1
|
Zhu JY, Yao W, Ni XS, Yao MD, Bai W, Yang TJ, Zhang ZR, Li XM, Jiang Q, Yan B. Hyperglycemia-regulated tRNA-derived fragment tRF-3001a propels neurovascular dysfunction in diabetic mice. Cell Rep Med 2023; 4:101209. [PMID: 37757825 PMCID: PMC10591036 DOI: 10.1016/j.xcrm.2023.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Neurovascular dysfunction is a preclinical manifestation of diabetic complications, including diabetic retinopathy (DR). Herein, we report that a transfer RNA-derived RNA fragment, tRF-3001a, is significantly upregulated under diabetic conditions. tRF-3001a downregulation inhibits Müller cell activation, suppresses endothelial angiogenic effects, and protects against high-glucose-induced retinal ganglion cell injury in vitro. Furthermore, tRF-3001a downregulation alleviates retinal vascular dysfunction, inhibits retinal reactive gliosis, facilitates retinal ganglion cell survival, and preserves visual function and visually guided behaviors in STZ-induced diabetic mice and db/db diabetic mice. Mechanistically, tRF-3001a regulates neurovascular dysfunction in a microRNA-like mechanism by targeting GSK3B. Clinically, tRF-3001a is upregulated in aqueous humor (AH) samples of DR patients. tRF-3001a downregulation inhibits DR-induced human retinal vascular endothelial cell and Müller cell dysfunction in vitro and DR-induced retinal neurovascular dysfunction in C57BL/6J mice. Thus, targeting tRF-3001a-mediated signaling is a promising strategy for the concurrent treatment of vasculopathy and neuropathy in diabetes mellitus.
Collapse
Affiliation(s)
- Jun-Ya Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China; Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Wen Yao
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xi-Sen Ni
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Mu-Di Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
| | - Wen Bai
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Tian-Jing Yang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Zi-Ran Zhang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xiu-Miao Li
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China; Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Qin Jiang
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China; Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210000, China.
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China; National Health Commission Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai 200030, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200030, China.
| |
Collapse
|
2
|
Nagai N, Mushiga Y, Ozawa Y. Evaluating fine changes in visual function of diabetic eyes using spatial-sweep steady-state pattern electroretinography. Sci Rep 2023; 13:13686. [PMID: 37608045 PMCID: PMC10444753 DOI: 10.1038/s41598-023-40686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
The visual function of diabetic eyes was assessed to evaluate spatial-sweep steady-state pattern electroretinography (swpPERG) as a potential high-sensitivity analysis method. Data from 24 control eyes, 28 diabetic eyes without diabetic retinopathy (DR), and 30 diabetic eyes with DR (all with best-corrected visual acuity [BCVA] better than logMAR 0.05; median age, 51) in response to spatial-patterned and contrast-reversed stimuli of sizes 1 (thickest) to 6 were converted into the frequency domain using a Fourier transform and expressed as signal-to-noise ratios (SNRs). SNRs of diabetic eyes, both with and without DR, were lower than those of controls (P < 0.05), and those of DR eyes were lower than those of diabetic eyes without DR (P < 0.05). The SNRs were correlated with ganglion cell layer volume measured using optical coherence tomography (OCT) and foveal vascular length density at the superficial retinal layer measured using OCT angiography (P < 0.05 or < 0.01, according to stimulus size). Therefore, swpPERG SNRs could detect fine reductions in visual function in diabetic eyes and were particularly low in DR eyes. Moreover, SNRs were correlated with inner retinal morphological changes in diabetic eyes, both with and without DR. swpPERG may therefore be useful for detecting fine fluctuations in visual function in diabetic eyes.
Collapse
Affiliation(s)
- Norihiro Nagai
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuaki Mushiga
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
- Department of Clinical Regenerative Medicine, Eye Center, Fujita Medical Innovation Center Tokyo, Fujita Health University School of Medicine, 7-16-14 Ginza, Chuoku, Tokyo, 104-8313, Japan.
| |
Collapse
|
3
|
Gawron P, Hoksza D, Piñero J, Peña-Chilet M, Esteban-Medina M, Fernandez-Rueda JL, Colonna V, Smula E, Heirendt L, Ancien F, Groues V, Satagopam VP, Schneider R, Dopazo J, Furlong LI, Ostaszewski M. Visualization of automatically combined disease maps and pathway diagrams for rare diseases. FRONTIERS IN BIOINFORMATICS 2023; 3:1101505. [PMID: 37502697 PMCID: PMC10369067 DOI: 10.3389/fbinf.2023.1101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
Collapse
Affiliation(s)
- Piotr Gawron
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - David Hoksza
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
| | - Maria Peña-Chilet
- Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
- Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
| | | | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council of Italy, Naples, Rome
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ewa Smula
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - François Ancien
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Valentin Groues
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Venkata P. Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Joaquin Dopazo
- Computational Medicine Platform, Fundacion Progreso y Salud, Sevilla, Spain
- Spanish Network of Research in Rare Diseases (CIBERER), Sevilla, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
4
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Wen D, Ren X, Li H, He Y, Hong Y, Cao J, Zheng C, Dong L, Li X. Low expression of RBP4 in the vitreous humour of patients with proliferative diabetic retinopathy who underwent Conbercept intravitreal injection. Exp Eye Res 2022; 225:109197. [PMID: 35932904 DOI: 10.1016/j.exer.2022.109197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022]
Abstract
Intravitreal injection of anti-VEGF antibodies has been widely used in the treatment of proliferative diabetic retinopathy (PDR). However, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. To explore proteins closely related to fibrosis, we conducted proteomic analysis of human vitreous humour collected from PDR patients who have or have not intravitreal Conbercept (IVC) injection. Sixteen vitreous humour samples from PDR patients with preoperative IVC and 20 samples from those without preoperative IVC were examined. An immunodepletion kit was used to remove high-abundance vitreous proteins. Conbercept-induced changes were determined using a tandem mass tag-based quantitative proteomic strategy. Enzyme-linked immunosorbent assays were performed to confirm the concentrations of selected proteins and validate the proteomic results. Based on a false discovery rate between 0.05% and -0.05% and a fold-change > 1.5, 97 proteins were altered (49 higher levels and 48 lower levels) in response to IVC. Differentially expressed proteins were found in the extracellular and intracellular regions and were found to be involved in VEGF binding and VEGF-activated receptor activity. Protein-protein interactions indicated associations with fibrosis, neovascularisation and inflammatory signalling pathways. We found the low levels of RBP4 in the vitreous humour of PDR patients with IVC injection, as revealed by ELISA and proteomic profiling. Moreover, RBP4 significantly restored the mitochondrial function of HRMECs induced by AGEs and down regulated the level of glycolysis. Our study is the first to report that RBP4 decreases in the vitreous humour of PDR patients who underwent Conbercept treatment, thereby verifying the role of RBP4 in glucose metabolism. Results provide evidence for the potential mechanism underlying Conbercept-related fibrosis.
Collapse
Affiliation(s)
- Dejia Wen
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Xinjun Ren
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Ye He
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Jingjing Cao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Chuanzhen Zheng
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| | - Xiaorong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| |
Collapse
|
6
|
Fu Z, Nilsson AK, Hellstrom A, Smith LEH. Retinopathy of prematurity: Metabolic risk factors. eLife 2022; 11:e80550. [PMID: 36420952 PMCID: PMC9691009 DOI: 10.7554/elife.80550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
At preterm birth, the retina is incompletely vascularized. Retinopathy of prematurity (ROP) is initiated by the postnatal suppression of physiological retinal vascular development that would normally occur in utero. As the neural retina slowly matures, increasing metabolic demand including in the peripheral avascular retina, leads to signals for compensatory but pathological neovascularization. Currently, only late neovascular ROP is treated. ROP could be prevented by promoting normal vascular growth. Early perinatal metabolic dysregulation is a strong but understudied risk factor for ROP and other long-term sequelae of preterm birth. We will discuss the metabolic and oxygen needs of retina, current treatments, and potential interventions to promote normal vessel growth including control of postnatal hyperglycemia, dyslipidemia and hyperoxia-induced retinal metabolic alterations. Early supplementation of missing nutrients and growth factors and control of supplemental oxygen promotes physiological retinal development. We will discuss the current knowledge gap in retinal metabolism after preterm birth.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
7
|
Dourado LFN, Siqueira RC, Alves AP, de Paiva MRB, Agero U, Cunha Junior ADS. Antiangiogenic activity of photobiomodulation in experimental model using chorioallantoic embryonic membrane of chicken eggs. Arq Bras Oftalmol 2022; 87:0524. [PMID: 36169440 PMCID: PMC11587493 DOI: 10.5935/0004-2749.2021-0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the vascular effects of photobiomodulation using a light-emitting diode on the chorioallantoic embryonic membrane of chicken eggs grouped into different times of exposure and to detect the morphological changes induced by the light on the vascular network architecture using quantitative metrics. METHODS We used a phototherapy device with light-emitting diode (670 nm wavelength) as the source of photobiomodulation. We applied the red light at a distance of 2.5 cm to the surface of the chorioallantoic embryonic membrane of chicken eggs in 2, 4, or 8 sessions for 90 s and analyzed the vascular network architecture using AngioTool software (National Cancer Institute, USA). We treated the negative control group with 50 μl phosphate-buffered-saline (pH 7.4) and the positive control group (Beva) with 50 μl bevacizumab solution (Avastin, Produtos Roche Químicos e Farmacêuticos, S.A., Brazil). RESULTS We found a decrease in total vessel length in the Beva group (24.96% ± 12.85%) and in all the groups that received 670 nm red light therapy (2× group, 34.66% ± 8.66%; 4× group, 42.42% ± 5.26%; 8× group, 38.48% ± 6.96%), compared with the negative control group. The fluence of 5.4 J/cm2 in 4 sessions (4×) showed more regular vessels. The number of junctions in the groups that received a higher incidence of 670 nm red light (4× and 8×) significantly decreased (p<0.0001). CONCLUSION Photo-biomodulation helps reduce vascularization in chorioallantoic embryonic membrane of chicken eggs and changes in the network architecture. Our results open the possibility of future clinical studies on using this therapy in patients with retinal diseases with neovascular components, especially age-related macular degeneration.
Collapse
Affiliation(s)
| | | | - Ana Paula Alves
- Institute of Exact Sciences, Physics Department, Universidade
Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ubirajara Agero
- Institute of Exact Sciences, Physics Department, Universidade
Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
8
|
Fort PE, Losiewicz MK, Elghazi L, Kong D, Cras-Méneur C, Fingar DC, Kimball SR, Rajala RVS, Smith AJ, Ali RR, Abcouwer SF, Gardner TW. mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. J Biol Chem 2022; 298:101944. [PMID: 35447116 PMCID: PMC9117545 DOI: 10.1016/j.jbc.2022.101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.
Collapse
Affiliation(s)
- Patrice E Fort
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mandy K Losiewicz
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dejuan Kong
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Corentin Cras-Méneur
- Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scot R Kimball
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Raju V S Rajala
- Departments of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alexander J Smith
- Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Robin R Ali
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Steven F Abcouwer
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Thomas W Gardner
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Evidence of retinal arteriolar narrowing in patients with autosomal-dominant polycystic kidney disease. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction
The aim of this study was to examine retinal vessels in autosomal dominant polycystic kidney disease (ADPKD) patients with normal kidney function and without diabetes mellitus.
Materials and Methods
We enrolled 39 adult individuals with ADPKD and 45 gender- and age-matched individuals as controls. A full ophthalmologic examination, including retinal vessel caliber and reactions to flicker stimulation analysis and grading of hypertensive retinopathy according to the Keith-Wagener classification, was performed.
Results
Multivariable analysis of ADPKD patients and controls, adjusted for age, gender, estimated glomerular filtration rate (e-GFR) and the presence of hypertension, revealed that ADPKD was an independent factor associated with lower arteriovenous ratio (AVR) values (by 0.069 on average, β = −0.50, p < 0.0001). The severity of hypertensive retinopathy according to the Keith-Wagener classification appeared to be more advanced in the ADPKD group than in the controls, despite the lack of vascular abnormalities, such as retinal hemorrhages, exudates, cotton wool spots or papilledema, as well as microaneurysms, which are very characteristic signs of ADPKD in other vascular beds.
Conclusions
Lower AVR values could be a specific pathophysiological ocular manifestation of systemic vasculopathy in the course of ADPKD.
Collapse
|
10
|
Evidence of retinal arteriolar narrowing in patients with autosomal-dominant polycystic kidney disease. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
The aim of this study was to examine retinal vessels in autosomal dominant polycystic kidney disease (ADPKD) patients with normal kidney function and without diabetes mellitus.
Materials and Methods
We enrolled 39 adult individuals with ADPKD and 45 gender- and age-matched individuals as controls. A full ophthalmologic examination, including retinal vessel caliber and reactions to flicker stimulation analysis and grading of hypertensive retinopathy according to the Keith-Wagener classification, was performed.
Results
Multivariable analysis of ADPKD patients and controls, adjusted for age, gender, estimated glomerular filtration rate (e-GFR) and the presence of hypertension, revealed that ADPKD was an independent factor associated with lower arteriovenous ratio (AVR) values (by 0.069 on average, β = −0.50, p < 0.0001). The severity of hypertensive retinopathy according to the Keith-Wagener classification appeared to be more advanced in the ADPKD group than in the controls, despite the lack of vascular abnormalities, such as retinal hemorrhages, exudates, cotton wool spots or papilledema, as well as microaneurysms, which are very characteristic signs of ADPKD in other vascular beds.
Conclusions
Lower AVR values could be a specific pathophysiological ocular manifestation of systemic vasculopathy in the course of ADPKD.
Collapse
|
11
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
12
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
13
|
Yang Y, Yang Q, Luo S, Zhang Y, Lian C, He H, Zeng J, Zhang G. Comparative Analysis Reveals Novel Changes in Plasma Metabolites and Metabolomic Networks of Infants With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35060995 PMCID: PMC8787637 DOI: 10.1167/iovs.63.1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Advances in mass spectrometry have provided new insights into the role of metabolomics in the etiology of several diseases. Studies on retinopathy of prematurity (ROP), for example, overlooked the role of metabolic alterations in disease development. We employed comprehensive metabolic profiling and gold-standard metabolic analysis to explore major metabolites and metabolic pathways, which were significantly affected in early stages of pathogenesis toward ROP. Methods This was a multicenter, retrospective, matched-pair, case-control study. We collected plasma from 57 ROP cases and 57 strictly matched non-ROP controls. Non-targeted ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) was used to detect the metabolites. Machine learning was employed to reveal the most affected metabolites and pathways in ROP development. Results Compared with non-ROP controls, we found a significant metabolic perturbation in the plasma of ROP cases, which featured an increase in the levels of lipids, nucleotides, and carbohydrate metabolites and lower levels of peptides. Machine leaning enabled us to distinguish a cluster of metabolic pathways (glycometabolism, redox homeostasis, lipid metabolism, and arginine pathway) were strongly correlated with the development of ROP. Moreover, the severity of ROP was associated with the levels of creatinine and ribitol; also, overactivity of aerobic glycolysis and lipid metabolism was noted in the metabolic profile of ROP. Conclusions The results suggest a strong correlation between metabolic profiling and retinal neovascularization in ROP pathogenesis. These findings provide an insight into the identification of novel metabolic biomarkers for the diagnosis and prevention of ROP, but the clinical significance requires further validation.
Collapse
Affiliation(s)
- Yuhang Yang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Qian Yang
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sisi Luo
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yinsheng Zhang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Chaohui Lian
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Honghui He
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Xu M, Jiang Y, Su L, Chen X, Shao X, Ea V, Shang Z, Zhang X, Barnstable CJ, Li X, Tombran-Tink J. Novel Regulators of Retina Neovascularization: A Proteomics Approach. J Proteome Res 2021; 21:101-117. [PMID: 34919406 DOI: 10.1021/acs.jproteome.1c00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to identify proteins that regulate vascular remodeling in an ROP mouse model. Pups were subjected to fluctuating oxygen levels and retinas sampled during vessel regression (PN12) or neovascularization (PN17) for comparative SWATH-MS proteomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We developed a human retinal endothelial cell (HREC) ROP correlate to validate the expression of retina neovascular-specific markers. A total of 5191 proteins were identified in OIR retinas with 498 significantly regulated in elevated oxygen and 345 after a return to normoxia. A total of 122 proteins were uniquely regulated during vessel regression and 69 during neovascularization (FC ≥ 1.5; p ≤ 0.05), with several validated by western blot analyses. Expressions of 56/69 neovascular-specific proteins were confirmed in hypoxic HRECs with 23 regulated in the same direction as OIR neovascular retinas. These proteins control angiogenesis-related processes including matrix remodeling, cell migration, adhesion, and proliferation. RNAi and transfection overexpression studies confirmed that VASP and ECH1, showing the highest levels in hypoxic HRECs, promoted human umbilical vein (HUVEC) and HREC cell proliferation, while SNX1 and CD109, showing the lowest levels, inhibited their proliferation. These proteins are potential biomarkers and exploitable intervention tools for vascular-related disorders. The proteomics data set generated has been deposited to the ProteomeXchange/iProX Consortium with the Identifier:PXD029208.
Collapse
Affiliation(s)
- Manhong Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yilin Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xin Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Vicki Ea
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Zhenying Shang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Colin J Barnstable
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Joyce Tombran-Tink
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| |
Collapse
|
15
|
Tomita Y, Usui-Ouchi A, Nilsson AK, Yang J, Ko M, Hellström A, Fu Z. Metabolism in Retinopathy of Prematurity. Life (Basel) 2021; 11:1119. [PMID: 34832995 PMCID: PMC8620873 DOI: 10.3390/life11111119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity is defined as retinal abnormalities that occur during development as a consequence of disturbed oxygen conditions and nutrient supply after preterm birth. Both neuronal maturation and retinal vascularization are impaired, leading to the compensatory but uncontrolled retinal neovessel growth. Current therapeutic interventions target the hypoxia-induced neovessels but negatively impact retinal neurons and normal vessels. Emerging evidence suggests that metabolic disturbance is a significant and underexplored risk factor in the disease pathogenesis. Hyperglycemia and dyslipidemia correlate with the retinal neurovascular dysfunction in infants born prematurely. Nutritional and hormonal supplementation relieve metabolic stress and improve retinal maturation. Here we focus on the mechanisms through which metabolism is involved in preterm-birth-related retinal disorder from clinical and experimental investigations. We will review and discuss potential therapeutic targets through the restoration of metabolic responses to prevent disease development and progression.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| |
Collapse
|
16
|
Gesualdo C, Balta C, Platania CBM, Trotta MC, Herman H, Gharbia S, Rosu M, Petrillo F, Giunta S, Della Corte A, Grieco P, Bellavita R, Simonelli F, D'Amico M, Hermenean A, Rossi S, Bucolo C. Fingolimod and Diabetic Retinopathy: A Drug Repurposing Study. Front Pharmacol 2021; 12:718902. [PMID: 34603029 PMCID: PMC8484636 DOI: 10.3389/fphar.2021.718902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the interactions between fingolimod, a sphingosine 1-phosphate receptor (S1PR) agonist, and melanocortin receptors 1 and 5 (MCR1, MCR5). In particular, we investigated the effects of fingolimod, a drug approved to treat relapsing-remitting multiple sclerosis, on retinal angiogenesis in a mouse model of diabetic retinopathy (DR). We showed, by a molecular modeling approach, that fingolimod can bind with good-predicted affinity to MC1R and MC5R. Thereafter, we investigated the fingolimod actions on retinal MC1Rs/MC5Rs in C57BL/6J mice. Diabetes was induced in C57BL/6J mice through streptozotocin injection. Diabetic and control C57BL/6J mice received fingolimod, by oral route, for 12 weeks and a monthly intravitreally injection of MC1R antagonist (AGRP), MC5R antagonist (PG20N), and the selective S1PR1 antagonist (Ex 26). Diabetic animals treated with fingolimod showed a decrease of retinal vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2), compared to diabetic control group. Fingolimod co-treatment with MC1R and MC5R selective antagonists significantly (p < 0.05) increased retinal VEGFR1, VEGFR2, and VEGFA levels compared to mice treated with fingolimod alone. Diabetic animals treated with fingolimod plus Ex 26 (S1PR1 selective blocker) had VEGFR1, VEGFR2, and VEGFA levels between diabetic mice group and the group of diabetic mice treated with fingolimod alone. This vascular protective effect of fingolimod, through activation of MC1R and MC5R, was evidenced also by fluorescein angiography in mice. Finally, molecular dynamic simulations showed a strong similarity between fingolimod and the MC1R agonist BMS-470539. In conclusion, the anti-angiogenic activity exerted by fingolimod in DR seems to be mediated not only through S1P1R, but also by melanocortin receptors.
Collapse
Affiliation(s)
- Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania
| | | | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Alberto Della Corte
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Grieco
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Rosa Bellavita
- Pharmacy Department, University of Naples Federico II, Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Godis Western University of Arad, Arad, Romania.,Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol Life Sci 2021; 78:5977-5985. [PMID: 34230991 DOI: 10.1007/s00018-021-03893-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.
Collapse
|
18
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
19
|
Delivery Systems of Retinoprotective Proteins in the Retina. Int J Mol Sci 2021; 22:ijms22105344. [PMID: 34069505 PMCID: PMC8160820 DOI: 10.3390/ijms22105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Retinoprotective proteins play important roles for retinal tissue integrity. They can directly affect the function and the survival of photoreceptors, and/or indirectly target the retinal pigment epithelium (RPE) and endothelial cells that support these tissues. Retinoprotective proteins are used in basic, translational and in clinical studies to prevent and treat human retinal degenerative disorders. In this review, we provide an overview of proteins that protect the retina and focus on pigment epithelium-derived factor (PEDF), and its effects on photoreceptors, RPE cells, and endothelial cells. We also discuss delivery systems such as pharmacologic and genetic administration of proteins to achieve photoreceptor survival and retinal tissue integrity.
Collapse
|
20
|
Shao Z, Wang Z, Lo ACY, Fu Z. Editorial: Novel Therapeutic Target and Drug Development in Neurovascular Retinal Diseases. Front Pharmacol 2021; 12:657684. [PMID: 33935774 PMCID: PMC8082679 DOI: 10.3389/fphar.2021.657684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhuo Shao
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Amy C Y Lo
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Potential Effects of Nutraceuticals in Retinopathy of Prematurity. Life (Basel) 2021; 11:life11020079. [PMID: 33499180 PMCID: PMC7912639 DOI: 10.3390/life11020079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Retinopathy of prematurity (ROP), the most common cause of childhood blindness, is a hypoxia-induced eye disease characterized by retinal neovascularization. In the normal retina, a well-organized vascular network provides oxygen and nutrients as energy sources to maintain a normal visual function; however, it is disrupted when pathological angiogenesis is induced in ROP patients. Under hypoxia, inadequate oxygen and energy supply lead to oxidative stress and stimulate neovasculature formation as well as affecting the function of photoreceptors. In order to meet the metabolic needs in the developing retina, protection against abnormal vascular formation is one way to manage ROP. Although current treatments provide beneficial effects in reducing the severity of ROP, these invasive therapies may also induce life-long consequences such as systemic structural and functional complications as well as neurodevelopment disruption in the developing infants. Nutritional supplements for the newborns are a novel concept for restoring energy supply by protecting the retinal vasculature and may lead to better ROP management. Nutraceuticals are provided in a non-invasive manner without the developmental side effects associated with current treatments. These nutraceuticals have been investigated through various in vitro and in vivo methods and are indicated to protect retinal vasculature. Here, we reviewed and discussed how the use of these nutraceuticals may be beneficial in ROP prevention and management.
Collapse
|
22
|
Abstract
Diabetic retinopathy remains a leading cause of blindness despite recent advance in therapies. Traditionally, this complication of diabetes was viewed predominantly as a microvascular disease but research has pointed to alterations in ganglion cells, glia, microglia, and photoreceptors as well, often occurring without obvious vascular damage. In neural tissue, the microvasculature and neural tissue form an intimate relationship with the neural tissue providing signaling cues for the vessels to form a distinct barrier that helps to maintain the proper neuronal environment for synaptic signaling. This relationship has been termed the neurovascular unit (NVU). Research is now focused on understanding the cellular and molecular basis of the neurovascular unit and how diabetes alters the normal cellular communications and disrupts the cellular environment contributing to loss of vision in diabetes.
Collapse
Affiliation(s)
- David A Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Pericyte-Endothelial Interactions in the Retinal Microvasculature. Int J Mol Sci 2020; 21:ijms21197413. [PMID: 33049983 PMCID: PMC7582747 DOI: 10.3390/ijms21197413] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Retinal microvasculature is crucial for the visual function of the neural retina. Pericytes and endothelial cells (ECs) are the two main cellular constituents in the retinal microvessels. Formation, maturation, and stabilization of the micro-vasculatures require pericyte-endothelial interactions, which are perturbed in many retinal vascular disorders, such as retinopathy of prematurity, retinal vein occlusion, and diabetic retinopathy. Understanding the cellular and molecular mechanisms of pericyte-endothelial interaction and perturbation can facilitate the design of therapeutic intervention for the prevention and treatment of retinal vascular disorders. Pericyte-endothelial interactions are indispensable for the integrity and functionality of retinal neurovascular unit (NVU), including vascular cells, retinal neurons, and glial cells. The essential autocrine and paracrine signaling pathways, such as Vascular endothelial growth factor (VEGF), Platelet-derived growth factor subunit B (PDGFB), Notch, Angipointein, Norrin, and Transforming growth factor-beta (TGF-β), have been well characterized for the regulation of pericyte-endothelial interactions in the neo-vessel formation processes (vasculogenesis and angiogenesis) during embryonic development. They also play a vital role in stabilizing and remodeling mature vasculature under pathological conditions. Awry signals, aberrant metabolisms, and pathological conditions, such as oxidative stress and inflammation, can disrupt the communication between pericytes and endothelial cells, thereby resulting in the breakdown of the blood-retinal barrier (BRB) and other microangiopathies. The emerging evidence supports extracellular exosomes' roles in the (mis)communications between the two cell types. This review summarizes the essential knowledge and updates about new advancements in pericyte-EC interaction and communication, emphasizing the retinal microvasculature.
Collapse
|
24
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|