1
|
Chen R, Chen K, Yao X, Zhang X, Yang Y, Su X, Lyu M, Wang Q, Zhang G, Wang M, Li Y, Duan L, Xie T, Li H, Yang Y, Zhang H, Guo Y, Jia G, Ge X, Sarris PF, Lin T, Sun D. Genomic analyses reveal the stepwise domestication and genetic mechanism of curd biogenesis in cauliflower. Nat Genet 2024; 56:1235-1244. [PMID: 38714866 PMCID: PMC11176064 DOI: 10.1038/s41588-024-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Cauliflower (Brassica oleracea L. var. botrytis) is a distinctive vegetable that supplies a nutrient-rich edible inflorescence meristem for the human diet. However, the genomic bases of its selective breeding have not been studied extensively. Herein, we present a high-quality reference genome assembly C-8 (V2) and a comprehensive genomic variation map consisting of 971 diverse accessions of cauliflower and its relatives. Genomic selection analysis and deep-mined divergences were used to explore a stepwise domestication process for cauliflower that initially evolved from broccoli (Curd-emergence and Curd-improvement), revealing that three MADS-box genes, CAULIFLOWER1 (CAL1), CAL2 and FRUITFULL (FUL2), could have essential roles during curd formation. Genome-wide association studies identified nine loci significantly associated with morphological and biological characters and demonstrated that a zinc-finger protein (BOB06G135460) positively regulates stem height in cauliflower. This study offers valuable genomic resources for better understanding the genetic bases of curd biogenesis and florescent development in crops.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Ke Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- Key Laboratory of Weed Control in Southern Farmland, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaoli Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiao Su
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Mengmeng Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yanhao Li
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijin Duan
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Tianyu Xie
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Haichao Li
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuyao Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guiying Jia
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| |
Collapse
|
2
|
Shim KC, Luong NH, Tai TH, Lee GR, Ahn SN, Park I. T-DNA insertion mutants of Arabidopsis DA1 orthologous genes displayed altered plant height and yield-related traits in rice (O. Sativa L.). Genes Genomics 2024; 46:451-459. [PMID: 38436907 DOI: 10.1007/s13258-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The Arabidopsis DA1 gene is a key player in the regulation of organ and seed development. To extend our understanding of its functional counterparts in rice, this study investigates the roles of orthologous genes, namely DA1, HDR3, HDR3.1, and the DA2 ortholog GW2, through the analysis of T-DNA insertion mutants. OBJECTIVE The aim of this research is to elucidate the impact of T-DNA insertions in DA1, HDR3, HDR3.1, and GW2 on agronomic traits in rice. By evaluating homozygous plants, we specifically focus on key parameters such as plant height, tiller number, days to heading, and grain size. METHODS T-DNA insertion locations were validated using PCR, and subsequent analyses were conducted on homozygous plants. Agronomic traits, including plant height, tiller number, days to heading, and grain size, were assessed. Additionally, leaf senescence assays were performed under dark incubation conditions to gauge the impact of T-DNA insertions on this physiological aspect. RESULTS The study revealed distinctive phenotypic outcomes associated with T-DNA insertions in HDR3, HDR3.1, GW2, and DA1. Specifically, HDR3 and HDR3.1 mutants exhibited significantly reduced plant height and smaller grain size, while GW2 and DA1 mutants displayed a notable increase in both plant height and grain size compared to the wild type variety Dongjin. Leaf senescence assays further indicated delayed leaf senescence in hdr3.1 mutants, contrasting with slightly earlier leaf senescence observed in hdr3 mutants under dark incubation. CONCLUSIONS The findings underscore the pivotal roles of DA1 orthologous genes in rice, shedding light on their significance in regulating plant growth and development. The observed phenotypic variations highlight the potential of these genes as targets for crop improvement strategies, offering insights that could contribute to the enhancement of agronomic traits in rice and potentially other crops.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA.
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Thomas H Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Gyu-Ri Lee
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, Republic of Korea.
| |
Collapse
|
3
|
Kis A, Polgári D, Dalmadi Á, Ahmad I, Rakszegi M, Sági L, Csorba T, Havelda Z. Targeted mutations in the GW2.1 gene modulate grain traits and induce yield loss in barley. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111968. [PMID: 38157889 DOI: 10.1016/j.plantsci.2023.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Grain Width and Weight 2 (GW2) is an E3-ubiquitin ligase-encoding gene that negatively regulates the size and weight of the grain in cereal species. Therefore, disabling GW2 gene activity was suggested for enhancing crop productivity. We show here that CRISPR/Cas-mediated mutagenesis of the barley GW2.1 homologue results in the development of elongated grains and increased protein content. At the same time, GW2.1 loss of function induces a significant grain yield deficit caused by reduced spike numbers and low grain setting. We also show that the converse effect caused by GW2.1 absence on crop yield and protein content is largely independent of cultivation conditions. These findings indicate that the barley GW2.1 gene is necessary for the optimization between yield and grain traits. Altogether, our data show that the loss of GW2.1 gene activity in barley is associated with pleiotropic effects negatively affecting the development of generative organs and consequently the grain production. Our findings contribute to the better understanding of grain development and the utilisation of GW2.1 control in quantitative and qualitative genetic improvement of barley.
Collapse
Affiliation(s)
- András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Dávid Polgári
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Imtiaz Ahmad
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Marianna Rakszegi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary
| | - Tibor Csorba
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary; Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Hungary.
| |
Collapse
|
4
|
Shim KC, Kang Y, Song JH, Kim YJ, Kim JK, Kim C, Tai TH, Park I, Ahn SN. A Frameshift Mutation in the Mg-Chelatase I Subunit Gene OsCHLI Is Associated with a Lethal Chlorophyll-Deficient, Yellow Seedling Phenotype in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2831. [PMID: 37570985 PMCID: PMC10420988 DOI: 10.3390/plants12152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Chlorophyll biosynthesis is a crucial biological process in plants, and chlorophyll content is one of the most important traits in rice breeding programs. In this study, we identified a lethal, chlorophyll-deficient, yellow seedling (YS) phenotype segregating in progeny of CR5055-21, an F2 plant derived from a backcross between Korean japonica variety 'Hwaseong' (Oryza sativa) and CR5029, which is mostly Hwaseong with a small amount of Oryza grandiglumis chromosome segments. The segregation of the mutant phenotype was consistent with a single gene recessive mutation. Light microscopy of YS leaf cross-sections revealed loosely arranged mesophyll cells and sparse parenchyma in contrast to wildtype. In addition, transmission electron microscopy showed that chloroplasts did not develop in the mesophyll cells of the YS mutant. Quantitative trait loci (QTL)-seq analysis did not detect any significant QTL, however, examination of the individual delta-SNP index identified a 2-bp deletion (AG) in the OsCHLI gene, a magnesium (Mg)-chelatase subunit. A dCAPs marker was designed and genotyping of a segregating population (n = 275) showed that the mutant phenotype co-segregated with the marker. The 2-bp deletion was predicted to result in a frameshift mutation generating a premature termination. The truncated protein likely affects formation and function of Mg-chelatase, which consists of three different subunits that together catalyze the first committed step of chlorophyll biosynthesis. Transcriptome analysis showed that photosynthesis and carbohydrate metabolism pathways were significantly altered although expression of OsCHLI was not. Chlorophyll- and carotenoid-related genes were also differentially expressed in the YS mutant. Our findings demonstrated that OsCHLI plays an important role in leaf pigment biosynthesis and leaf structure development in rice.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Yuna Kang
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Jun-Ho Song
- Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (Y.J.K.); (J.K.K.)
| | - Changsoo Kim
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA 95616, USA;
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (K.-C.S.); (Y.K.); (C.K.)
| |
Collapse
|
5
|
Kobayashi K, Wang X, Wang W. Genetically Modified Rice Is Associated with Hunger, Health, and Climate Resilience. Foods 2023; 12:2776. [PMID: 37509868 PMCID: PMC10379675 DOI: 10.3390/foods12142776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
While nearly one in nine people in the world deals with hunger, one in eight has obesity, and all face the threat of climate change. The production of rice, an important cereal crop and staple food for most of the world's population, faces challenges due to climate change, the increasing global population, and the simultaneous prevalence of hunger and obesity worldwide. These issues could be addressed at least in part by genetically modified rice. Genetic engineering has greatly developed over the century. Genetically modified rice has been approved by the ISAAA's GM approval database as safe for human consumption. The aim behind the development of this rice is to improve the crop yield, nutritional value, and food safety of rice grains. This review article provides a summary of the research data on genetically modified rice and its potential role in improving the double burden of malnutrition, primarily through increasing nutritional quality as well as grain size and yield. It also reviews the potential health benefits of certain bioactive components generated in genetically modified rice. Furthermore, this article discusses potential solutions to these challenges, including the use of genetically modified crops and the identification of quantitative trait loci involved in grain weight and nutritional quality. Specifically, a quantitative trait locus called grain weight on chromosome 6 has been identified, which was amplified by the Kasa allele, resulting in a substantial increase in grain weight and brown grain. An overexpressing a specific gene in rice, Oryza sativa plasma membrane H+-ATPase1, was observed to improve the absorption and assimilation of ammonium in the roots, as well as enhance stomatal opening and photosynthesis rate in the leaves under light exposure. Cloning research has also enabled the identification of several underlying quantitative trait loci involved in grain weight and nutritional quality. Finally, this article discusses the increasing threats of climate change such as methane-nitrous oxide emissions and global warming, and how they may be significantly improved by genetically modified rice through modifying a water-management technique. Taken together, this comprehensive review will be of particular importance to the field of bioactive components of cereal grains and food industries trying to produce high-quality functional cereal foods through genetic engineering.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Xiaohui Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Olayide P, Alexandersson E, Tzfadia O, Lenman M, Gisel A, Stavolone L. Transcriptome and metabolome profiling identify factors potentially involved in pro-vitamin A accumulation in cassava landraces. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107713. [PMID: 37126903 DOI: 10.1016/j.plaphy.2023.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a predominant food security crop in several developing countries. Its storage roots, rich in carbohydrate, are deficient in essential micronutrients, including provitamin A carotenoids. Increasing carotenoid content in cassava storage roots is important to reduce the incidence of vitamin A deficiency, a public health problem in sub-Saharan Africa. However, cassava improvement advances slowly, mainly due to limited information on the molecular factors influencing β-carotene accumulation in cassava. To address this problem, we performed comparative transcriptomic and untargeted metabolic analyses of roots and leaves of eleven African cassava landraces ranging from white to deep yellow colour, to uncover regulators of carotenoid biosynthesis and accumulation with conserved function in yellow cassava roots. Sequence analysis confirmed the presence of a mutation, known to influence β-carotene content, in PSY transcripts of deep yellow but not of pale yellow genotypes. We identified genes and metabolites with expression and accumulation levels significantly associated with β-carotene content. Particularly an increased activity of the abscisic acid catabolism pathway together with a reduced amount of L-carnitine, may be related to the carotenoid pathway flux, higher in yellow than in white storage roots. In fact, NCED_3.1 was specifically expressed at a lower level in all yellow genotypes suggesting that it could be a potential target for increasing carotenoid accumulation in cassava. These results expand the knowledge on metabolite compositions and molecular mechanisms influencing carotenoid biosynthesis and accumulation in cassava and provide novel information for biotechnological applications and genetic improvement of cassava with high nutritional values.
Collapse
Affiliation(s)
- Priscilla Olayide
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden; International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria.
| | - Erik Alexandersson
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden.
| | - Oren Tzfadia
- Institute of Tropical Medicine, Kronenburgstraat 43/3, 2000, Antwerpen, Belgium.
| | - Marit Lenman
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden.
| | - Andreas Gisel
- International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria; Institute of Biomedical Technologies, CNR, Via Amendola 122/D, Bari, Italy.
| | - Livia Stavolone
- International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria; Institute for Sustainable Plant Protection CNR, Via Amendola 122/D, Bari, Italy.
| |
Collapse
|
7
|
Wang P, Zhu L, Li Z, Cheng M, Chen X, Wang A, Wang C, Zhang X. Genome-Wide Identification of the U-Box E3 Ubiquitin Ligase Gene Family in Cabbage ( Brassica oleracea var. capitata) and Its Expression Analysis in Response to Cold Stress and Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1437. [PMID: 37050063 PMCID: PMC10097260 DOI: 10.3390/plants12071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Plant U-box E3 ubiquitin ligases (PUBs) play an important role in growth, development, and stress responses in many species. However, the characteristics of U-box E3 ubiquitin ligase genes in cabbage (Brassica oleracea var. capitata) are still unclear. Here, we carry out the genome-wide analysis of U-box E3 ubiquitin ligase genes in cabbage and identify 65 Brassica oleracea var. capitata U-box E3 ubiquitin ligase (BoPUB) genes in the cabbage genome. Phylogenetic analysis indicates that all 65 BoPUB genes are grouped into six subfamilies, whose members are relatively conserved in the protein domain and exon-intron structure. Chromosomal localization and synteny analyses show that segmental and tandem duplication events contribute to the expansion of the U-box E3 ubiquitin ligase gene family in cabbage. Protein interaction prediction presents that heterodimerization may occur in BoPUB proteins. In silico promoter analysis and spatio-temporal expression profiling of BoPUB genes reveal their involvement in light response, phytohormone response, and growth and development. Furthermore, we find that BoPUB genes participate in the biosynthesis of cuticular wax and in response to cold stress and pathogenic attack. Our findings provide a deep insight into the U-box E3 ubiquitin ligase gene family in cabbage and lay a foundation for the further functional analysis of BoPUB genes in different biological processes.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (P.W.); (L.Z.); (Z.L.); (M.C.); (X.C.); (A.W.); (C.W.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Zhang C, Li N, Hu Z, Liu H, Hu Y, Tan Y, Sun Q, Liu X, Xiao L, Wang W, Wang R. Mutation of Leaf Senescence 1 Encoding a C2H2 Zinc Finger Protein Induces ROS Accumulation and Accelerates Leaf Senescence in Rice. Int J Mol Sci 2022; 23:ijms232214464. [PMID: 36430940 PMCID: PMC9696409 DOI: 10.3390/ijms232214464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Premature senescence of leaves causes a reduced yield and quality of rice by affecting plant growth and development. The regulatory mechanisms underlying early leaf senescence are still unclear. The Leaf senescence 1 (LS1) gene encodes a C2H2-type zinc finger protein that is localized to both the nucleus and cytoplasm. In this study, we constructed a rice mutant named leaf senescence 1 (ls1) with a premature leaf senescence phenotype using CRISPR/Cas9-mediated editing of the LS1 gene. The ls1 mutants exhibited premature leaf senescence and reduced chlorophyll content. The expression levels of LS1 were higher in mature or senescent leaves than that in young leaves. The contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were significantly increased and catalase (CAT) activity was remarkably reduced in the ls1 plants. Furthermore, a faster decrease in pigment content was detected in mutants than that in WT upon induction of complete darkness. TUNEL and staining experiments indicated severe DNA degradation and programmed cell death in the ls1 mutants, which suggested that excessive ROS may lead to leaf senescence and cell death in ls1 plants. Additionally, an RT-qPCR analysis revealed that most senescence-associated and ROS-scavenging genes were upregulated in the ls1 mutants compared with the WT. Collectively, our findings revealed that LS1 might regulate leaf development and function, and that disruption of LS1 function promotes ROS accumulation and accelerates leaf senescence and cell death in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhongxiao Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Qiannan Sun
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiqin Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Correspondence: (W.W.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (W.W.); (R.W.)
| |
Collapse
|
9
|
Yu X, Zhu Y, Xie Y, Li L, Jin Z, Shi Y, Luo C, Wei Y, Cai Q, He W, Zheng Y, Xie H, Zhang J. Ubiquitylomes and proteomes analyses provide a new interpretation of the molecular mechanisms of rice leaf senescence. PLANTA 2022; 255:43. [PMID: 35044566 DOI: 10.1007/s00425-021-03793-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
We identified a typical rice premature senescence leaf mutant 86 (psl86) and exhibited the first global ubiquitination data during rice leaf senescence. Premature leaf senescence affects the yield and quality of rice, causing irreparable agricultural economic losses. In this study, we reported a rice premature senescence leaf mutant 86 (psl86) in the population lines of rice (Oryza sativa) japonica cultivar 'Yunyin' (YY) mutagenized using ethyl methane sulfonate (EMS) treatment. Immunoblotting analysis revealed that a higher ubiquitination level in the psl86 mutant compared with YY. Thus, we performed the proteome and ubiquitylome analyses to identify the differential abundance proteins and ubiquitinated proteins (sites) related to leaf senescence. Among 885 quantified lysine ubiquitination (Kub) sites in 492 proteins, 116 sites in 94 proteins were classified as up-regulated targets and seven sites in six proteins were classified as down-regulated targets at a threshold of 1.5. Proteins with up-regulated Kub sites were mainly enriched in the carbon fixation in photosynthetic organisms, glycolysis/gluconeogenesis and the pentose phosphate pathway. Notably, 14 up-regulated Kub sites in 11 proteins were enriched in the carbon fixation in photosynthetic organism pathway, and seven proteins (rbcL, PGK, GAPA, FBA5, ALDP, CFBP1 and GGAT) were down-regulated, indicating this pathway is tightly regulated by ubiquitination during leaf senescence. To our knowledge, we present the first global data on ubiquitination during rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yongsheng Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Lele Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Ziyi Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunrui Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Cuiqin Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yanmei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| |
Collapse
|
10
|
Lv Y, Gao P, Liu S, Fang X, Zhang T, Liu T, Amanullah S, Wang X, Luan F. Genetic Mapping and QTL Analysis of Stigma Color in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2022; 13:865082. [PMID: 35615137 PMCID: PMC9125322 DOI: 10.3389/fpls.2022.865082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 05/07/2023]
Abstract
Melon is an important Cucurbitaceae crop. Field observations had shown that the green stigmas of melon are more attractive to pollinators than yellow stigmas. In this study, F2 and F2:3 populations obtained by crossing MR-1 (green stigma) and M4-7 (yellow stigma) were used for genetic analysis and mapping. A genetic map of 1,802.49 cm was constructed with 116 cleaved amplified polymorphism sequence (CAPS) markers. Two stable quantitative trait loci (QTLs) linked to the trait of stigma color were identified on chromosomes 2 (SC2.1) and 8 (SC8.1), respectively. An expanded F2 population was used to narrow down the confidence regions of SC2.1 and SC8.1. As a result, SC2.1 was further mapped to a 3.6 cm region between CAPS markers S2M3 and S2B1-3, explaining 9.40% phenotypic variation. SC8.1 was mapped to a 3.7-cm region between CAPS markers S8E7 and S8H-1, explaining 25.92% phenotypic variation. This study broadens our understanding of the mechanisms of stigma color regulation and will be of benefit to the breeding of melon.
Collapse
Affiliation(s)
- Yuanzuo Lv
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xufeng Fang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Taifeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tai Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xinying Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Feishi Luan
| |
Collapse
|
11
|
Hao J, Wang D, Wu Y, Huang K, Duan P, Li N, Xu R, Zeng D, Dong G, Zhang B, Zhang L, Inzé D, Qian Q, Li Y. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. MOLECULAR PLANT 2021; 14:1266-1280. [PMID: 33930509 DOI: 10.1016/j.molp.2021.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.
Collapse
Affiliation(s)
- Jianqin Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingbao Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
12
|
Current Understanding of Leaf Senescence in Rice. Int J Mol Sci 2021; 22:ijms22094515. [PMID: 33925978 PMCID: PMC8123611 DOI: 10.3390/ijms22094515] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity. Leaf senescence is a complex and tightly regulated process, with coordinated actions of multiple pathways, responding to a sophisticated integration of leaf age and various environmental signals. Many studies have been carried out to understand the leaf senescence-associated molecular mechanisms including the chlorophyll breakdown, phytohormonal and transcriptional regulation, interaction with environmental signals, and associated metabolic changes. The metabolic reprogramming and nutrient recycling occurring during leaf senescence highlight the fundamental role of this developmental stage for the nutrient economy at the whole plant level. The strong impact of the senescence-associated nutrient remobilization on cereal productivity and grain quality is of interest in many breeding programs. This review summarizes our current knowledge in rice on (i) the actors of chlorophyll degradation, (ii) the identification of stay-green genotypes, (iii) the identification of transcription factors involved in the regulation of leaf senescence, (iv) the roles of leaf-senescence-associated nitrogen enzymes on plant performance, and (v) stress-induced senescence. Compiling the different advances obtained on rice leaf senescence will provide a framework for future rice breeding strategies to improve grain yield.
Collapse
|
13
|
Yang F, Debatosh D, Song T, Zhang JH. Light Harvesting-like Protein 3 Interacts with Phytoene Synthase and Is Necessary for Carotenoid and Chlorophyll Biosynthesis in Rice. RICE (NEW YORK, N.Y.) 2021; 14:32. [PMID: 33745012 PMCID: PMC7981378 DOI: 10.1186/s12284-021-00474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carotenoid biosynthesis is essential for the generation of photosynthetic pigments, phytohormone production, and flower color development. The light harvesting like 3 (LIL3) protein, which belongs to the light-harvesting complex protein family in photosystems, interacts with geranylgeranyl reductase (GGR) and protochlorophyllide oxidoreductase (POR) both of which are known to regulate terpenoid and chlorophyll biosynthesis, respectively, in both rice and Arabidopsis. RESULTS In our study, a CRISPR-Cas9 generated 4-bp deletion mutant oslil3 showed aberrant chloroplast development, growth defects, low fertility rates and reduced pigment contents. A comparative transcriptomic analysis of oslil3 suggested that differentially expressed genes (DEGs) involved in photosynthesis, cell wall modification, primary and secondary metabolism are differentially regulated in the mutant. Protein-protein interaction assays indicated that LIL3 interacts with phytoene synthase (PSY) and in addition the gene expression of PSY genes are regulated by LIL3. Subcellular localization of LIL3 and PSY suggested that both are thylakoid membrane anchored proteins in the chloroplast. We suggest that LIL3 directly interacts with PSY to regulate carotenoid biosynthesis. CONCLUSION This study reveals a new role of LIL3 in regulating pigment biosynthesis through interaction with the rate limiting enzyme PSY in carotenoid biosynthesis in rice presenting it as a putative target for genetic manipulation of pigment biosynthesis pathways in crop plants.
Collapse
Affiliation(s)
- Feng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Das Debatosh
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China
| | - Tao Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
| | - Jian-Hua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, Guangdong, China.
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
14
|
Hori K, Shenton M. Recent Advances in Molecular Research in Rice: Agronomically Important Traits. Int J Mol Sci 2020; 21:ijms21175945. [PMID: 32824902 PMCID: PMC7504012 DOI: 10.3390/ijms21175945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
|
15
|
Zhang Z, Xu M, Guo Y. Ring/U-Box Protein AtUSR1 Functions in Promoting Leaf Senescence Through JA Signaling Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:608589. [PMID: 33391323 PMCID: PMC7772223 DOI: 10.3389/fpls.2020.608589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 05/10/2023]
Abstract
Leaf senescence is regulated by a large number of internal and environmental factors. Here, we report that AtUSR1 (U-box Senescence Related 1) which encodes a plant Ring/U-box protein, is involved in age-dependent and dark-induced leaf senescence in Arabidopsis. Expression of AtUSR1 gene in leaves was up-regulated in darkness and during aging. Plants of usr1, an AtUSR1 gene knock-down mutant, showed a significant delay in age-dependent and dark-induced leaf senescence and the delayed senescence phenotype was rescued when the AtUSR1 gene was transferred back to the mutant plants. Meanwhile, overexpression of AtUSR1 caused accelerated leaf senescence. Furthermore, the role of AtUSR1 in regulating leaf senescence is related to MYC2-mediuated jasmonic acid (JA) signaling pathway. MeJA treatments promoted the accumulation of AtUSR1 transcripts and this expression activation was dependent on the function of MYC2, a key transcription factor in JA signaling. Dual-luciferase assay results indicated that MYC2 promoted the expression of AtUSR1. Overexpression of AtUSR1 in myc2 mutant plants showed precocious senescence, while myc2 mutation alone caused a delay in leaf senescence, suggesting that AtUSR1 functions downstream to MYC2 in the JA signaling pathway in promoting leaf senescence.
Collapse
|