activation. In addition, it was further determined that ABT‑737 could increase reactive oxygen species (ROS) levels in A2780/DDP cells induced by cisplatin. Furthermore, the inhibition of ROS could significantly reduce JNK and ASK1 activation and ABT‑737‑mediated increased cisplatin cytotoxicity in A2780/DDP cells. Overall, the current data identified that activation of the ROS‑ASK1‑JNK signaling axis plays an essential role in the ability of ABT‑737 to increase cisplatin sensitivity in A2780/DDP cells. Therefore, upregulation the ROS‑ASK1‑JNK signaling axis is a potentially novel molecular mechanism by which ABT‑737 can enhance cisplatin sensitivity of ovarian cancer cells. In addition, the present research can also provide new therapeutic strategies and new therapeutic targets for patients with cisplatin‑resistant ovarian cancer with high Bcl‑2/Bcl‑xL expression patterns.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yumeng Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zihan Xing
- Department of Hematology, Linfen Central Hospital, Linfen, Shanxi 041099, P.R. China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
24
|
Lu J, Yu M, Li J. PKC-δ Promotes IL-1β-Induced Apoptosis of Rat Chondrocytes and Via Activating JNK and P38 MAPK Pathways. Cartilage 2024; 15:315-327. [PMID: 37491820 PMCID: PMC11418514 DOI: 10.1177/19476035231181446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Protein kinase C-delta (PKC-δ) is involved in apoptosis. This study aimed to establish whether PKC-δ can further promote IL-1β-induced chondrocyte apoptosis by mediating the phosphorylation of the JNK and p38 mitogen-activated protein kinase (MAPK) signaling pathways In osteoarthritis (OA). METHODS We employed chondrocyte staining to determine the extent of cartilage degeneration. PKC-δ and p38 signal expressions were used in the immunohistochemical (IHC) test and apoptosis was assayed at the TUNEL test in human osteoarthritic and controls. We stimulated rat cartilage cells using IL-1β (10 ng/ml)/rottlerin (10 μM) or lentivirus. To determine the apoptosis rate, we employed flow cytometry. The mRNA of both BCL2-related X (BAX) and cysteine aspartate protease 3 (caspase-3) could be measured via qRT-PCR. Western blot measured the protein levels of BAX, caspase-3, PKC-δ, p-JNK/JNK and p-p38/p38. RESULTS The positive rate of PKC-δ and the apoptotic rate of chondrocytes in OA were higher than controls. The manifestation of PKC-δ was positively related to the degree of cartilage degeneration, p38 protein expression, and apoptosis rate. IL-1β exposure upregulated PKC-δ expression in chondrocytes in a dose-dependent manner. Decreasing PKC-δ expression and its phosphorylation in OA can inhibit MAPK signaling pathway activation (phosphorylation) by downregulating JNK and p38 protein phosphorylation and expression. This inhibition decreases caspase-3 and BAX levels, consequently lowering the apoptosis rate in chondrocytes. CONCLUSION PKC-δ activation by IL-1β in OA promotes chondrocyte apoptosis via activation of the JNK and p38 MAPK signal pathways, thereby promoting the OA progression.
Collapse
Affiliation(s)
- Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Miao Yu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Malagrinò F, Puglisi E, Pagano L, Travaglini-Allocatelli C, Toto A. GRB2: A dynamic adaptor protein orchestrating cellular signaling in health and disease. Biochem Biophys Rep 2024; 39:101803. [PMID: 39175664 PMCID: PMC11340617 DOI: 10.1016/j.bbrep.2024.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Universita' Dell’Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Elena Puglisi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| |
Collapse
|
26
|
Kong D, Guo H. Construction and validation of a prognostic model for overall survival time of patients with ovarian cancer by metabolism-related genes. J Obstet Gynaecol Res 2024; 50:1622-1639. [PMID: 39098991 DOI: 10.1111/jog.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Ovarian cancer is a female-specific malignancy with high morbidity and mortality. The metabolic reprogramming of tumor cells is closely related to the biological behavior of tumors. METHODS The prognostic signature of the metabolism-related gene (MRGs) was established by LASSO-Cox regression analysis. The prognostic signature of MRGs was also prognosticated in each clinical subgroup. These genes were subjected to functional enrichment analysis and tissue expression exploration. Analysis of the MRG prognostic signature in terms of immune cell infiltration and antitumor drug susceptibility was also performed. RESULTS A MRG prognostic signature including 21 genes was established and validated. Most of the 21 MRGs were expressed at different levels in ovarian cancer than in normal ovarian tissue. The enrichment analysis suggested that MRGs were involved in lipid metabolism, membrane organization, and molecular binding. The MRG prognostic signature demonstrated the predictive value of overall survival time in various clinical subgroups. The monocyte, NKT, Tgd and Tex cell scores showed differences between the groups with high- and low-risk score. The antineoplastic drug analysis we performed provided information on ovarian cancer drug therapy and drug resistance. In vitro experiments verified that PLCH1 in 21 MRGs can regulate the apoptosis and proliferation of ovarian cancer cells. CONCLUSION This metabolism-related prognostic signature was a potential prognostic factor in patients with ovarian cancer, demonstrating high stability and accuracy.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| |
Collapse
|
27
|
Shi XT, Yan LJ, Lu FY, Ye MJ, Yu P, Zhong Y, Chen JH, Hu CH, Tang QY. Exploring the therapeutic potential of simvastatin in pancreatic neuroendocrine neoplasms: insights into cell cycle regulation and apoptosis. Transl Cancer Res 2024; 13:4315-4323. [PMID: 39262466 PMCID: PMC11384313 DOI: 10.21037/tcr-24-363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Background Pancreatic neuroendocrine neoplasm (pNEN) poses significant challenges in clinical management due to their heterogeneity and limited treatment options. In this study, we investigated the potential of simvastatin (SIM) as an anti-tumor agent in pNEN. Methods We conducted cell culture experiments using QGP-1 and BON-1 cell lines and assessed cell viability, proliferation, migration, and invasion following SIM treatment. To further validate our findings, we performed in vivo experiments using a mouse xenograft model. Additionally, we investigated the underlying molecular mechanisms by analyzing changes in cell cycle progression, apoptosis, and signaling pathways. Results SIM treatment suppresses pNEN growth both in vitro and in vivo, and led to G1 phase arrest in QGP-1 cells. In contrast, SIM affected both the G1-S and G2-M phase transitions in the BON-1 cell line and induced apoptosis, indicating diverse mechanisms of action. Furthermore, SIM treatment resulted in decreased expression of mutant p53 (mutp53) in BON-1 cells, suggesting a potential therapeutic strategy targeting mutp53. Modulation of the MAPK pathway was also implicated in QGP-1 cells. Conclusions Our study highlights SIM as a promising candidate for pNEN treatment by inducing cell cycle arrest or apoptosis, potentially through the p53 and MAPK pathways. Further research is warranted to fully elucidate SIM's mechanisms of action and evaluate its therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Xiao-Ting Shi
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Li-Jun Yan
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Fei-Yu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Mu-Jie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Jin-Hao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Chun-Hua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| | - Qi-Yun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Huang T, Ge S, Huang W, Ma T, Sheng Y, Chen J, Wu S, Liu Z, Lu C. AIBP promotes cell proliferation and migration through the ERK1/2-MAPK signaling pathway in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4028-4041. [PMID: 39262469 PMCID: PMC11384315 DOI: 10.21037/tcr-23-2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
Background As a highly aggressive cancer, hepatocellular carcinoma (HCC) is often found at an advanced stage and has a poor prognosis. Therefore, in addition to the surgical treatment of HCC, the drug therapy for HCC is still under continuous exploration. The primary apolipoprotein of high-density lipoproteins (HDLs) is apolipoprotein A-I binding protein (AIBP), which has a significant impact on cholesterol metabolism, angiogenesis, and a wide range of inflammatory disorders, including cancer. The AIBP function in HCC is, however, yet unknown. This study aims to reveal the underlying mechanisms of AIBP influencing HCC proliferation and migration through mitogen-activated protein kinase (MAPK) pathways. Methods AIBP expression and its clinical prognostic association were investigated using The Cancer Genome Atlas (TCGA) data. The AIBP expression was studied in human HCC tissues using immunohistochemistry (IHC) and western blotting. Colony formation assays (CFAs) and cell counting kit-8 (CCK-8) were used to determine in vitro cell proliferation. Cell migration and invasion were evaluated using wound-healing and transwell assays. A xenograft tumor model was employed to investigate HCC cell proliferation in nude mice. Results Tissues from HCC patients had much increased AIBP expression compared to nearby normal tissues. The prognosis for patients was bleak when AIBP expression was high. When AIBP was overexpressed in SMMC-7721 cells, the cells may become more proliferative, migrative, and invasive. In contrast, the HCC-LM3 cells' ability to proliferate, migrate, and invade was drastically decreased once AIBP was knocked down in vitro. Furthermore, in vivo research showed that AIBP overexpression may enhance cell proliferation in HCC. Finally, we discovered that AIBP could control the MAPK signaling pathway-involved genes expression, including P-MEK, MEK, c-Myc, P-ERK1/2, and ERK1/2, and that GDC-0994, a specific ERK1/2 inhibitor, could suppress the AIBP overexpression induced cell migration and proliferation abilities. Conclusions These findings demonstrated that the ERK/MAPK signaling pathway might be stimulated by AIBP in HCC tissues, leading to increased cell invasion, migration, and proliferation. It was hypothesized that AIBP might act as a useful prognostic and diagnostic marker for HCC.
Collapse
Affiliation(s)
- Tianxin Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Sijia Ge
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yu Sheng
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Shuzhen Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
29
|
Yang YT, Yao CY, Kao CJ, Chiu PJ, Lin ME, Hou HA, Lin CC, Chou WC, Tien HF. Clinical relevance of NFYA splice variants in patients with acute myeloid leukaemia undergoing intensive chemotherapy. Br J Haematol 2024. [PMID: 39192759 DOI: 10.1111/bjh.19733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Aberrant alternative splicing (AS) contributes to leukemogenesis, but reports on the clinical and biological implications of aberrant AS in acute myeloid leukaemia (AML) remain limited. Here, we used RNA-seq to analyse AS in AML cells from 341 patients, comparing them to healthy CD34+ haematopoietic stem cells (HSCs). Our findings highlight distinct AS patterns in the nuclear transcription factor Y subunit alpha (NFYA) gene, with two main isoforms: NFYA-L (Long) and NFYA-S (Short), differing in exon 3 inclusion. Patients with lower NFYA-L but higher NFYA-S expression, termed NFYA-S predominance, displayed more favourable characteristics and better outcomes following intensive chemotherapy, regardless of age and European LeukemiaNet risk classification, compared to those with higher NFYA-L but lower NFYA-S expression, termed NFYA-L predominance. The prognostic effects were validated using The Cancer Genome Atlas cohort. Transcriptome analysis revealed upregulated cell cycle genes in NFYA-S predominant cases, resembling those of active HSCs, demonstrating relative chemosensitivity. Conversely, NFYA-L predominant cases, as observed in KMT2A-rearranged leukaemia, were associated with relative chemoresistance. NFYA-S overexpression in OCI-AML3 cells promoted cell proliferation, S-phase entry and increased cytarabine sensitivity, suggesting its clinical and therapeutic relevance in AML. Our study underscores NFYA AS as a potential prognostic biomarker in AML.
Collapse
Affiliation(s)
- Yi-Tsung Yang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Yao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Ju Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ming-En Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
30
|
Iriarte C, Yeh JE, Alloo A, Boull C, Carlberg VM, Coughlin CC, Lara-Corrales I, Levy R, Nguyen CV, Oza VS, Patel AB, Rotemberg V, Shah SD, Zheng L, Miller CH, Hlobik M, Daigneault J, Choi JN, Huang JT, Vivar KL. Mucocutaneous toxicities from MEK inhibitors: a scoping review of the literature. Support Care Cancer 2024; 32:610. [PMID: 39174797 DOI: 10.1007/s00520-024-08810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND MEK inhibitors cause a wide spectrum of mucocutaneous toxicities which can delay or interrupt life-saving therapy. PURPOSE To summarize the morphology, incidence, and clinical presentation of mucocutaneous toxicities from MEK inhibitors via a scoping review of the literature. METHODS We conducted a scoping review of the published literature, including clinical trials, retrospective and prospective studies, reviews, and case reports and series. All included literature was analyzed by a panel of pediatric and adult oncodermatologists. RESULTS Of 1626 initial citations, 227 articles met final inclusion criteria. Our review identified follicular reactions, ocular toxicities, xerosis, eczematous dermatitis, edema, and paronychia as the most common mucocutaneous side effects from MEK inhibitor therapy. Grade 1 and 2 reactions were the most prevalent and were typically managed while continuing treatment; however, grade 3 toxicities requiring dose reductions or treatment interruptions were also reported. CONCLUSION Mucocutaneous toxicities to MEK inhibitor therapy are common and most often mild in severity. Early recognition and treatment can mitigate disruptions in oncologic therapy.
Collapse
Affiliation(s)
- Christopher Iriarte
- Department of Dermatology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Gryzmish 522, Boston, MA, 02215, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Jennifer E Yeh
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Allireza Alloo
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christina Boull
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Valerie M Carlberg
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Wisconsin, Milwaukee, WI, USA
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Irene Lara-Corrales
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Rebecca Levy
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Cuong V Nguyen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vikash S Oza
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anisha B Patel
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas Health Science Center- Houston, Houston, TX, USA
| | - Veronica Rotemberg
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonal D Shah
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lida Zheng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Corinne H Miller
- Galter Health Sciences Library and Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline Hlobik
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jaclyn Daigneault
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer N Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Jennifer T Huang
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Karina L Vivar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Pediatric Dermatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
32
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
33
|
Huang X, Zeng J, Ruan S, Lei Z, Zhang J, Cao H. The use of matrine to inhibit osteosarcoma cell proliferation via the regulation of the MAPK/ERK signaling pathway. Front Oncol 2024; 14:1338811. [PMID: 39161382 PMCID: PMC11330765 DOI: 10.3389/fonc.2024.1338811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Matrine is an alkaloid extracted from Sophorus beans of the legume family, and it has significant effects and a variety of pharmacological activities. Osteosarcoma(OS) is a common malignant bone tumor that is characterized by high incidence and rapid progression. There have been some preliminary studies on the therapeutic effect of matrine on OS, but the specific mechanism remains unclear. Objective The aim of this study was to investigate the antitumor effect of matrine on HOS cells and the underlying molecular mechanism. Methods The effects of matrine on the proliferation, apoptosis and cell cycle progression of HOS cells were determined by CCK-8 assay, TUNEL assay and flow cytometry in vitro. Wound healing and Transwell invasion assays were used to observe the effect of matrine on the migration and invasion of HOS cells. The mechanism underlying the antitumor effect of matrine on HOS cells was investigated by Western blotting. Results Matrine significantly inhibited HOS cell proliferation, promoted HOS cell apoptosis, and arrested HOS cells in the G1 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that matrine inhibited HOS cell migration and invasion. Western blotting results showed that matrine inhibited the activation of the MAPK/ERK signaling pathway. We found that matrine also downregulated Bcl-2 expression, which may be related to protein synthesis inhibition. Conclusion Matrine can inhibit the proliferation of HOS cells, arrest HOS cells in the G1 phase, and promote HOS cell apoptosis through the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xincheng Huang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zeng
- Department of Anesthesiology, Shiyan People’s Hospital, Shiyan, China
| | - Siyuan Ruan
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhuolin Lei
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyuan Zhang
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Cao
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
34
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
35
|
Xu X, Liu Y, Gong Q, Ma L, Wei W, Zhao L, Luo Z. PARP1 promotes EGFR-TKI drug-resistance via PI3K/AKT pathway in non-small-cell lung cancer. Cancer Chemother Pharmacol 2024; 94:209-221. [PMID: 38609654 DOI: 10.1007/s00280-024-04668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Tyrosine kinase inhibitor (TKI) resistance is the main type of drug resistance in lung cancer patients with epidermal growth factor receptor (EGFR) mutations, but its underlying mechanism remains unclear. The purpose of this work was to investigate the mechanism by which PARP1 regulates EGFR-TKI resistance to identify potential targets for combating drug resistance. METHODS The GEO databases, TCGA databases, western blot and qPCR studies were used to investigate the expression of PARP1 in lung cancer cells and tissues and its correlation with the prognosis of lung cancer. The expression of PARP1 in lung cancer TKI resistant cell PC9-ER and TKI sensitive cell PC9 was analyzed by qPCR and western blot. After knocking down of PARP1, CCK-8 assays, colony formation, flow cytometry were used to investigate its impact on erlotinib sensitivity, cell survival, cell cycle, and apoptosis. RNA-seq was used to investigate the mechanism by which PARP1 participates in EGFR-TKI resistance, and the results were validated in vitro and in vivo studies. RESULTS PARP1 was highly expressed in both lung cancer tissues and cells. Subsequently, increased PARP1 expression was observed in PC9-ER compared with its parental cell line. Knockdown of PARP1 increased erlotinib sensitivity, promoted cell apoptosis, and suppressed cell growth. RNA-seq and previous studies have shown that the PI3K/AKT/mTOR/P70S6K pathway is involved in PARP1-mediated TKI resistance, and these results were confirmed by Western blot in vitro and in vivo. CONCLUSION PARP1 may serve as a potential therapeutic target for reversing EGFR-TKI resistance in NSCLC via the PI3K/AKT/mTOR/P70S6K pathway.
Collapse
Affiliation(s)
- Xianping Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District Luzhou, Sichuan, 646000, China
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Yu Liu
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, Chongqing, 400038, China
| | - Le Ma
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, Chongqing, 400038, China
| | - Wei Wei
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Linqiong Zhao
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Zhibin Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District Luzhou, Sichuan, 646000, China.
- Department of Oncology, Chongqing Genaral Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| |
Collapse
|
36
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
37
|
Cai J, Tan X, Hu Q, Pan H, Zhao M, Guo C, Zeng J, Ma X, Zhao Y. Flavonoids and Gastric Cancer Therapy: From Signaling Pathway to Therapeutic Significance. Drug Des Devel Ther 2024; 18:3233-3253. [PMID: 39081701 PMCID: PMC11287762 DOI: 10.2147/dddt.s466470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gastric cancer (GC) is a prevalent gastrointestinal tumor characterized by high mortality and recurrence rates. Current treatments often have limitations, prompting researchers to explore novel anti-tumor substances and develop new drugs. Flavonoids, natural compounds with diverse biological activities, are gaining increasing attention in this regard. We searched from PubMed, Web of Science, SpringerLink and other databases to find the relevant literature in the last two decades. Using "gastric cancer", "stomach cancers", "flavonoid", "bioflavonoid", "2-Phenyl-Chromene" as keywords, were searched, then analyzed and summarized the mechanism of flavonoids in the treatment of GC. It was revealed that the anti-tumor mechanism of flavonoids involves inhibiting tumor growth, proliferation, invasion, and metastasis, as well as inducing cell death through various processes such as apoptosis, autophagy, ferroptosis, and pyroptosis. Additionally, combining flavonoids with other chemotherapeutic agents like 5-FU and platinum compounds can potentially reduce chemoresistance. Flavonoids have also demonstrated enhanced biological activity when used in combination with other natural products. Consequently, this review proposes innovative perspectives for the development of flavonoids as new anti-GC agents.
Collapse
Affiliation(s)
- Jiaying Cai
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. LINC00518: a key player in tumor progression and clinical outcomes. Front Immunol 2024; 15:1419576. [PMID: 39108268 PMCID: PMC11300200 DOI: 10.3389/fimmu.2024.1419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), defined as RNA molecules exceeding 200 nucleotides in length, have been implicated in the regulation of various biological processes and the progression of tumors. Among them, LINC00518, a recently identified lncRNA encoded by a gene located on chromosome 6p24.3, consists of three exons and is predicted to positively regulate the expression of specific genes. LINC00518 has emerged as a key oncogenic lncRNA in multiple cancer types. It exerts its tumor-promoting effects by modulating the expression of several target genes, primarily through acting as a sponge for microRNAs (miRNAs). Additionally, LINC00518 influences critical signaling pathways, including the Wnt/β-catenin, JAK/STAT, and integrin β3/FAK pathways. Elevated levels of LINC00518 in tumor tissues are associated with increased tumor size, advanced clinical stage, metastasis, and poor survival prognosis. This review provides a comprehensive summary of the genetic characteristics, expression patterns, biological functions, and underlying mechanisms of LINC00518 in human diseases.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
39
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Schüler J, Vockerodt M, Salehzadeh N, Becker J, Wilting J. Dual Inhibition of PI3 Kinase and MAP Kinase Signaling Pathways in Intrahepatic Cholangiocellular Carcinoma Cell Lines Leads to Proliferation Arrest but Not Apoptosis. Curr Issues Mol Biol 2024; 46:7395-7410. [PMID: 39057080 PMCID: PMC11276521 DOI: 10.3390/cimb46070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Cholangiocellular carcinoma (CCA) is the second most common primary liver cancer, with increasing incidence worldwide and inadequate therapeutic options. Intra- and extrahepatic bile ducts have distinctly different embryonic origins and developmental behavior, and accordingly, intra- and extrahepatic CCAs (ICC vs. ECC) are molecularly different. A promising strategy in oncotherapy is targeted therapy, targeting proteins that regulate cell survival and proliferation, such as the MAPK/ERK and PI3K/AKT/mTOR signaling pathways. Inhibitors of these pathways have been tested previously in CCA cell lines. However, these cell lines could not be clearly assigned to ICC or ECC, and the results indicated apoptosis induction by targeted therapeutics. We tested targeted therapeutics (selumetinib, MK2206) in three defined ICC cell lines (HuH28, RBE, SSP25). We observed additive effects of the dual inhibition of the two pathways, in accordance with the inhibition of phospho-AKT and phospho-ERK1/2 expression. Proliferation was blocked more effectively with dual inhibition than with each single inhibition, but cell numbers did not drop below baseline. Accordingly, we observed G1 phase arrest but not apoptosis or cell death (measured by cleaved caspase-3, AIFM1 regulation, sub-G0/G1 phase). We conclude that the dual inhibition of the MAPK/ERK and PI3K/AKT/mTOR pathways is highly effective to block the proliferation of ICC cell lines in vitro; however, potential clinical applications must be critically examined, as a proliferation block could also induce resistance to standard therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical Center Goettingen, GAU, 37075 Goettingen, Germany; (J.S.); (M.V.); (N.S.); (J.B.)
| |
Collapse
|
41
|
Zhao Y, Du SS, Zhao CY, Li TL, Tong SC, Zhao L. Mechanism of Abnormal Activation of MEK1 Induced by Dehydroalanine Modification. Int J Mol Sci 2024; 25:7482. [PMID: 39000589 PMCID: PMC11242638 DOI: 10.3390/ijms25137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Shan-Shan Du
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Chao-Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Tian-Long Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Si-Cheng Tong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| |
Collapse
|
42
|
Márton A, Veres KB, Erdődi F, Udvardy M, Illés Á, Rejtő L. The roles of phosphorylation of signaling proteins in the prognosis of acute myeloid leukemia. Pathol Oncol Res 2024; 30:1611747. [PMID: 39035053 PMCID: PMC11257863 DOI: 10.3389/pore.2024.1611747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Signaling pathways of Retinoblastoma (Rb) protein, Akt-kinase, and Erk-kinase (extracellular signal-regulated kinase) have an important role in the pathogenesis of acute myeloid leukemia. Constitutive activation of these proteins by phosphorylation contributes to cell survival by regulation of cell cycle, proliferation and proapoptotic signaling processes. According to previous data phosphorylated forms of these proteins represent a worse outcome for cancer patients. We investigated the presence of phosphorylated Rb (P-Rb), Akt (P-Akt) and Erk (P-Erk) proteins by Western blot technique using phospho-specific antibodies in bone marrow or peripheral blood samples of 69 AML patients, 36 patients with myelodysplastic syndrome (MDS) and 10 healthy volunteers. Expression level of PTEN (Phosphatase and tensin homolog) and PHLPP (PH domain and leucine-rich repeat Protein Phosphatase) phosphatases, the negative regulators of Akt kinase pathway were also examined. We tested the effect of these proteins on survival and on the correlation with known prognostic features in AML. We found 46.3% of AML patients had detectable P-Rb, 34.7% had P-Akt and 28.9% had P-Erk protein. 66.1% of patients expressing PTEN, 38.9% PHLPP, 37.2% both PTEN and PHLPP and 32.2% neither PTEN nor PHLPP phosphatases. Compared to nucleophosmin mutation (NPMc) negative samples P-Erk was significantly less in nucleophosmin mutated patients, P-Rb was significantly less in patients' group with more than 30 G/L peripheral leukocyte count by diagnosis. PHLPP was significantly present in FAB type M5. The expression of P-Rb represented significant better overall survival (OS), while P-Akt represented significantly worse event-free survival (EFS) in unfavorable cytogenetics patients. The presence of both PHLPP and PTEN phosphatases contributes to better OS and EFS, although the differences were not statistically significant. We confirmed significant positive correlation between P-Akt and PHLPP. Assessing the phosphorylation of Rb, Akt and Erk may define a subgroup of AML patients who would benefit especially from new targeted treatment options complemented the standard chemotherapy, and it may contribute to monitoring remission, relapse or progression of AML.
Collapse
Affiliation(s)
- Adrienn Márton
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Udvardy
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Szabolcs-Szatmár-Bereg County Teaching Hospital, Nyíregyháza, Hungary
| |
Collapse
|
43
|
Stulpinas A, Tenkutytė M, Imbrasaitė A, Kalvelytė AV. The Role and Efficacy of JNK Inhibition in Inducing Lung Cancer Cell Death Depend on the Concentration of Cisplatin. ACS OMEGA 2024; 9:28311-28322. [PMID: 38973918 PMCID: PMC11223245 DOI: 10.1021/acsomega.4c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Toxicity and the emergence of resistance are the main challenges in cancer treatment. The optimal dose of cisplatin, one of the most widely used chemotherapeutic anticancer drugs, is currently being widely debated. Furthermore, the dose-dependent molecular mechanisms of its action are poorly understood. To assess the role of protein kinase JNK (cJun N-terminal kinase) signaling in lung cancer treatment, we combined small-molecule JNK inhibitors and cisplatin. Wild-type p53 (tumor suppressor transcription factor TP53) and mutated RAS-bearing lung adenocarcinoma cell line A549 was used as a model in our studies. Here, we demonstrate cisplatin concentration-dependent opposing roles of JNK in killing cancer cells: a cell-protective role at low cisplatin concentrations and an apoptosis-promoting (or neutral) role at high concentrations. Time- and dose-dependent activation of pro-survival protein kinase AKT and TP53 was shown, with similar activation dynamics in cells exposed to different (low and high) cisplatin concentrations. Selective inhibition of AKT and activation of TP53 (expression and phosphorylation) led to a decrease in cell survival, indicating their involvement in cisplatin-induced cell death regulation. The activation levels of TP53 and AKT in cisplatin-treated A549 cells after cotreatment with the JNK inhibitor SP600125 correlated with their role in regulating cell death. TP53 and AKT were proposed as signaling proteins mediating the outcome of JNK inhibition in A549 cells exposed to different concentrations of cisplatin. Our findings suggest that a combination of stress kinase JNK inhibition and low-dose cisplatin, together with manipulation of drug-induced signaling, could be considered as a promising treatment strategy for certain lung cancers.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Monika Tenkutytė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Aušra Imbrasaitė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Audronė V. Kalvelytė
- Institute of Biochemistry,
Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| |
Collapse
|
44
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
45
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
46
|
Song C, Wang G, Liu M, Han S, Dong M, Peng M, Wang W, Wang Y, Xu Y, Liu L. Deciphering the SOX4/MAPK1 regulatory axis: a phosphoproteomic insight into IQGAP1 phosphorylation and pancreatic Cancer progression. J Transl Med 2024; 22:602. [PMID: 38943117 PMCID: PMC11212360 DOI: 10.1186/s12967-024-05377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVE This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Chao Song
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Ganggang Wang
- Department of Hepatobiliary Surgery, Pudong Hospital, Fudan University, Shanghai, China
| | - Mengmeng Liu
- Department of Gastroenterology, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Shanghai, PR China
| | - Siyang Han
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, PR China
| | - Maozhen Peng
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China
| | - Yicun Wang
- Department of General Surgery, Qingpu Branch, Affiliated Zhongshan Hospital of Fudan University, Qingpu Branch, No. 1158 Park Road East, Qingpu District, Shanghai, PR China.
| | - Yaolin Xu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
| | - Liang Liu
- Department of Pancreatic Surgery, Affiliated Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, PR China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
47
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Zhang ZW, Zhang KX, Liao X, Quan Y, Zhang HY. Evolutionary screening of precision oncology biomarkers and its applications in prognostic model construction. iScience 2024; 27:109859. [PMID: 38799582 PMCID: PMC11126775 DOI: 10.1016/j.isci.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
Biomarker screening is critical for precision oncology. However, one of the main challenges in precision oncology is that the screened biomarkers often fail to achieve the expected clinical effects and are rarely approved by regulatory authorities. Considering the close association between cancer pathogenesis and the evolutionary events of organisms, we first explored the evolutionary feature underlying clinically approved biomarkers, and two evolutionary features of approved biomarkers (Ohnologs and specific evolutionary stages of genes) were identified. Subsequently, we utilized evolutionary features for screening potential prognostic biomarkers in four common cancers: head and neck squamous cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Finally, we constructed an evolution-strengthened prognostic model (ESPM) for cancers. These models can predict cancer patients' survival time across different cancer cohorts effectively and perform better than conventional models. In summary, our study highlights the application potentials of evolutionary information in precision oncology biomarker screening.
Collapse
Affiliation(s)
- Zhi-Wen Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ke-Xin Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xuan Liao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
49
|
Li H, Ye Z, Wang X, Yuan J, Guo J, Liu C, Yan B, Fan H, Lyu Y, Liu X. Intracellular magnetic hyperthermia reverses sorafenib resistance in hepatocellular carcinoma through its action on signaling pathways. iScience 2024; 27:110029. [PMID: 38883844 PMCID: PMC11176631 DOI: 10.1016/j.isci.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Sorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), unfortunately encounters resistance in most patients, leading to disease progression. Traditional approaches to counteract this resistance, particularly those targeting the RAF-MEK-ERK pathway, often face clinical feasibility limitations. Magnetic hyperthermia (MH), unlike conventional thermal therapies, emerges as a promising alternative. It uniquely combines magnetothermal effects with an increase in reactive oxygen species (ROS). This study found the potential of intracellular MH enhanced the efficacy of sorafenib, increased cellular sensitivity to sorafenib, and reversed sorafenib resistance by inhibiting the RAF-MEK-ERK pathway in an ROS-dependent manner in a sorafenib-resistant HCC cell. Further, in a sorafenib-resistant HCC mouse model, MH significantly sensitized tumors to sorafenib therapy, resulting in inhibited tumor growth and improved survival rates. This presents a promising strategy to overcome sorafenib resistance in HCC, potentially enhancing therapeutic outcomes for patients with this challenging condition.
Collapse
Affiliation(s)
- Hugang Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zirui Ye
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianlan Yuan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingyi Guo
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chen Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haiming Fan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
50
|
Gao YN, Wang ZW, Su CY, Wang JQ, Zheng N. Omics analysis revealed the intestinal toxicity induced by aflatoxin B1 and aflatoxin M1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116336. [PMID: 38691883 DOI: 10.1016/j.ecoenv.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan-You Su
- College of Animal Science, Henan Agriculture University, Zhengzhou 450000, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|