1
|
Jeong HJ, Hoang LAP, Chen N, Zhu E, Wang A, Chen B, Wang EY, Ricupero CL, Lee CH. Engineering soft-hard tissue interfaces in dental and craniofacial system by spatially controlled bioactivities. Bioact Mater 2025; 45:246-256. [PMID: 39659726 PMCID: PMC11629151 DOI: 10.1016/j.bioactmat.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
The interface between soft and hard tissues is constituted by a gradient change of cell types and matrix compositions that are optimally designed for proper load transmission and injury protection. In the musculoskeletal system, the soft-hard tissue interfaces at tendon-bone, ligament-bone, and meniscus-bone have been extensively researched as regenerative targets. Similarly, extensive research efforts have been made to guide the regeneration of multi-tissue complexes in periodontium. However, the other soft-hard tissue interfaces in the dental and craniofacial system have been somewhat neglected. This review discusses the clinical significance of developing regenerative strategies for soft-hard tissue interfaces in the dental and craniofacial system. It also discusses the research progress in the field focused on bioengineering approaches using 3D scaffolds equipped with spatially controlled bioactivities. The remaining challenges, future perspectives, and considerations for the clinical translation of bioactive scaffolds are also discussed.
Collapse
Affiliation(s)
- Hun Jin Jeong
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Lan Anh P. Hoang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Neeve Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Elen Zhu
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Albert Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Bozhi Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Emma Y. Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Christopher L. Ricupero
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
2
|
Liu J, Wang J, Huang R, Jia X, Huang X. The Shh-p38-NFATc1 signaling pathway is essential for osteoclastogenesis during tooth eruption. Tissue Cell 2025; 92:102643. [PMID: 39612595 DOI: 10.1016/j.tice.2024.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tooth eruption, a critical stage in tooth development, is related to osteoclastogenesis. Intraperitoneal injection of Shh agonists into neonatal mice promoted tooth eruption at postnatal day (PN) 15, whereas treatment with the Shh inhibitor (LDE225) suppressed this process. When RAW264.7 osteoclast precursor cells were treated with RANKL, NFATc1 translocated from the cytoplasm to the nucleus and induced cell differentiation into TRAP+ osteoclasts; this process was activated by Shh but inhibited by LDE225. Treating RAW264.7 cells with the p38 inhibitor, BIRB796, also inhibited NFATc1 nuclear localization. p-p38 expression in the alveolar bone of PN3 and PN5 mice was decreased by treatment with LDE225, and RAW264.7 cell differentiation was reduced by BIRB796, regardless of treatment with Shh. Furthermore, Shh activated p38 signaling pathway in RAW264.7 cells, while p38 phosphorylation was reduced by LDE225, which ultimately inhibited osteoclast precursor differentiation. Therefore, we concluded that Shh promotes osteoclast precursor differentiation via the p38-NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Jinan Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiran Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueting Jia
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Borges GH, Lins-Candeiro CL, Henriques IV, de Brito Junior RB, Pithon MM, Paranhos LR. Exploring the genetics, mechanisms, and therapeutic innovations in non-syndromic tooth agenesis. Morphologie 2024; 109:100941. [PMID: 39657464 DOI: 10.1016/j.morpho.2024.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Tooth agenesis is the congenital absence of one or more teeth in the normal series due to failures during dental development in the odontogenesis process. Although tooth development mechanisms are more precise in the literature, the etiology of non-syndromic tooth agenesis remains partially unknown. Mutations in genes that regulate the transcription factors involved in tooth development are associated with this condition. Despite advances in genetic research, questions remain about whose understanding might enable more precise and customized treatments. This study aimed to explain the molecular mechanisms associated with non-syndromic tooth agenesis and treatment progression regarding the condition in genetics. The search was non-systematic and performed in MedLine (via PubMed). The inclusion criteria were observational and experimental studies published in English, Portuguese, and Spanish, with open access and without time restrictions. The data analysis was narrative/descriptive. Fifty-three articles were selected. The primary genes associated with non-syndromic tooth agenesis identified in the study include PAX9 and MSX1 - essential for molar and premolar formation; WNT10A and WNT10B - involved in cell signaling during odontogenesis; AXIN2 - related to the regulation of cell control and colorectal cancer risk; EDA and EDAR - crucial for ectodermal structures; and BMP4 - regulates cell differentiation and morphogenesis. These lesions directly affect tooth formation and quantity. Understanding these genetic foundations and the molecular mechanisms of tooth agenesis is essential to improve diagnosis, develop customized therapies, and enhance patients' quality of life. Continuous research is critical to establish genetic-based therapeutic innovations.
Collapse
Affiliation(s)
- Guilherme Henrique Borges
- Postgraduate Program in Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | - Caio Luiz Lins-Candeiro
- Postgraduate Program in Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| | | | - Rui Barbosa de Brito Junior
- Department of Molecular Biology, Dentistry Course, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil.
| | - Matheus Melo Pithon
- Department of Health, Faculty of Dentistry, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil.
| | - Luiz Renato Paranhos
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
4
|
Yang Y, Ren D, Peng B, Huang J, Yang B. The role of FOXM1 in acetylcysteine improving diabetic periodontitis. J Mol Histol 2024; 56:34. [PMID: 39641827 DOI: 10.1007/s10735-024-10322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Diabetic periodontitis (DP) stems from hyperglycemia-driven oxidative stress amplification and chronic inflammation, leading to periodontal tissue breakdown. Misregulated forkhead box protein M1 (FOXM1) play key roles in this process, exacerbating both inflammation and oxidative stress. In light of N-Acetylcysteine (NAC)'s potent anti-oxidative capacity and anti-inflammatory potential, understanding how it modulates these central pathways to alleviate DP holds high scientific and clinical importance. An animal model of diabetic mice periodontitis was established, and the model mice were injected with FOXM 1 adenovirus to enrich FOXM 1, and the periodontal pathological histology of each group was evaluated by HE staining. Western blotting and RT-PCR evaluated the expression levels of factors involved in bone destruction. ELISA evaluated the amount of inflammatory factors in mice serum. FOXM 1 over-expression and NAC were treated in murine macrophages, and the intracellular reactive oxygen species(ROS) levels in macrophages were measured using a DCFH-DA probe. Receptor activator of NF-κB ligand (RANKL) and lipopolysaccharide (LPS) were used to establish the macrophage osteoclast differentiation model and test the expression level of osteoclast differentiation factors after giving NAC. Hydrogen peroxide was used to establish a peroxidation environment, the plasmid silenced C-JUN, and the DNA binding activity of activating protein-1(AP1) was detected by EMSA. The effect of peroxidation on the osteoclast differentiation level was determined by WB. Mice with DP model had epithelial damage and inflammatory infiltration in periodontal tissues, and in the FOXM1 enriched group, the periodontal epithelial damage was repaired and inflammation was alleviated. FOXM1 enrichment resulted in DP model lower expression of RANKL (P < 0.01), macrophage colony-stimulating factor (M-CSF) (P < 0.01) and elevated expression of osteoprotegerin (OPG) (P < 0.001). Serum levels of pro-inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNF-α), and inducible nitric oxide synthase (iNOS) were elevated in DP mice (P < 0.001), and anti-inflammatory factor IL-10 was reduced(P < 0.001),, and FOXM1 enrichment significantly reversed inflammatory factor levels (P < 0.01). Overexpression of FOXM1 reduced ROS content in macrophages (P < 0.001), and NAC was performed to further reduce ROS content (P < 0.01). Silencing of FOXM1 elevated the expression of osteoclast-specific genes NFATc1, TRAP and OSCAR (P < 0.01), and the addition of NAC on top of silencing of FOXM1 markedly suppressed the expression level of osteoclast-specific genes (P < 0.01). ROS increased the transcriptional activity of AP1 (P < 0.001), which promoted osteoclast-specific gene expression (P < 0.001), and osteoclast-specific gene expression was decreased after silencing C-JUN (P < 0.01). FOXM1 relieve diabetic periodontitis inflammation and promote bone formation, regulates ROS production and ROS increases the transcriptional activity of AP1 and affects the osteoclastic differentiation of macrophages, which plays a positive role in bone protection in diabetic periodontitis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China.
| | - Dongping Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Bibo Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jialin Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| | - Bingxue Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Gems D, Kern CC. Biological constraint, evolutionary spandrels and antagonistic pleiotropy. Ageing Res Rev 2024; 101:102527. [PMID: 39374830 DOI: 10.1016/j.arr.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Maximum lifespan differs greatly between species, indicating that the process of senescence is largely genetically determined. Senescence evolves in part due to antagonistic pleiotropy (AP), where selection favors gene variants that increase fitness earlier in life but promote pathology later. Identifying the biological mechanisms by which AP causes senescence is key to understanding the endogenous causes of aging and its attendant diseases. Here we argue that the frequent occurrence of AP as a property of genes reflects the presence of constraint in the biological systems that they specify. This arises particularly because the functionally interconnected nature of biological systems constrains the simultaneous optimization of coupled traits (interconnection constraints), or because individual traits cannot evolve (impossibility constraints). We present an account of aging that integrates AP and biological constraint with recent programmatic aging concepts, including costly programs, quasi-programs, hyperfunction and hypofunction. We argue that AP mechanisms of costly programs and triggered quasi-programs are consequences of constraint, in which costs resulting from hyperfunction or hypofunction cause senescent pathology. Impossibility constraint can also cause hypofunction independently of AP. We also describe how AP corresponds to Stephen Jay Gould's constraint-based concept of evolutionary spandrels, and argue that pathologies arising from AP are bad spandrels. Biological constraint is a conceptual missing link between ultimate and proximate causes of senescence, including diseases of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Barlow LA. Development of ectodermal and endodermal taste buds. Dev Biol 2024; 518:20-27. [PMID: 39486632 DOI: 10.1016/j.ydbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/20/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The sense of taste is mediated primarily by taste buds on the tongue. These multicellular sensory organs are induced, patterned and become innervated during embryogenesis such that a functional taste system is present at birth when animals begin to feed. While taste buds have been considered ectodermal appendages, this is only partly accurate as only fungiform taste buds in the anterior tongue arise from the ectoderm. Taste buds found in the posterior tongue actually derive from endoderm. Nonetheless, both anterior and posterior buds are functionally similar, despite their disparate embryonic origins. In this review, I compare the development of ectodermal vs endodermal taste buds, highlighting the many differences in the cellular and molecular genetic mechanisms governing their formation.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Zhang T, Liu J, Jin W, Nie H, Chen S, Tang X, Liu R, Wang M, Chen R, Lu J, Bao J, Jiang S, Xiao Y, Yan F. The sensory nerve regulates stem cell homeostasis through Wnt5a signaling. iScience 2024; 27:111035. [PMID: 39635121 PMCID: PMC11615182 DOI: 10.1016/j.isci.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence indicates that nerves play a significant role in regulating stem cell homeostasis and developmental processes. To explore the impact of nerves on epithelial stem cell homeostasis during tooth development, the regulation of sensory nerves on stem cell homeostasis was investigated using a rat model of incisor development. Impaired mineralization, decreased enamel thickness, and fractured enamel rods of the incisor were observed after denervation. qPCR and histological staining revealed that the expression of enamel-related factors ameloblastin (AMBN), kallikrein-4, amelogenin (Amelx), collagen type XVII (col17a), and enamelin were decreased in the incisor enamel of rats with sensory nerve injure. The decreased expression of Wnt5a in ameloblasts was coupled with the downregulation of calcium ion-related calmodulin kinase II. These results implicate that the sensory nerves are essential in stem cell homeostasis for enamel mineralization and development.
Collapse
Affiliation(s)
- Ting Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiaying Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiu Jin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sheng Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xuna Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rong Liu
- Department of Periodontology, Guiyang Hospital of Stomatology, Guiyang 550002, GuiZhou, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rixin Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jun Bao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen Clinical Research Center for Oral Diseases, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Zheng Y, Lu T, Zhang L, Gan Z, Li A, He C, He F, He S, Zhang J, Xiong F. Single-cell RNA-seq analysis of rat molars reveals cell identity and driver genes associated with dental mesenchymal cell differentiation. BMC Biol 2024; 22:198. [PMID: 39256700 PMCID: PMC11389520 DOI: 10.1186/s12915-024-01996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. RESULTS Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. CONCLUSIONS Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.
Collapse
Affiliation(s)
- Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongzhi Gan
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aoxi Li
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuandong He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Jian Zhang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
9
|
Chen J, Ying Y, Li H, Sha Z, Lin J, Wu Y, Wu Y, Zhang Y, Chen X, Zhang W. Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review). Mol Med Rep 2024; 30:168. [PMID: 39027997 DOI: 10.3892/mmr.2024.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The dental follicle (DF) plays an indispensable role in tooth eruption by regulating bone remodeling through their influence on osteoblast and osteoclast activity. The process of tooth eruption involves a series of intricate regulatory mechanisms and signaling pathways. Disruption of the parathyroid hormone‑related protein (PTHrP) in the PTHrP‑PTHrP receptor signaling pathway inhibits osteoclast differentiation by DF cells (DFCs), thus resulting in obstructed tooth eruption. Furthermore, parathyroid hormone receptor‑1 mutations are linked to primary tooth eruption failure. Additionally, the Wnt/β‑catenin, TGF‑β, bone morphogenetic protein and Hedgehog signaling pathways have crucial roles in DFC involvement in tooth eruption. DFC signal loss or alteration inhibits osteoclast differentiation, affects osteoblast and cementoblast differentiation, and suppresses DFC proliferation, thus resulting in failed tooth eruptions. Abnormal tooth eruption is also associated with a range of systemic syndromes and genetic diseases, predominantly resulting from pathogenic gene mutations. Among these conditions, the following disorders arise due to genetic mutations that disrupt DFCs and impede proper tooth eruption: Cleidocranial dysplasia associated with Runt‑related gene 2 gene mutations; osteosclerosis caused by CLCN7 gene mutations; mucopolysaccharidosis type VI resulting from arylsulfatase B gene mutations; enamel renal syndrome due to FAM20A gene mutations; and dentin dysplasia caused by mutations in the VPS4B gene. In addition, regional odontodysplasia and multiple calcific hyperplastic DFs are involved in tooth eruption failure; however, they are not related to gene mutations. The specific mechanism for this effect requires further investigation. To the best of our knowledge, previous reviews have not comprehensively summarized the syndromes associated with DF abnormalities manifesting as abnormal tooth eruption. Therefore, the present review aims to consolidate the current knowledge on DFC signaling pathways implicated in abnormal tooth eruption, and their association with disorders of tooth eruption in genetic diseases and syndromes, thereby providing a valuable reference for future related research.
Collapse
Affiliation(s)
- Jiahao Chen
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Ying
- Department of Child Health, Yongkang Women and Children's Health Hospital, Yongkang, Zhejiang 321300, P.R. China
| | - Huimin Li
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Zhuomin Sha
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiaqi Lin
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongjia Wu
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yange Wu
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yun Zhang
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xuepeng Chen
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Weifang Zhang
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
10
|
Shi Y, Yu Y, Li J, Sun S, Han L, Wang S, Guo K, Yang J, Qiu J, Wei W. Spatiotemporal cell landscape of human embryonic tooth development. Cell Prolif 2024; 57:e13653. [PMID: 38867378 PMCID: PMC11503248 DOI: 10.1111/cpr.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the cellular composition and trajectory of human tooth development is valuable for dentistry and stem cell engineering research. Previous single-cell studies have focused on mature human teeth and developing mouse teeth, but the cell landscape of human embryonic dental development is still unknown. In this study, tooth germ tissues were collected from aborted foetus (17-24 weeks) for single-cell RNA sequence and spatial transcriptome analysis. The cells were classified into seven subclusters of epithelium, and seven clusters of mesenchyme, as well as other cell types such as Schwann cell precursor and pericyte. For epithelium, the stratum intermedium branch and the ameloblast branch diverged from the same set of outer enamel-inner enamel-ALCAM+ epithelial cell lineage, but their spatial distribution of two branches was not clearly distinct. This trajectory received spatially adjacent regulation signals from mesenchyme and pericyte, including JAG1 and APP. The differentiation of pulp cell and pre-odontoblast showed four waves of temporally distinct gene expression, which involved regulation networks of LHX9, DLX5 and SP7, and these genes were regulated by upstream ligands such as the BMP family. This provides a reference landscape for the research on early human tooth development, covering different spatial structures and developmental periods.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yejia Yu
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jutang Li
- Hongqiao International Institute of MedicineTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shoufu Sun
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Han
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Guo
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingang Yang
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjia Wei
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
12
|
Wang Y, Wang J, Xu T, Yang S, Wang X, Zhu L, Li N, Liu B, Xiao J, Liu C. Ectopic Activation of Fgf8 in Dental Mesenchyme Causes Incisor Agenesis and Molar Microdontia. Int J Mol Sci 2024; 25:7045. [PMID: 39000154 PMCID: PMC11241644 DOI: 10.3390/ijms25137045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Stomatology, Binzhou Medical University, Yantai 264003, China;
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Jingjing Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Tian Xu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Shuhui Yang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Xinran Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Lei Zhu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Nan Li
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116044, China;
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian 116044, China; (J.W.); (T.X.); (S.Y.); (X.W.); (L.Z.); (N.L.)
| |
Collapse
|
13
|
Papadopoulou CI, Sifakakis I, Tournis S. Metabolic Bone Diseases Affecting Tooth Eruption: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:748. [PMID: 38929327 PMCID: PMC11202066 DOI: 10.3390/children11060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Tooth eruption is an essential process for the development of the oral and maxillofacial system. Several inherited and acquired diseases might affect this tightly regulated process, resulting in premature, delayed, or even failed tooth eruption. The purpose of this article is to review the literature and the clinical parameters of metabolic bone diseases that affect tooth eruption. It examines the physiological aspects of tooth eruption and the pathophysiological changes induced by metabolic bone diseases, including changes in bone metabolism, density, and structure. The search strategy for this review included an electronic search in PubMed, Google Scholar, Medline, Scopus, and the Cochrane Library using the following keywords: "metabolic bone diseases", "tooth eruption", "delayed tooth eruption", and each reported disease in combination with "tooth eruption disorders", covering publications up to March 2024 and limited to English-language sources. Understanding the influence of metabolic bone diseases on tooth eruption is crucial for managing both dental and skeletal manifestations associated with these disorders. This review suggests that a multidisciplinary approach to treatment may significantly improve oral outcomes for patients suffering from such conditions. Clinicians should be aware of the specific dental abnormalities that may arise and consider comprehensive evaluations and individualized treatment plans. These findings underscore the need for further research into targeted therapies that address these abnormalities.
Collapse
Affiliation(s)
| | - Iosif Sifakakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Symeon Tournis
- Laboratory for the Research of Musculoskeletal System “Th. Garofalidis”, School of Medicine, National and Kapodistrian University of Athens, 14561 Athens, Greece;
| |
Collapse
|
14
|
Ruangchan C, Ngamphiw C, Krasaesin A, Intarak N, Tongsima S, Kaewgahya M, Kawasaki K, Mahawong P, Paripurana K, Sookawat B, Jatooratthawichot P, Cox TC, Ohazama A, Ketudat Cairns JR, Porntaveetus T, Kantaputra P. Genetic Variants in KCTD1 Are Associated with Isolated Dental Anomalies. Int J Mol Sci 2024; 25:5179. [PMID: 38791218 PMCID: PMC11121487 DOI: 10.3390/ijms25105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
KCTD1 plays crucial roles in regulating both the SHH and WNT/β-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on β-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.
Collapse
Affiliation(s)
- Cholaporn Ruangchan
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Annop Krasaesin
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - Phitsanu Mahawong
- Division of Urology, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kullaya Paripurana
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Bussaneeya Sookawat
- Dental Department, Suanphueng Hospital, Ratchaburi 70180, Thailand; (K.P.); (B.S.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2180, Japan; (K.K.); (A.O.)
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (A.K.); (N.I.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai 50200, Thailand; (C.R.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Zhu X, Li Y, Dong Q, Tian C, Gong J, Bai X, Ruan J, Gao J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:4138. [PMID: 38673725 PMCID: PMC11049943 DOI: 10.3390/ijms25084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jing Gong
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| |
Collapse
|
16
|
Jeong JK, Kim TH, Choi H, Cho ES. Impaired breakdown of Herwig's epithelial root sheath disturbs tooth root development. Dev Dyn 2024; 253:423-434. [PMID: 37850829 DOI: 10.1002/dvdy.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Wnt/β-catenin signaling plays a variety of roles in both the dental epithelium and mesenchyme at most stages of tooth development. In this study, we verified the roles of Hertwig's epithelial root sheath (HERS) breakdown in tooth root development. This breakdown results in formation of epithelial cell rests of Malassez (ERM). RESULTS Following induction of β-catenin stabilization in the epithelium of developing tooth at the moment of HERS breakdown, HERS failed to break down for ERM formation. HERS with stabilized β-catenin was altered into a multicellular layer enveloping elongated root dentin with higher expression of junctional proteins such as Zo-1 and E-cadherin. Importantly, this impairment of HERS breakdown led to arrest of further root elongation. In addition, the portion of root dentin enveloped by the undissociated HERS remained in a hypomineralized state. The odontoblasts showed ectopically higher expression of pyrophosphate regulators including Ank and Npp1, whereas Tnap expression was unchanged. CONCLUSIONS Our data suggest that Wnt/β-catenin signaling is decreased in HERS for ERM formation during root development. Furthermore, ERM formation is important for further elongation and dentin mineralization of the tooth roots. These findings may provide new insight to understand the contribution of ERM to root formation.
Collapse
Affiliation(s)
- Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
17
|
Wu S, Xu X, Gao S, Huo S, Wan M, Zhou X, Zhou X, Zheng L, Zhou Y. MicroRNA-93-5p regulates odontogenic differentiation and dentin formation via KDM6B. J Transl Med 2024; 22:54. [PMID: 38218880 PMCID: PMC10787997 DOI: 10.1186/s12967-024-04862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Epigenetic factors influence the odontogenic differentiation of dental pulp stem cells and play indispensable roles during tooth development. Some microRNAs can epigenetically regulate other epigenetic factors like DNA methyltransferases and histone modification enzymes, functioning as epigenetic-microRNAs. In our previous study, microarray analysis suggested microRNA-93-5p (miR-93-5p) was differentially expressed during the bell stage in human tooth germ. Prediction tools indicated that miR-93-5p may target lysine-specific demethylase 6B (KDM6B). Therefore, we explored the role of miR-93-5p as an epi-miRNA in tooth development and further investigated the underlying mechanisms of miR-93-5p in regulating odontogenic differentiation and dentin formation. METHODS The expression pattern of miR-93-5p and KDM6B of dental pulp stem cells (DPSCs) was examined during tooth development and odontogenic differentiation. Dual luciferase reporter and ChIP-qPCR assay were used to validate the target and downstream regulatory genes of miR-93-5p in human DPSCs (hDPSCs). Histological analyses and qPCR assays were conducted for investigating the effects of miR-93-5p mimic and inhibitor on odontogenic differentiation of hDPSCs. A pulpotomy rat model was further established, microCT and histological analyses were performed to explore the effects of KDM6B-overexpression and miR-93-5p inhibition on the formation of tertiary dentin. RESULTS The expression level of miR-93-5p decreased as odontoblast differentiated, in parallel with elevated expression of histone demethylase KDM6B. In hDPSCs, miR-93-5p overexpression inhibited the odontogenic differentiation and vice versa. MiR-93-5p targeted 3' untranslated region (UTR) of KDM6B, thereby inhibiting its protein translation. Furthermore, KDM6B bound the promoter region of BMP2 to demethylate H3K27me3 marks and thus upregulated BMP2 transcription. In the rat pulpotomy model, KDM6B-overexpression or miR-93-5p inhibition suppressed H3K27me3 level in DPSCs and consequently promoted the formation of tertiary dentin. CONCLUSIONS MiR-93-5p targets epigenetic regulator KDM6B and regulates H3K27me3 marks on BMP2 promoters, thus modulating the odontogenic differentiation of DPSCs and dentin formation.
Collapse
Affiliation(s)
- Si Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shiqi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Sibei Huo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Zhu X, Ma Z, Xie F, Wang J. ASH2L, Core Subunit of H3K4 Methylation Complex, Regulates Amelogenesis. J Dent Res 2024; 103:81-90. [PMID: 37990471 DOI: 10.1177/00220345231207309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Histone methylation assumes a crucial role in the intricate process of enamel development. Our study has illuminated the substantial prevalence of H3K4me3 distribution, spanning from the cap stage to the late bell stage of dental germs. In order to delve into the role of H3K4me3 modification in amelogenesis and unravel the underlying mechanisms, we performed a conditional knockout of Ash2l, a core subunit essential for the establishment of H3K4me3 within the dental epithelium of mice. The absence of Ash2l resulted in reduced H3K4me3 modification, subsequently leading to abnormal morphology of dental germ at the late bell stage. Notably, knockout of Ash2l resulted in a loss of polarity in ameloblasts and odontoblasts. The proliferation and apoptosis of the inner enamel epithelium cells underwent dysregulation. Moreover, there was a notable reduction in the expression of matrix-related genes, Amelx and Dspp, accompanied with impaired enamel and dentin formation. Cut&Tag-seq (cleavage under targets and tagmentation sequencing) analysis substantiated a reduction of H3K4me3 modification on Shh, Trp63, Sp6, and others in the dental epithelium of Ash2l knockout mice. Validation through real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence consistently affirmed the observed downregulation of Shh and Sp6 in the dental epithelium following Ash2l knockout. Intriguingly, the expression of Trp63 isomers, DNp63 and TAp63, was perturbed in Ash2l defect dental epithelium. Furthermore, the downstream target of TAp63, P21, exhibited aberrant expression within the cervical loop of mandibular first molars and incisors. Collectively, our findings suggest that ASH2L orchestrates the regulation of crucial amelogenesis-associated genes, such as Shh, Trp63, and others, by modulating H3K4me3 modification. Loss of ASH2L and H3K4me3 can lead to aberrant differentiation, proliferation, and apoptosis of the dental epithelium by affecting the expression of Shh, Trp63, and others genes, thereby contributing to the defects of amelogenesis.
Collapse
Affiliation(s)
- X Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Z Ma
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - F Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - J Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Wang J, Lin X, Shen Z, Li G, Hu L, Li Q, Li Y, Wang J, Zhang C, Wang S, Wu X. AKT from dental epithelium to papilla promotes odontoblast differentiation. Differentiation 2023; 134:52-60. [PMID: 37898102 DOI: 10.1016/j.diff.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
Epithelial-mesenchymal interactions occur during tooth development. The dental epithelium (DE) is regarded as the signal center that regulates tooth morphology. However, the mechanism by which DE regulates the differentiation of mesenchyme-derived dental papilla (DP) into odontoblasts remains unclear. Using miniature pigs as a model, we analyzed the expression profiles of the DE and DP during odontoblast differentiation using high-throughput RNA sequencing. The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the most enriched pathways in both DE and DP. The PI3K/AKT pathway was first activated in the inner enamel epithelium but not in the DP on embryonic day 50. This pathway was then activated in the odontoblast layer on embryonic day 60. We showed that AKT activation promoted odontoblast differentiation of DP cells. We further demonstrated that activation of PI3K/AKT signaling in the DE effectively increased the expression levels of AKT and dentin sialophosphoprotein in DP cells. Additionally, we found that DE cells secreted collagen type IV alpha 6 chain (COL4A6) downstream of epithelial AKT signaling to positively regulate mesenchymal AKT levels. Therefore, our data suggest that PI3K/AKT signaling from the DE to the DP promotes odontoblast differentiation via COL4A6 secretion.
Collapse
Affiliation(s)
- Jiangyi Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Lin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zongshan Shen
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Guoqing Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Qiong Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Li
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China
| | - Chunmei Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China; Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, 410008, China.
| | - Xiaoshan Wu
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, 410008, China; Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
21
|
Wu L, Liu Z, Xiao L, Ai M, Cao Y, Mao J, Song K. The Role of Gli1 + Mesenchymal Stem Cells in Osteogenesis of Craniofacial Bone. Biomolecules 2023; 13:1351. [PMID: 37759749 PMCID: PMC10526808 DOI: 10.3390/biom13091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma-associated oncogene homolog 1 (Gli1) is a transcriptional activator of hedgehog (Hh) signaling that regulates target gene expression and several cellular biological processes. Cell lineage tracing techniques have highlighted Gli1 as an ideal marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs are critical for the osteogenesis of the craniofacial bone; however, the regulatory mechanism by which Gli1+ MSCs mediate the bone development and tissue regeneration of craniofacial bone has not been systematically outlined. This review comprehensively elucidates the specific roles of Gli1+ MSCs in craniofacial bone osteogenesis. In addition to governing craniofacial bone development, Gli1+ MSCs are associated with the tissue repair of craniofacial bone under pathological conditions. Gli1+ MSCs promote intramembranous and endochondral ossification of the craniofacial bones, and assist the osteogenesis of the craniofacial bone by improving angiopoiesis. This review summarizes the novel role of Gli1+ MSCs in bone development and tissue repair in craniofacial bones, which offers new insights into bone regeneration therapy.
Collapse
Affiliation(s)
- Laidi Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| |
Collapse
|
22
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
24
|
Negrete-Torres N, Chima-Galán MDC, Sierra-López EA, Sánchez-Ramos J, Álvarez-González I, Reyes-Reali J, Mendoza-Ramos MI, Garrido-Guerrero E, Amato D, Méndez-Catalá CF, Pozo-Molina G, Méndez-Cruz AR. Identification of Compound Heterozygous EVC2 Gene Variants in Two Mexican Families with Ellis-van Creveld Syndrome. Genes (Basel) 2023; 14:genes14040887. [PMID: 37107645 PMCID: PMC10137610 DOI: 10.3390/genes14040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvCS) is an autosomal recessive ciliopathy with a disproportionate short stature, polydactyly, dystrophic nails, oral defects, and cardiac anomalies. It is caused by pathogenic variants in the EVC or EVC2 genes. To obtain further insight into the genetics of EvCS, we identified the genetic defect for the EVC2 gene in two Mexican patients. METHODS Two Mexican families were enrolled in this study. Exome sequencing was applied in the probands to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in the parents. Finally, a prediction of the three-dimensional structure of the mutant proteins was made. RESULTS One patient has a compound heterozygous EVC2 mutation: a novel heterozygous variant c.519_519 + 1delinsT inherited from her mother, and a heterozygous variant c.2161delC (p.L721fs) inherited from her father. The second patient has a previously reported compound heterozygous EVC2 mutation: nonsense mutation c.645G > A (p.W215*) in exon 5 inherited from her mother, and c.273dup (p.K92fs) in exon 2 inherited from her father. In both cases, the diagnostic was Ellis-van Creveld syndrome. Three-dimensional modeling of the EVC2 protein showed that truncated proteins are produced in both patients due to the generation of premature stop codons. CONCLUSION The identified novel heterozygous EVC2 variants, c.2161delC and c.519_519 + 1delinsT, were responsible for the Ellis-van Creveld syndrome in one of the Mexican patients. In the second Mexican patient, we identified a compound heterozygous variant, c.645G > A and c.273dup, responsible for EvCS. The findings in this study extend the EVC2 mutation spectrum and may provide new insights into the EVC2 causation and diagnosis with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Nancy Negrete-Torres
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | | | - Janet Sánchez-Ramos
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Julia Reyes-Reali
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Efraín Garrido-Guerrero
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Ciudad de México 07360, Mexico
| | - Dante Amato
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
25
|
Chen J, Sun T, You Y, Lin B, Wu B, Wu J. Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genomics 2023; 24:163. [PMID: 37013486 PMCID: PMC10069120 DOI: 10.1186/s12864-023-09140-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yan You
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
- Southern Medical University- Shenzhen Stomatology Hospital (Pingshan), ShenZhen, 518118, China.
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
26
|
Fan L, Ma L, Zhu G, Yao S, Li X, Yu X, Pan Y, Wang L. A Genome-wide association study of premolar agenesis in a chinese population. Oral Dis 2023; 29:1102-1114. [PMID: 34878701 DOI: 10.1111/odi.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Premolar agenesis is a common subtype of tooth agenesis. Although a genome-wide study (GWAS) has identified some variants involved in tooth agenesis in Europeans, the genetic mutation related to premolar agenesis in the Chinese population remains unclear. MATERIALS AND METHODS We present a GWAS in 218 premolar agenesis cases and 1,222 controls using the Illumina Infinium® Global Screening Array. 5,585,618 single nucleotide polymorphisms (SNPs) were used for tests of associations with premolar agenesis. RESULTS Four independent SNPs on chromosome 2 were identified as susceptibility loci, including rs147680216, rs79743039, rs60540881, and rs6738629. The genome-wide significant SNP rs147680216 (p = 6.09 × 10-9 ) was predicted to change the structure of the WNT10A protein and interact with hedgehog signaling pathway components. Meta-analysis showed that the rs147680216 A allele significantly increased the risk of tooth agenesis (p = 0.000). The other three SNPs with nominal significance are novel susceptibility loci. Of them, rs6738629 (p = 5.40 × 10-6 ) acts as a potential transcriptional regulator of GCC2, a gene playing a putative role in dental and craniofacial development. CONCLUSION Our GWAS indicates that rs147680216 and additional three novel susceptibility loci on chromosome 2 are associated with the risk of premolar agenesis in the Chinese population.
Collapse
Affiliation(s)
- Liwen Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Guirong Zhu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Siyue Yao
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Li
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Yu
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Lin X, Li Q, Hu L, Jiang C, Wang S, Wu X. Apical Papilla Regulates Dental Follicle Fate via the OGN-Hh Pathway. J Dent Res 2023; 102:431-439. [PMID: 36515316 DOI: 10.1177/00220345221138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Root apical complex, including Hertwig's epithelial root sheath, apical papilla, and dental follicle (DF), is the germinal center of root development, wherein the DF constantly develops into periodontal tissue. However, whether DF development is regulated by the adjacent apical papilla remains largely unknown. In this study, we employed a transwell coculture system and found that stem cells from the apical papilla (SCAPs) inhibit the differentiation and maintain the stemness of dental follicle stem cells (DFSCs). Meanwhile, partial SCAP differentiation markers were upregulated after DFSC coculture. High-throughput RNA sequencing revealed that the Hedgehog (Hh) pathway was significantly downregulated in DFSCs cocultured with SCAPs. Upregulation or downregulation of the Hh pathway can respectively activate or inhibit the multidirectional differentiation of DFSCs. Osteoglycin (OGN) (previously known as mimecan) is highly expressed in the dental papilla, similarly to Hh pathway factors. By secreting OGN, SCAP regulated the stemness and multidirectional differentiation of DFSCs via the OGN-Hh pathway. Finally, Ogn-/- mice were established using the CRISPR/Cas9 system. We found that the root length growth rate was accelerated during root development from PN0 to PN30 in Ogn-/- mice. Moreover, the hard tissues (including dentin and cementum) of the root in Ogn-/- mice were thicker than those in wild-type mice. These phenotypes were likely due to Hh pathway activation and the increased cell proliferation and differentiation in both the apical papilla and DF. The current work elucidates the molecular regulation of early periodontal tissue development, providing a theoretical basis for future research on tooth root biology and periodontal tissue regeneration.
Collapse
Affiliation(s)
- X Lin
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Q Li
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - L Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - S Wang
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - X Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Genome-Wide Analysis of Dental Caries Variability Reveals Genotype-by-Environment Interactions. Genes (Basel) 2023; 14:genes14030736. [PMID: 36981009 PMCID: PMC10048401 DOI: 10.3390/genes14030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Genotype-by-environment interactions (GEI) may influence dental caries, although their effects are difficult to detect. Variance quantitative trait loci (vQTL) may serve as an indicator of underlying GEI effects. The aim of this study was to investigate GEI effects on dental caries by prioritizing variants from genome-wide vQTL analysis. First, we identified vQTLs from ~4.3 M genome-wide variants in three cohorts of white children aged 3–5 (n = 396, n = 328, n = 773) using Levene’s test. A total of 39 independent vQTLs with p < 1 × 10−6 were identified, some of which were located in or near genes with plausible biological roles in dental caries (IGFBP7, SLC5A8, and SHH involved in tooth development and enamel mineralization). Next, we used linear regression to test GEI effects on dental caries with the 39 prioritized variants and self-reported environmental factors (demographic, socioeconomic, behavioral, and dietary factors) in the three cohorts separately. We identified eight significant GEIs indicating that children with vQTL risk genotypes had higher caries experience if they had less educated parents, lower household/parental income, brushed their teeth less frequently, consumed sugar-sweetened beverages more frequently, were not breastfed, and were female. We reported the first genome-wide vQTL analysis of dental caries in children nominating several novel genes and GEI for further investigations.
Collapse
|
29
|
Transcriptomic Network Regulation of Rat Tooth Germ from Bell Differentiation Stage to Secretory Stage: MAPK Signaling Pathway Is Crucial to Extracellular Matrix Remodeling. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4038278. [PMID: 36820224 PMCID: PMC9938770 DOI: 10.1155/2023/4038278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/13/2023]
Abstract
Hard tissues make up the vast majority of teeth and are mineralized from the surrounding matrix. If the development of tooth germ is affected during mineralization, hypoplasia of the tooth tissue can occur. To better understand the mechanisms mediating hypoplasia, we need to first study normal development. Using a rodent model, we highlight the transcriptomic changes that occur from the differentiation to secretion stages of mandibular molar germs. The tooth germ was dissected from rats at postnatal day 1.5 or 3.5 for high-throughput sequencing. Combining transcriptome analysis and DNA methylation, we identified 590 differentially expressed genes (436 upregulated and 154 downregulated) and 551 differentially expressed lncRNAs (long noncoding RNA; 369 upregulated and 182 downregulated) which were linked to the biological processes of odontogenesis, amelogenesis, tooth mineralization, and the alteration of extracellular matrix (ECM), especially matrix metalloproteinases (MMPs) and elastin. We found DNA methylation changes in 32 selected fragments involved in 5 chromosomes, 26 targets, and 2 haplotypes. Finally, three novel genes were identified: MMP20, Tgfb3, and Dusp1. Further analysis revealed that MMP20 has a role in odontogenesis and amelogenesis by influencing Slc24a4 and DSPP; Tgfb3 is involved in epithelial cell proliferation, cellular component disassembly process, ECM cellular component, and decomposition of cell components. But lncRNA expression could affect DNA methylation and mRNA expression. Moreover, the degree of DNA methylation could also affect the transcriptome level. Thus, Tgfb3 had no difference in DNA methylation, and Dusp1 conferred no difference at the transcriptome level. These three genes were all enriched in the MAPK pathway and played an important role in ECM remodeling. These data suggest that during the period of the bell differentiation stage to the secretory stage, along with enamel/dentin matrix secretion and hard tissue occurrence, the ECM is remodeled via MAPK signaling.
Collapse
|
30
|
Yin J, Lei Q, Luo X, Jiang T, Zou X, Schneider A, H K Xu H, Zhao L, Ma D. Degradable hydrogel fibers encapsulate and deliver metformin and periodontal ligament stem cells for dental and periodontal regeneration. J Appl Oral Sci 2023; 31:e20220447. [PMID: 37132700 PMCID: PMC10159044 DOI: 10.1590/1678-7757-2022-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are promising cells for dental and periodontal regeneration. This study aimed to develop novel alginate-fibrin fibers that encapsulates hPDLSCs and metformin, to investigate the effect of metformin on the osteogenic differentiation of hPDLSCs, and to determine the regulatory role of the Shh/Gli1 signaling pathway in the metformin-induced osteogenic differentiation of hPDLSCs for the first time. CCK8 assay was used to evaluate hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red S staining, and the expression of osteogenic genes were evaluated. Metformin and hPDLSCs were encapsulated in alginate-fibrinogen solutions, which were injected to form alginate-fibrin fibers. The activation of Shh/Gli1 signaling pathway was examined using qRT-PCR and western blot. A mechanistic study was conducted by inhibiting the Shh/Gli1 pathway using GANT61. The administration of 50 μM metformin resulted in a significant upregulation of osteogenic gene expression in hPDLSCs by 1.4-fold compared to the osteogenic induction group (P < 0.01), including ALP and runt-related transcription factor-2 (RUNX2). Furthermore, metformin increased ALP activity by 1.7-fold and bone mineral nodule formation by 2.6-fold (P<0.001). We observed that hPDLSCs proliferated with the degradation of alginate-fibrin fibers, and metformin induced their differentiation into the osteogenic lineage. Metformin also promoted the osteogenic differentiation of hPDLSCs by upregulating the Shh/Gli1 signaling pathway by 3- to 6- fold compared to the osteogenic induction group (P<0.001). The osteogenic differentiation ability of hPDLSCs were decreased 1.3- to 1.6-fold when the Shh/Gli1 pathway was inhibited, according to ALP staining and alizarin red S staining (P<0.01). Metformin enhanced the osteogenic differentiation of hPDLSCs via the Shh/Gli1 signaling pathway. Degradable alginate-fibrin hydrogel fibers encapsulating hPDLSCs and metformin have significant potential for use in dental and periodontal tissue engineering applications. Alginate-fibrin fibers encapsulating hPDLSCs and metformin have a great potential for use in the treatment of maxillofacial bone defects caused by trauma, tumors, and tooth extraction. Additionally, they may facilitate the regeneration of periodontal tissue in patients with periodontitis.
Collapse
Affiliation(s)
- Jingyao Yin
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Qian Lei
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Xinghong Luo
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
| | - Tao Jiang
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Xianghui Zou
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
| | - Abraham Schneider
- University of Maryland School of Dentistry, Department of Oncology and Diagnostic Sciences, Baltimore, Maryland, USA
| | - Hockin H K Xu
- University of Maryland Dental School, Department of Advanced Oral Sciences and Therapeutics, Biomaterials and Tissue Engineering Division, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USA
- University of Maryland School of Medicine, Center for Stem Cell Biology and Regenerative Medicine, Baltimore, Maryland, USA
| | - Liang Zhao
- Shunde Hospital, Department of Trauma and Joint Surgery, Guangzhou, Guangdong, China
- Southern Medical University, Nanfang Hospital, Department of Orthopaedic Surgery, Guangzhou, Guangdong, China
| | - Dandan Ma
- Southern Medical University, Stomatological Hospital, Department of Endodontics, Guangzhou, Guangdong, China
- Southern Medical University, School of Stomatology, Guangzhou, Guangdong, China
- University of Maryland Dental School, Department of Advanced Oral Sciences and Therapeutics, Biomaterials and Tissue Engineering Division, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Xu A, Fan Y, Liu S, Sheng L, Sun Y, Yang H. GIMAP7 induces oxidative stress and apoptosis of ovarian granulosa cells in polycystic ovary syndrome by inhibiting sonic hedgehog signalling pathway. J Ovarian Res 2022; 15:141. [PMID: 36581994 PMCID: PMC9801623 DOI: 10.1186/s13048-022-01092-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynaecological endocrine disease. The objective of the present study was to investigate the role of GTPase immunity-associated protein (GIMAP) 7 in PCOS. A PCOS rat model was established using dehydroepiandrosterone injection. The data showed that GIMAP7 was mainly located in granulosa cells and was abundantly expressed in the ovarian granulosa cells of PCOS rats. GIMAP7 silencing decreased blood glucose levels, HOMA-IR scores, and number of cystic follicles. In addition, GIMAP7 silencing corrected erratic oestrous cycles, inhibited apoptosis and reduced c-caspase-3 protein expression in the ovarian tissues of PCOS rats. GIMAP7 silencing reduced malondialdehyde (MDA) but increased glutathione (GSH) and superoxide dismutase (SOD) levels in the serum and ovarian tissues of PCOS rats. The effects of GIMAP7 were further investigated in human ovarian granulosa KGN cells. GIMAP7 silencing increased the viability, promoted proliferation, and increased the percentage of S-phase KGN cells. The apoptosis rate was significantly decreased by GIMAP7 silencing. GIMAP7 also inhibited oxidative stress in KGN cells, resulting in decreased levels of reactive oxygen species (ROS) and MDA and increased levels of GSH and SOD. Notably, GIMAP7 inhibited the sonic hedgehog (SHH) signalling pathway, and GIMAP7 silencing increased the expression of the SHH signalling pathway downstream genes SHH, SMO, and Gli1. Inhibition of the SHH signalling pathway using cyclopamine reduced the effect of GIMAP7 silencing on KGN cells. This study proved that GIMAP7 promotes oxidative stress and apoptosis in ovarian granulosa cells in PCOS by inhibiting the SHH signalling pathway.
Collapse
Affiliation(s)
- Anran Xu
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Yuanyuan Fan
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Song Liu
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Lianbing Sheng
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Yanyan Sun
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| | - Huijun Yang
- grid.27255.370000 0004 1761 1174Center of Reproductive Medicine, Maternity and Child Health Care Hospital of Shandong Province/ Key Laboratory of Birth Regulation and Control Technology of the Health Commission of China, 238 Jiangshuiquan Road, Jinan, 250014 Shandong People’s Republic of China
| |
Collapse
|
32
|
Zhang Y, Kuai S, Zhang Y, Xue H, Wu Z, Zhao P. Maternal sevoflurane exposure affects neural stem cell differentiation in offspring rats through NRF2 signaling. Neurotoxicology 2022; 93:348-354. [DOI: 10.1016/j.neuro.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
33
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
34
|
KDF1 Novel Variant Causes Unique Dental and Oral Epithelial Defects. Int J Mol Sci 2022; 23:ijms232012465. [PMID: 36293320 PMCID: PMC9604338 DOI: 10.3390/ijms232012465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022] Open
Abstract
Keratinocyte differentiation factor 1 (KDF1) is a recently identified and rare candidate gene for human tooth agenesis; however, KDF1-related morphological characteristics and pathological changes in dental tissue and the oral epithelium remain largely unknown. Here, we employed whole-exome sequencing (WES) and Sanger sequencing to screen for the suspected variants in a cohort of 151 tooth agenesis patients, and we segregated a novel KDF1 heterozygous missense variation, c.920G>C (p.R307P), in a non-syndromic tooth agenesis family. Essential bioinformatics analyses and tertiary structural predictions were performed to analyze the structural changes and functional impacts of the novel KDF1 variant. The subsequent functional assessment using a TOP-flash/FOP-flash luciferase reporter system demonstrated that KDF1 variants suppressed the activation of canonical Wnt signaling in 293T cells. To comprehensively investigate the KDF1-related oral morphological anomalies, we performed scanning electron microscopy and ground section of the lower right lateral deciduous incisor extracted from #285 proband, and histopathological assessment of the gingiva. The phenotypic analyses revealed a series of tooth morphological anomalies related to the KDF1 variant R307P, including a shovel-shaped lingual surface of incisors and cornicione-shaped marginal ridges with anomalous morphological occlusal grooves of premolars and molars. Notably, keratinized gingival epithelium abnormalities were revealed in the proband and characterized by epithelial dyskeratosis with residual nuclei, indistinct stratum granulosum, epithelial hyperproliferation, and impaired epithelial differentiation. Our findings revealed new developmental anomalies in the tooth and gingival epithelium of a non-syndromic tooth agenesis individual with a novel pathogenic KDF1 variant, broadening the phenotypic spectrum of KDF1-related disorders and providing new evidence for the crucial role of KDF1 in regulating human dental and oral epithelial development.
Collapse
|
35
|
Pediatric Cutaneous Oncology. Dermatol Clin 2022; 41:175-185. [DOI: 10.1016/j.det.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Moore ER, Michot B, Erdogan O, Ba A, Gibbs JL, Yang Y. CGRP and Shh Mediate the Dental Pulp Cell Response to Neuron Stimulation. J Dent Res 2022; 101:1119-1126. [PMID: 35403480 PMCID: PMC9305843 DOI: 10.1177/00220345221086858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dental pain is a persistent, detrimental public health issue that requires a better understanding of the mechanisms of tooth pain and inflammation in order to develop more effective treatments. Calcitonin gene-related peptide (CGRP) and dental pulp cells are promising candidates for mediating tooth pain and generating reparative dental tissues, respectively, but their behavior in the context of pulpitis remains elusive. The mouse incisor requires Sonic hedgehog (Shh) secreted from sensory nerves to continuously regenerate. However, it is unknown whether sensory nerves also regulate the comparatively nonregenerative mouse molar through CGRP and Shh. This is an important knowledge gap to fill since mouse incisors differ biologically from human teeth, while mouse and human molars are similar. In this work, we identified that molar pulp cells express CGRP receptor and Gli1, a Hedgehog (Hh) signaling protein found to label a dental stem cell population in the mouse incisor. We also observed in a mouse molar injury model that Hh signaling was activated and Shh expression was upregulated in vivo. We then determined in vitro that Shh and CGRP regulate differentiation of primary mouse molar and incisor pulp cells and a human dental pulp stem cell line. Furthermore, conditioned media from stimulated sensory neurons induced Hh signaling activation and inflammatory gene expression in primary molar pulp cells, which was abolished by inhibition of either Shh or CGRP. Our results suggest that CGRP and Shh signaling may promote an inflammatory response after injury in the molar and that activated sensory nerves secrete CGRP and Shh to regulate molar pulp cell expansion and differentiation into odontoblast-like cells for dentin repair. Thus, CGRP/Shh signaling should be considered for new strategies that seek to manage pain or dentin regeneration in the molar.
Collapse
Affiliation(s)
- E R Moore
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| | - B Michot
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| | - O Erdogan
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| | - A Ba
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| | - J L Gibbs
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| | - Y Yang
- Harvard School of Dental Medicine, Research and Education Building, Boston, MA, USA
| |
Collapse
|
37
|
SHORT COMMUNICATIONAlteration of primary cilia morphology and associated signalling in ameloblastoma. Arch Oral Biol 2022; 142:105499. [DOI: 10.1016/j.archoralbio.2022.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
|
38
|
Gruenhagen GW, Mubeen T, Patil C, Stockert J, Streelman JT. Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. FRONTIERS IN DENTAL MEDICINE 2022; 3. [DOI: 10.3389/fdmed.2022.845449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Like most mammals, humans replace their teeth once throughout their lives and have limited regenerative capabilities. In contrast, mice continually renew tissues lost due to gnawing through a well characterized population of stem cells on the labial surface of the incisor. Most non-mammalian vertebrates replace teeth throughout life; the cellular and molecular mechanisms of successional tooth replacement are largely unknown. Here we use single nuclei RNA sequencing (snRNA-seq) of replacement teeth and adjacent oral lamina in Lake Malawi cichlids, species with lifelong whole–tooth replacement, to make two main discoveries. First, despite hundreds of millions of years of evolution, we demonstrate conservation of cell type gene expression across vertebrate teeth (fish, mouse, human). Second, we used an approach that combines marker gene expression and developmental potential of dental cells to uncover the transcriptional signature of stem-like cells in regenerating teeth. Our work underscores the importance of a comparative framework in the study of vertebrate oral and regenerative biology.
Collapse
|
39
|
Sato H, Suga K, Suzue M, Honma Y, Hayabuchi Y, Miyai S, Kurahashi H, Nakagawa R. Novel large deletion involving EVC and EVC2 in Ellis-van Creveld syndrome. Hum Genome Var 2022; 9:15. [PMID: 35581188 PMCID: PMC9114401 DOI: 10.1038/s41439-022-00190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/12/2023] Open
Abstract
Ellis-van Creveld syndrome is an autosomal recessive skeletal dysplasia that is characterized by thoracic hypoplasia, polydactyly, oral abnormalities, and congenital heart disease. It is caused by pathogenic variants in the EVC or EVC2 genes. We report a case of a newborn with a compound heterozygous variant comprising NM_147127.5: c.1991dup:[p.Lys665Glufs*10] in the EVC2 gene and a novel large deletion involving exon 1 in EVC and exons 1-7 in EVC2.
Collapse
Affiliation(s)
- Hiroki Sato
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| | - Kenichi Suga
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| | - Masashi Suzue
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| | - Yukako Honma
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| | - Yasunobu Hayabuchi
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| | - Shunsuke Miyai
- grid.256115.40000 0004 1761 798XDivision of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroki Kurahashi
- grid.256115.40000 0004 1761 798XDivision of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Ryuji Nakagawa
- grid.412772.50000 0004 0378 2191Department of Pediatrics, Tokushima University Hospital, Kuramotocho, Tokushima, Japan
| |
Collapse
|
40
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Kantaputra P, Jatooratthawichot P, Tantachamroon O, Nanekrungsan K, Intachai W, Olsen B, Tongsima S, Ngamphiw C, Cairns JRK. Novel Dental Anomaly-associated Mutations in WNT10A Protein Binding Sites. Int Dent J 2022; 73:79-86. [PMID: 35537890 PMCID: PMC9875279 DOI: 10.1016/j.identj.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE WNT/β-catenin signaling is initiated by binding of a WNT protein to a Frizzled (FZD) receptor and a co-receptor, low-density lipoprotein (LDL) receptor-related protein 5 or 6 (LRP5/6). The objective of this study was to find the genetic variants responsible for dental anomalies found in 4 families. METHODS Clinical and radiographic examination and whole exome sequencing were performed on 5 patients affected with dental anomalies and the mutant proteins modeled. RESULTS Five patients were heterozygous for the WNT10A variants, including c.877C>T; p.Arg293Cys, c.874A>G; p.Ser292Gly, c.1042C>T; p.Arg348Cys, and c.1039G>T; p.347GluX. The p.Arg293Cys and p.Ser292Gly mutations are located in the WNT10A N-terminal domain region with binding sites for FZD receptor, porcupine, WNTLESS, and extracellular binding proteins, so they are likely to have adverse effects on binding these proteins. The p.Arg348Cys mutation, which is located in the binding site of LRP5/6 co-receptors, is postulated to result in impaired binding to these co-receptors. The nonsense mutation p.347GluX is predicted to result in the truncation of most of the C-terminal domain, which is likely to disrupt the binding of WNT10A to WNTLESS, the membrane protein that binds lipid-acylated WNT proteins to carry them from the endoplasmic reticulum to the cell surface and FZD. CONCLUSIONS Four novel mutations in WNT10A were identified in patients with isolated tooth agenesis. The mutations in the N-terminal domain and the interface between the N- and C-terminal domains of WNT10A in our patients are likely to disrupt its binding with FZD, LRP5/6, and various other proteins involved in WNT10A processing and transport, impair WNT and SHH signaling, and subsequently result in tooth agenesis, microdontia, and root maldevelopment.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand,Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand,Corresponding author. Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry; Faculty of Dentistry, Chiang Mai University; Chiang Mai 50200, Thailand.
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand,Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
42
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
43
|
Talaat DM, Hachim IY, Afifi MM, Talaat IM, ElKateb MA. Assessment of risk factors and molecular biomarkers in children with supernumerary teeth: a single-center study. BMC Oral Health 2022; 22:117. [PMID: 35397562 PMCID: PMC8994298 DOI: 10.1186/s12903-022-02151-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background Supernumerary teeth are considered one of the commonly observed dental anomalies in children. Several theories have been proposed to explain the presence of supernumerary teeth, including environmental and genetic factors. This study aimed to identify the different risk factors and molecular biomarkers in patients presented with supernumerary teeth. Methods This case–control study included 240 children, 6 to 12-year-old. They were divided into a test group (n = 120 children presented with supernumerary teeth) and a control group (n = 120 children with no supernumerary teeth). Questionnaires were distributed to assess demographics and exposure to several environmental factors. Ten extracted supernumerary teeth from the test group were processed for histopathological analysis. Results Male gender, dental history of severe oral infection or medical history of chemotherapy treatment, previous history of taking medication or illness during pregnancy, family history of neoplastic disorders, use of electronic devices, and living beside agricultural fields or industrial areas were found to be statistically significant associated with the risk of supernumerary teeth development. Immunohistochemistry panel revealed that supernumerary teeth showed enhanced expression of wingless (Wnt) and sonic hedgehog (SHH) proteins as well as a reduced expression of adenomatous polyposis coli (APC) protein, denoting molecular derangement in a group of pathways classically believed to be involved in its pathogenesis. Conclusions Males were more frequently affected by supernumerary teeth than females. Several risk factors were notably correlated with the existence of supernumerary teeth. Additionally, molecular biomarkers assessment demonstrated a high expression level of pro-tumorigenic proteins such as Wnt and SHH in patients with supernumerary teeth.
Collapse
|
44
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
45
|
Thomas DC, Moorthy JD, Prabhakar V, Ajayakumar A, Pitchumani PK. Role of primary cilia and Hedgehog signaling in craniofacial features of Ellis-van Creveld syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:36-46. [PMID: 35393766 DOI: 10.1002/ajmg.c.31969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Ellis-van Creveld syndrome (EvC) is an autosomal recessive genetic disorder involving pathogenic variants of EVC and EVC2 genes and classified as a ciliopathy. The syndrome is caused by mutations in the EVC gene on chromosome 4p16, and EVC2 gene, located close to the EVC gene, in a head-to-head configuration. Regardless of the affliction of EVC or EVC2, the clinical features of Ellis-van Creveld syndrome are similar. Both these genes are expressed in tissues such as, but not limited to, the heart, liver, skeletal muscle, and placenta, while the predominant expression in the craniofacial tissues is that of EVC2. Biallelic mutations of EVC and EVC2 affect Hedgehog signaling and thereby ciliary function, crucial factors in vertebrate development, culminating in the phenotypical features characteristic of EvC. The clinical features of Ellis-van Creveld syndrome are consistent with significant abnormalities in morphogenesis and differentiation of the affected tissues. The robust role of primary cilia in histodifferentiation and morphodifferentiation of oral, perioral, and craniofacial tissues is becoming more evident in the most recent literature. In this review, we give a summary of the mechanistic role of primary cilia in craniofacial development, taking Ellis-van Creveld syndrome as a representative example.
Collapse
Affiliation(s)
- Davis C Thomas
- Center for TMD and Orofacial Pain, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
46
|
The Sonic Hedgehog Pathway Modulates Survival, Proliferation, and Differentiation of Neural Progenitor Cells under Inflammatory Stress In Vitro. Cells 2022; 11:cells11040736. [PMID: 35203385 PMCID: PMC8869809 DOI: 10.3390/cells11040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
The Sonic Hedgehog protein (Shh) has been extensively researched since its discovery in 1980. Its crucial role in early neurogenesis and endogenous stem cells of mature brains, as well as its recently described neuroprotective features, implicate further important effects on neuronal homeostasis. Here, we investigate its potential role in the survival, proliferation, and differentiation of neural precursors cells (NPCs) under inflammatory stress as a potential adjunct for NPC-transplantation strategies in spinal cord injury (SCI) treatment. To this end, we simulated an inflammatory environment in vitro using lipopolysaccharide (LPS) and induced the Shh-pathway using recombinant Shh or blocked it using Cyclopamine, a potent Smo inhibitor. We found that Shh mediates the proliferation and neuronal differentiation potential of NPCs in vitro, even in an inflammatory stress environment mimicking the subacute phase after SCI. At the same time, our results indicate that a reduction of the Shh-pathway activation by blockage with Cyclopamine is associated with reduced NPC-survival, reduced neuronal differentiation and increased astroglial differentiation. Shh might thus, play a role in endogenous NPC-mediated neuroregeneration or even be a potent conjunct to NPC-based therapies in the inflammatory environment after SCI.
Collapse
|
47
|
Khan SA, Khan S, Muhammad N, Rehman ZU, Khan MA, Nasir A, Kalsoom UE, Khan AK, Khan H, Wasif N. The First Report of a Missense Variant in RFX2 Causing Non-Syndromic Tooth Agenesis in a Consanguineous Pakistani Family. Front Genet 2022; 12:782653. [PMID: 35145545 PMCID: PMC8822170 DOI: 10.3389/fgene.2021.782653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The syndromic and non-syndromic congenital missing teeth phenotype is termed tooth agenesis. Since tooth agenesis is a heterogeneous disorder hence, the patients show diverse absent teeth phenotypes. Thus identifying novel genes involved in the morphogenesis of ectodermal appendages, including teeth, paves the way for establishing signaling pathways.Methods and Results: We have recruited an autosomal recessive non-syndromic tooth agenesis family with two affected members. The exome sequencing technology identified a novel missense sequence variant c.1421T > C; p.(Ile474Thr) in a regulatory factor X (RFX) family member (RFX2, OMIM: 142,765). During the data analysis eight rare variants on various chromosomal locations were identified, but the co-segregation analysis using Sanger sequencing confirmed the segregation of only two variants RFX2: c.1421T > C; p.(Ile474Thr), DOHH: c.109C > G; p.(Pro37Ala) lying in a common 7.1 MB region of homozygosity on chromosome 19p13.3. Furthermore, the online protein prediction algorithms and protein modeling analysis verified the RFX2 variant as a damaging genetic alteration and ACMG pathogenicity criteria classified it as likely pathogenic. On the other hand, the DOHH variant showed benign outcomes.Conclusion:RFX2 regulates the Hedgehog and fibroblast growth factor signaling pathways, which are involved in the epithelial and mesenchymal interactions during tooth development. Prior animal model studies have confirmed the expression of rfx2 at a developmental stage governing mouth formation. Moreover, its regulatory role and close association with ciliary and non-ciliary genes causing various dental malformations makes it a potential candidate gene for tooth agenesis phenotype. Further studies will contribute to exploring the direct role of RFX2 in human tooth development.
Collapse
Affiliation(s)
- Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Muhammad Adnan Khan
- Dental Material, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Umm-e- Kalsoom
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Anwar Kamal Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hassan Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| |
Collapse
|
48
|
Abstract
The development and repair of dentin are strictly regulated by hundreds of genes. Abnormal dentin development is directly caused by gene mutations and dysregulation. Understanding and mastering this signal network is of great significance to the study of tooth development, tissue regeneration, aging, and repair and the treatment of dental diseases. It is necessary to understand the formation and repair mechanism of dentin in order to better treat the dentin lesions caused by various abnormal properties, whether it is to explore the reasons for the formation of dentin defects or to develop clinical drugs to strengthen the method of repairing dentin. Molecular biology of genes related to dentin development and repair are the most important basis for future research.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoling Wei
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
49
|
Kikuchi N, Kitamura K, Kasahara N, Ogawa Y, Ishikawa N, Yamamoto M, Yamamoto H. Three-Dimensional Observation of the Furcation Area during Multi-Rooted Tooth Formation in Rat. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobue Kikuchi
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Norio Kasahara
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Yudai Ogawa
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College
| | | | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|
50
|
Xie Z, Xu Q, Sun L, Li R, Shi J, Yang Q, Zong M, Qin J. Effects of Y-27632 on the osteogenic and adipogenic potential of human dental pulp stem cells in vitro. Hum Exp Toxicol 2022; 41:9603271221089003. [PMID: 35388712 DOI: 10.1177/09603271221089003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human dental pulp stem cells (hDPSCs) possess mesenchymal stem cell properties, originating from migrating neural crest cells. hDPSCs have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and ability to differentiate in several cell phenotypes. In this study, we cultured hDPSCs with Y-27632 to observe their biological behaviors changes. METHODS The hDPSCs were separately cultured with Y-27632 (0, 0.156, 0.312, 0.625, 1.25, 2.50, 5, 10, 20, 40 μm) for 24, 48, 72 h to select the suitable concentration and time using CCK-8. Then, the hDPSCs were cultured with 2.50 μm Y-27632 for 48 h to analyzed the biological behaviors changes by 5-Ethynyl-2'-deoxyuridine (EdU), plate cloning, transwell, scratch, and Annexin V FITC/PI assays, separately. Additionally, osteogenic calcium nodules and lipid droplets were analyzed using alizarin red staining and oil red O staining, respectively. qRT-PCR was used to analyze the expression of osteogenesis, adipogenesis, stemness maintenance, and inflammation related genes. RESULTS The hDPSCs proliferation was significantly enhanced after cultured with 2.50 μm Y-27632 for 48 h, but there was no significant difference in migration and apoptosis. Observation of alkaline phosphatase (ALP) activity, osteogenic and adipogenic differentiation abilities of hDPSCs, Y-27632 treatment clearly decreased the ALP activity and osteogenic differentiation ability, increased the adipogenic differentiation ability. Furthermore, Y-27632 decreased the CD73, CD90, CD105, CD166, TLR4, and NF-κB p65 genes expression, but increased the IL-8 gene expression. CONCLUSIONS The biological behaviors of hDPSCs could be changed when they cultured with Y-27632.
Collapse
Affiliation(s)
- Zhiwei Xie
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Qiuping Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lu Sun
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Ruijing Li
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Jizhou Shi
- Department of Pediatric Surgery, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Qian Yang
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Min Zong
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Jianyong Qin
- Department of Stomatology, 499782Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|