1
|
Zhang X, Cao Z, Li L, Lu P, Geng Q, Yan L, Liu B, Lin L, Zhang L, Shi C, Tan Y, He X, Li L, Zhao N, Lu C. Triptolide-induced acute liver injury and its mechanism with estradiol in regulating macrophage-mediated inflammation and hepatocyte function. Biomed Pharmacother 2024; 180:117481. [PMID: 39316971 DOI: 10.1016/j.biopha.2024.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Triptolide (TP), a diterpene from Tripterygium wilfordii, exhibits potent anti-inflammatory, immunomodulatory, and antitumor properties but is limited by severe hepatotoxicity. This study investigates sex differences in TP-induced liver injury and the protective role of estradiol (E2) in modulating macrophage-mediated inflammation and hepatocyte function. An acute liver injury model was established in male and female Balb/c mice using intraperitoneal TP injection. Liver function tests, histological analyses, and immunohistochemical staining were performed. THP-1 macrophage and various liver cell lines were used to study the effects of TP and E2 in vitro. Virtual screening, molecular docking, luciferase assays, and qPCR were employed to identify potential targets and elucidate underlying mechanisms. TP caused more severe liver injury in female mice, evidenced by increased liver indices, aspartate aminotransferase (AST) levels, and extensive hepatocyte damage. TP promoted M1 macrophage polarization, enhancing inflammation, particularly in female mice. E2 mitigated TP-induced inflammatory responses by downregulating pro-inflammatory cytokines and macrophage activation markers. Molecular docking and functional assays identified Nuclear receptor subfamily 1 group I member 2 (NR1I2) as a key target mediating the protective effects of E2. The study highlights significant sex differences in TP-induced hepatotoxicity, with females being more susceptible. E2 exerts protective effects against TP-induced liver injury by modulating immune responses, presenting a potential therapeutic approach to mitigate drug-induced liver injury (DILI). Further research on NR1I2 could lead to targeted therapies for reducing drug-induced liver damage.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China; Beijing NO.6 hospital, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Abdelgawad IY, George B, Grant MKO, Huang Y, Shan Y, Huang RS, Zordoky BN. Sex-related differences in delayed doxorubicin-induced cardiac dysfunction in C57BL/6 mice. Arch Toxicol 2024; 98:1191-1208. [PMID: 38244039 DOI: 10.1007/s00204-023-03678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Cancer survivors may experience long-term cardiovascular complications due to chemotherapeutic drugs such as doxorubicin (DOX). The exact mechanism of delayed DOX-induced cardiotoxicity has not been fully elucidated. Sex is an important risk factor for DOX-induced cardiotoxicity. In the current study, we identified sex differences in delayed DOX-induced cardiotoxicity and determined the underlying molecular determinants of the observed sexual dimorphism. Five-week-old male and female mice were administered intraperitoneal injections of DOX (4 mg/kg/week) or saline for 6 weeks. Echocardiography was performed 5 weeks after the last dose of DOX to evaluate cardiac function. Thereafter, mice were sacrificed and gene expression of markers of apoptosis, senescence, and inflammation was measured by PCR in hearts and livers. Proteomic profiling of the heart from both sexes was conducted to determine differentially expressed proteins (DEPs). Only DOX-treated male, but not female, mice demonstrated cardiac dysfunction, cardiac atrophy, and upregulated cardiac expression of Nppb and Myh7. No sex-related differences were observed in DOX-induced expression of most apoptotic, senescence, and pro-inflammatory markers. However, the gene expression of Trp53 was significantly reduced in hearts of DOX-treated female mice only. The anti-inflammatory marker Il-10 was significantly reduced in hearts of DOX-treated male mice only, while the pro-inflammatory marker Il-1α was significantly reduced in livers of DOX-treated female mice only. Gene expression of Tnf-α was reduced in hearts of both DOX-treated male and female mice. Proteomic analysis identified several DEPs after DOX treatment in a sex-specific manner, including anti-inflammatory acute phase proteins. This is the first study to assess sex-specific proteomic changes in a mouse model of delayed DOX-induced cardiotoxicity. Our proteomic analysis identified several sexually dimorphic DEPs, many of which are associated with the anti-inflammatory marker Il-10.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Benu George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yuting Shan
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Reis-Mendes A, Vitorino-Oliveira C, Ferreira M, Carvalho F, Remião F, Sousa E, de Lourdes Bastos M, Costa VM. Comparative In Vitro Study of the Cytotoxic Effects of Doxorubicin's Main Metabolites on Cardiac AC16 Cells Versus the Parent Drug. Cardiovasc Toxicol 2024; 24:266-279. [PMID: 38347287 PMCID: PMC10937802 DOI: 10.1007/s12012-024-09829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Doxorubicin (DOX; also known as adriamycin) serves as a crucial antineoplastic agent in cancer treatment; however, its clinical utility is hampered by its' intrinsic cardiotoxicity. Although most DOX biotransformation occurs in the liver, a comprehensive understanding of the impact of DOX biotransformation and its' metabolites on its induced cardiotoxicity remains to be fully elucidated. This study aimed to explore the role of biotransformation and DOX's main metabolites in its induced cardiotoxicity in human differentiated cardiac AC16 cells. A key discovery from our study is that modulating metabolism had minimal effects on DOX-induced cytotoxicity: even so, metyrapone (a non-specific inhibitor of cytochrome P450) increased DOX-induced cytotoxicity at 2 µM, while diallyl sulphide (a CYP2E1 inhibitor) decreased the 1 µM DOX-triggered cytotoxicity. Then, the toxicity of the main DOX metabolites, doxorubicinol [(DOXol, 0.5 to 10 µM), doxorubicinone (DOXone, 1 to 10 µM), and 7-deoxydoxorubicinone (7-DeoxyDOX, 1 to 10 µM)] was compared to DOX (0.5 to 10 µM) following a 48-h exposure. All metabolites evaluated, DOXol, DOXone, and 7-DeoxyDOX caused mitochondrial dysfunction in differentiated AC16 cells, but only at 2 µM. In contrast, DOX elicited comparable cytotoxicity, but at half the concentration. Similarly, all metabolites, except 7-DeoxyDOX impacted on lysosomal ability to uptake neutral red. Therefore, the present study showed that the modulation of DOX metabolism demonstrated minimal impact on its cytotoxicity, with the main metabolites exhibiting lower toxicity to AC16 cardiac cells compared to DOX. In conclusion, our findings suggest that metabolism may not be a pivotal factor in mediating DOX's cardiotoxic effects.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Cláudia Vitorino-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO - Applied Molecular Biosciences Unit, University of Porto, 4050-313, Porto, Portugal.
- Toxicology Laboratory, Faculty of Pharmacy, UCIBIO, University Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Gedikli E, Barış VÖ, Yersal N, Dinçsoy AB, Müftüoğlu SF, Erdem A. Taurine Protects Doxorubicin-Induced Hepatotoxicity via Its Membrane-Stabilizing Effect in Rats. Life (Basel) 2023; 13:2031. [PMID: 37895413 PMCID: PMC10608465 DOI: 10.3390/life13102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Doxorubicin (dox) is a chemotherapeutic agent widely used against various tumors. However, the clinical use of this agent is limited due to various organ toxicities. Taurine is an intracellular free β-amino acid with antioxidant properties. The present study investigated the protective mechanism of taurine on dox-induced hepatotoxicity. METHODS In total, 31 male Sprague-Dawley rats were used in the study. The control group received intraperitoneal (i.p.) 0.9% NaCl alone for 14 days; the taurine (Tau) group received i.p. taurine 150 mg/kg body weight/day for 14 days; the dox group received dox on days 12, 13, and 14 at a cumulative dose of 25 mg/kg body weight/3 days; and the tau+dox group received taurine and dox together at the same dose and through the same route. On day 15, biochemical evaluations were performed on blood samples taken from the left ventricle followed by histological examinations on liver samples. RESULTS Dox was found to increase liver function enzymes and tissue protein carbonyl levels, causing congestion and tissue damage, thereby leading to dysfunction. Tau was found to histologically preserve the liver morphology without showing any corrective effect on oxidative stress parameters. These findings suggest that the membrane-stabilizing effect of taurine may be more effective than its radical scavenging activity in preventing dox-induced toxicity. CONCLUSION Taurine can prevent doxorubicin-induced hepatotoxicity through non-antioxidant pathways.
Collapse
Affiliation(s)
- Esra Gedikli
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| | - Veysel Özgür Barış
- Department of Cardiology, Dr Ersin Arslan Research and Education Hospital, 27010 Gaziantep, Turkey;
| | - Nilgün Yersal
- Department of Histology & Embryology, Gaziosmanpaşa University Faculty of Medicine, 60030 Tokat, Turkey;
| | - Adnan Berk Dinçsoy
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| | - Sevda Fatma Müftüoğlu
- Department of Histology & Embryology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey;
| | - Ayşen Erdem
- Department of Physiology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey; (E.G.); (A.B.D.)
| |
Collapse
|
5
|
Punia R, Ali M, Shamsi Y, Singh RP. A Polyherbal Formulation Habb-e-Ustukhuddus Induces Apoptosis and Inhibits Cell Migration in Lung and Breast Cancer Cells without Any Toxicity in Mice. Asian Pac J Cancer Prev 2023; 24:2713-2727. [PMID: 37642058 PMCID: PMC10685228 DOI: 10.31557/apjcp.2023.24.8.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE A polyherbal medicine, Habb-e-Ustukhuddus (HU), is used for its anti-inflammatory properties. However, the anticancer and chemopreventive properties of HU were not known, and Therefore, investigated in the present study. METHODS Cancer cells were treated with 50-400 µg/ml HU and MTT, trypan blue, and clonogenic assays were performed. Propidium iodide (PI) staining, annexin V-FITC assay, and JC-1 staining were done for cell cycle progression, apoptosis, and mitochondrial membrane potential, respectively, using flow cytometry. Immunoblotting, cell migration and invasion assays were performed. Chemical characterization of HU was done through GC-MS and HPLC analyses. C57BL/6 mice were used to assess the in vivo toxicity of HU. RESULTS While evaluating the anticancer activity, the methanolic extract of HU (50-400 µg/ml) strongly inhibited the growth and survival (P<0.05-0.001) of lung and breast cancer cells and increased the cell population in the sub-G1 phase of the cell cycle. HU caused apoptotic death of cancer cells (P<0.05-0.001), which was associated with the depolarization of mitochondrial membrane potential (Δψ) (P<0.001) and an increase in Bax to Bcl-2 protein ratio. Further, HU inhibited the invasion and migration of cancer cells, which was accompanied by an increase in the epithelial marker, E-cadherin, and a decrease in the mesenchymal marker, vimentin. The HU characterization by GC-MS and HPLC analyses showed the abundance of bioactive compounds including flavonoids and alkaloids. In the chemopreventive study, the oral administration of methanolic extract of the formulation HU (50 and 100 mg/kg body weight) to mice did not cause any toxicity and significantly increased the specific activities of hepatic drug metabolizing phase I and phase II enzymes, which suggested for its detoxification potential of xenobiotic compounds. CONCLUSION Together, these results demonstrated the anticancer potential HU, without any apparent toxicity in mice, and thus HU could be further explored for its clinical utility in cancer control.
Collapse
Affiliation(s)
- Reenu Punia
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Yasmeen Shamsi
- Department of Moalajat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Tan X, Zhang R, Lan M, Wen C, Wang H, Guo J, Zhao X, Xu H, Deng P, Pi H, Yu Z, Yue R, Hu H. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother 2023; 162:114733. [PMID: 37087977 DOI: 10.1016/j.biopha.2023.114733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Rongyi Zhang
- Department of Cardiology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Junsong Guo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hui Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
7
|
Bagdasaryan AA, Chubarev VN, Smolyarchuk EA, Drozdov VN, Krasnyuk II, Liu J, Fan R, Tse E, Shikh EV, Sukocheva OA. Pharmacogenetics of Drug Metabolism: The Role of Gene Polymorphism in the Regulation of Doxorubicin Safety and Efficacy. Cancers (Basel) 2022; 14:cancers14215436. [PMID: 36358854 PMCID: PMC9659104 DOI: 10.3390/cancers14215436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The effectiveness and safety of the anti-cancer agent doxorubicin (anthracycline group medicine) depend on the metabolism and retention of the drug in the human organism. Polymorphism of cytochrome p450 (CYP)-encoding genes and detoxifying enzymes such as CYP3A4 and CYP2D6 were found responsible for variations in the doxorubicin metabolism. Transmembrane transporters such as p-glycoproteins were reported to be involved in cancer tissue retention of doxorubicin. ATP-binding cassette (ABC) family members, including ABCB1 transporters (also known as Multi-Drug Resistance 1 (MDR1)) proteins, were determined to pump out doxorubicin from breast cancer cells, therefore reducing the drug effectiveness. This study critically discusses the latest data about the role of CYP3A4, CYP2D6, and ABCB1 gene polymorphism in the regulation of doxorubicin’s effects in breast cancer patients. The assessment of genetic differences in the expression of doxorubicin metabolizing and transporting enzymes should be explored for the development of personalized medical treatment of breast cancer patients. Abstract Breast cancer (BC) is the prevailing malignancy and major cause of cancer-related death in females. Doxorubicin is a part of BC neoadjuvant and adjuvant chemotherapy regimens. The administration of anthracycline derivates, such as doxorubicin, may cause several side effects, including hematological disfunction, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, and cardiotoxicity. Cardiotoxicity is a major adverse reaction to anthracyclines, and it may vary depending on individual differences in doxorubicin pharmacokinetics. Determination of specific polymorphisms of genes that can alter doxorubicin metabolism was shown to reduce the risk of adverse reactions and improve the safety and efficacy of doxorubicin. Genes which encode cytochrome P450 enzymes (CYP3A4 and CYP2D6), p-glycoproteins (ATP-binding cassette (ABC) family members such as Multi-Drug Resistance 1 (MDR1) protein), and other detoxifying enzymes were shown to control the metabolism and pharmacokinetics of doxorubicin. The effectiveness of doxorubicin is defined by the polymorphism of cytochrome p450 and p-glycoprotein-encoding genes. This study critically discusses the latest data about the role of gene polymorphisms in the regulation of doxorubicin’s anti-BC effects. The correlation of genetic differences with the efficacy and safety of doxorubicin may provide insights for the development of personalized medical treatment for BC patients.
Collapse
Affiliation(s)
- Alina A. Bagdasaryan
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Vladimir N. Chubarev
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Elena A. Smolyarchuk
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Vladimir N. Drozdov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ivan I. Krasnyuk
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Junqi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Evgenia V. Shikh
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
- Correspondence:
| |
Collapse
|
8
|
Xu X, Liu Q, Li J, Xiao M, Gao T, Zhang X, Lu G, Wang J, Guo Y, Wen P, Gu J. Co-Treatment With Resveratrol and FGF1 Protects Against Acute Liver Toxicity After Doxorubicin Treatment via the AMPK/NRF2 Pathway. Front Pharmacol 2022; 13:940406. [PMID: 36110535 PMCID: PMC9468578 DOI: 10.3389/fphar.2022.940406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX), an anthracycline type of chemotherapy, is an effective therapy for several types of cancer, but serious side effects, such as severe hepatotoxicity, limit its use currently. Accordingly, an effective therapeutic strategy to prevent DOX-related hepatotoxicity is urgently needed. Through the inhibition of oxidative stress, fibroblast growth factor 1 (FGF1) is an effect therapy for a variety of liver diseases, but its use is limited by an increased risk of tumorigenesis due to hyperproliferation. Resveratrol (RES), a natural product, inhibits the growth of many cancer cell lines, including liver, breast, and prostate cancer cells. Therefore, this study explored whether and how RES in combination with FGF1 can alleviate DOX-induced hepatotoxicity. The results showed that RES or FGF1 alone improved DOX-induced hepatic inflammation, apoptosis and oxidative stress, and these adverse effects were further attenuated after treatment with both RES and FGF1. Mechanistically, both in vivo and in vitro results showed that RES/FGF1 reduced oxidative stress and thereby alleviated liver injury by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequently upregulating expression of antioxidant proteins in an adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Together, our results not only demonstrate that co-treatment with RES and FGF1 significantly inhibited DOX-induced hepatic inflammation and apoptosis, but also that co-treatment with RES and FGF1 markedly suppressed DOX-induced hepatic oxidative stress, via targeting the AMPK/NRF2 pathway and subsequently ameliorating hepatic dysfunction. Thus, the combination of RES and FGF1 may provide a new therapeutic strategy for limiting DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xianchou Xu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Gastrointestinal Surgery, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peinan Wen
- Department of Gastrointestinal Surgery, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Junlian Gu, ; Peinan Wen,
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu, ; Peinan Wen,
| |
Collapse
|
9
|
Kawamura T, Ichikawa M, Hatogai J, Koyama Y, Tachibana M, Kuwahara M, Negishi K, Matsumoto M, Miyazaki M, Ochiai W. Mouse Cyp2c expression and zonation structure in the liver begins in the early neonatal stage. Biopharm Drug Dispos 2022; 43:130-139. [PMID: 35748067 DOI: 10.1002/bdd.2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
In the adult liver, drug-metabolizing enzymes such as cytochrome P450 (CYP) efficiently metabolize drugs by forming an expression pattern called "Zonation" structure around central veins. However, most previous studies on CYPs have focused on the expression levels of CYP mRNA and proteins in the whole liver. In this study, we analyzed not only the expression levels of Cyp2c family mRNAs and proteins in mice during fetal liver development, but also the relationship with their localization. In the whole fetal liver, Cyp2c mRNA and protein were hardly expressed. On the other hand, zonation analysis results showed that only some cells around the central vein of the fetal liver expressed Cyp2c. In addition, the protein expression level of Cyp2c in the whole liver during the neonatal period starts from postnatal day (P) 7 in both males and females, while the zonation is weakly formed from P5. This study suggested that fetal liver cannot metabolize Cyp2c substrate drugs transferred from mother to fetus due to low expression of Cyp2c and unformed zonation. The expression level of Cyp2c protein in neonates was lower than that in adult liver, and the zonation structure was not clear, suggesting that drug metabolism was not sufficient. Furthermore, this study revealed that the expression level of Cyp2c does not correlate with the formation of zonation structures, because Cyp2c expression is found in hepatocytes near the central vein even in the fetal and neonatal stages, when Cyp2c protein expression is hardly detectable in the whole liver. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taisuke Kawamura
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mako Ichikawa
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Jo Hatogai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misa Tachibana
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misaki Kuwahara
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Keita Negishi
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miyu Matsumoto
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masafumi Miyazaki
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Ochiai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
10
|
Doxorubicin Paradoxically Ameliorates Tumor-Induced Inflammation in Young Mice. Int J Mol Sci 2021; 22:ijms22169023. [PMID: 34445729 PMCID: PMC8396671 DOI: 10.3390/ijms22169023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin (DOX) is one of the most widely used chemo-therapeutic agents in pediatric oncology. DOX elicits an inflammatory response in multiple organs, which contributes to DOX-induced adverse effects. Cancer itself causes inflammation leading to multiple pathologic conditions. The current study investigated the inflammatory response to DOX and tumors using an EL4-lymphoma, immunocompetent, juvenile mouse model. Four-week old male C57BL/6N mice were injected subcutaneously with EL4 lymphoma cells (5 × 104 cells/mouse) in the flank region, while tumor-free mice were injected with vehicle. Three days following tumor implantation, both tumor-free and tumor-bearing mice were injected intraperitoneally with either DOX (4 mg/kg/week) or saline for 3 weeks. One week after the last DOX injection, the mice were euthanized and the hearts, livers, kidneys, and serum were harvested. Gene expression and serum concentration of inflammatory markers were quantified using real-time PCR and ELISA, respectively. DOX treatment significantly suppressed tumor growth in tumor-bearing mice and caused significant cardiac atrophy in tumor-free and tumor-bearing mice. EL4 tumors elicited a strong inflammatory response in the heart, liver, and kidney. Strikingly, DOX treatment ameliorated tumor-induced inflammation paradoxical to the effect of DOX in tumor-free mice, demonstrating a widely divergent effect of DOX treatment in tumor-free versus tumor-bearing mice.
Collapse
|
11
|
Helsby N, Yong M, Burns K, Findlay M, Porter D. Cyclophosphamide bioactivation pharmacogenetics in breast cancer patients. Cancer Chemother Pharmacol 2021; 88:533-542. [PMID: 34114066 DOI: 10.1007/s00280-021-04307-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/30/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Genetic variation in the activation of the prodrug cyclophosphamide (CP) by cytochrome P450 (CYP) enzymes has been shown to influence outcomes. However, CYP are also subject to phenoconversion due to either the effects of comedications or cancer associated down-regulation of expression. The aim of this study was to assess the relationship between CP bioactivation with CYP2B6 and CYP2C19 genotype, as well as CYP2C19 phenotype, in breast cancer patients. METHODS CP and the active metabolite levels were assessed in breast cancer patients (n = 34) at cycle 1 and cycle 3 of treatment. Patients were genotyped for a series of SNP known to affect CYP2B6 and CYP2C19 function. The activity of CYP2C19 was also assessed using a probe drug. RESULTS We found a significant linear gene-dose relationship with CYP2B6 coding SNP and formation of 4-hydroxycyclophosphamide. A possible association with CYP2C19 null genotype at cycle 1 was obscured at cycle 3 due to the substantial intra-individual change in CP bioactivation on subsequent dosing. CONCLUSION Comedications may be the cause for this inter-occasion variation in bioactivation of cyclophosphamide and the ensuing phenoconversion may account for the conflicting reports in the literature about the relationship between CYP2C19 genotype and CP bioactivation pharmacokinetics. Trial registration ANZCTR363222 (6/11/2012, retrospectively registered).
Collapse
Affiliation(s)
- Nuala Helsby
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Minghan Yong
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Burns
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael Findlay
- Cancer Trials New Zealand, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Regional Cancer and Blood Service, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Grafton, Auckland, New Zealand
| |
Collapse
|
12
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
13
|
Gender differences in the susceptibility of hospital-acquired acute kidney injury: more questions than answers. Int Urol Nephrol 2020; 52:1911-1914. [PMID: 32661623 PMCID: PMC7515943 DOI: 10.1007/s11255-020-02526-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Hospital-acquired acute kidney injury (HA-AKI) is a heterogeneous renal syndrome which occurs in different clinical settings. It is characterized by multiple aetiologies, various pathogeneses and unpredictable outcomes. HA-AKI, once predominantly viewed as a self-limited and reversible short-term condition, is now recognized as a harbinger for chronic kidney disease and a cause of long-term morbidity with an increased risk of cardiovascular, renal and cancer mortality. Recent clinical studies contradict the generally held belief that female sex is a risk factor for HA-AKI. They show, consistent with basic research performed with experimental models of AKI, that only male sex is associated with HA-AKI. The presence of testosterone, more likely than the absence of estrogen, plays a critical role in sex differences in the susceptibility of ischemia/reperfusion kidney injury. The conflicting data in epidemiological studies related to sex as susceptibility variable for human AKI, underscore the need for more rigorous, well designed observational studies taking into account the menopausal status and hormone therapy.
Collapse
|