1
|
Santos AAD, Oliveira-Filho AADE, Teixeira BA, Galvão JLFM, Medeiros MAADE, Alves MS, Barbosa DHX, Mafra RP, Vasconcelos U, Lima EO. Evaluation of (-)-Fenchone antimicrobial activity against oral Candida albicans and toxicological parameters: an in silico, in vitro and ex vivo study. AN ACAD BRAS CIENC 2024; 96:e20240273. [PMID: 39504094 DOI: 10.1590/0001-3765202420240273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/28/2024] [Indexed: 11/08/2024] Open
Abstract
Candida albicans is the primary species causing oral candidiasis. Its increasing drug resistance drives the search for more effective antifungal agents. Therefore, we assessed toxicological parameters and the antimicrobial activity and mechanisms of action of the monoterpene (-)-fenchone against oral C. albicans. We conducted an in silico study using PASS online and AdmetSAR, followed by evaluation of antifungal activity through Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), association study with miconazole, and assays with sorbitol and ergosterol. Inhibition of biofilm formation and disruption of preformed biofilm were considered. Toxicity was also assessed through hemolysis assay. The in silico study revealed a higher likelihood of the compound being active for antifungal activity, as well as promising pharmacokinetic and toxicity characteristics. Subsequently, (-)-fenchone exhibited predominantly fungicidal activity (MIC90 = 8 μg/mL; MFC = 16 μg/mL), including against miconazole-resistant C. albicans isolates. The substance does not appear to act by damaging the fungal cell wall or plasma membrane, and exhibited synergy with miconazole. There was activity in inhibiting biofilm formation but not in disrupting preformed biofilm. Finally, the product exerted low hemolytic activity at more than MIC×10. Based on these results, (-)-fenchone may represent a promising therapeutic alternative for oral candidiasis.
Collapse
Affiliation(s)
- André A Dos Santos
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Abrahão A DE Oliveira-Filho
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - Bráulio A Teixeira
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - José Lucas F M Galvão
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Maria Alice A DE Medeiros
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - Millena S Alves
- Universidade Federal de Campina Grande (UFCG), Centro de Saúde e Tecnologia Rural (CSTR), Campus Patos, Av. Universitária, s/n, Santa Cecília, 58708-110 Patos, PB, Brazil
| | - David Henrique X Barbosa
- Universidade Federal do Rio Grande do Norte (UFRN), Centro de Ciências da Saúde (CCS), Departamento de Odontologia (DOD), Programa de Pós-Graduação em Ciências Odontológicas (PPgCO), Av. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| | - Rodrigo P Mafra
- Universidade Federal do Rio Grande do Norte (UFRN), Centro de Ciências da Saúde (CCS), Departamento de Odontologia (DOD), Programa de Pós-Graduação em Ciências Odontológicas (PPgCO), Av. Salgado Filho, 1787, Lagoa Nova, 59056-000 Natal, RN, Brazil
| | - Ulrich Vasconcelos
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Edeltrudes O Lima
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde (CCS), Departamento de Ciências Farmacêuticas (IPeFarM), Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PgPNSB), Campus I, Cidade Universitária, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
2
|
Li J, Sun H, Weng Y. Natural Extracts and Their Applications in Polymer-Based Active Packaging: A Review. Polymers (Basel) 2024; 16:625. [PMID: 38475309 DOI: 10.3390/polym16050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
At a time when food safety awareness is increasing, attention is paid not only to food and additives but also to packaging materials. Most current food packaging is usually made of traditional petroleum-based polymeric materials, which are not biodegradable and have adverse effects on the environment and health. In this context, the development of new non-toxic and biodegradable materials for extending the best-before date of food is receiving increasing attention. In addition, additives in packaging materials may migrate outward, resulting in contact with food. For this reason, additives are also seen as a transition from synthetic additives to natural extracts. Active extracts from animals and plants having good antioxidant and antibacterial properties are also beneficial for human health. It is indisputable that active extracts are ideal substitutes for synthetic additives. Polymer packaging materials combined with active extracts not only maintain their original mechanical and optical properties and thermal stability but also endow polymers with new functions to extend the shelf life of food. This review paper provides an overview of this promising natural extract-containing polymer-based active packaging, with a focus on plant essential oils (containing phenolics, monoterpenes, terpene alcohols, terpene ketones, and aldehydes), pigments (procyanidins), vitamins (vitamin B), and peptides (nisin). In particular, this paper covers the research progress of such active extracts, in single or compound forms, combined with diverse polymers (mostly biopolymers) for food packaging applications with particular focus on the antioxidant and antibacterial properties of packaging materials.
Collapse
Affiliation(s)
- Jiawei Li
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Ma M, Li M, Wu Z, Liang X, Zheng Q, Li D, Wang G, An T. The microbial biosynthesis of noncanonical terpenoids. Appl Microbiol Biotechnol 2024; 108:226. [PMID: 38381229 PMCID: PMC10881772 DOI: 10.1007/s00253-024-13048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Terpenoids are a class of structurally complex, naturally occurring compounds found predominantly in plant, animal, and microorganism secondary metabolites. Classical terpenoids typically have carbon atoms in multiples of five and follow well-defined carbon skeletons, whereas noncanonical terpenoids deviate from these patterns. These noncanonical terpenoids often result from the methyltransferase-catalyzed methylation modification of substrate units, leading to irregular carbon skeletons. In this comprehensive review, various activities and applications of these noncanonical terpenes have been summarized. Importantly, the review delves into the biosynthetic pathways of noncanonical terpenes, including those with C6, C7, C11, C12, and C16 carbon skeletons, in bacteria and fungi host. It also covers noncanonical triterpenes synthesized from non-squalene substrates and nortriterpenes in Ganoderma lucidum, providing detailed examples to elucidate the intricate biosynthetic processes involved. Finally, the review outlines the potential future applications of noncanonical terpenoids. In conclusion, the insights gathered from this review provide a reference for understanding the biosynthesis of these noncanonical terpenes and pave the way for the discovery of additional unique and novel noncanonical terpenes. KEY POINTS: •The activities and applications of noncanonical terpenoids are introduced. •The noncanonical terpenoids with irregular carbon skeletons are presented. •The microbial biosynthesis of noncanonical terpenoids is summarized.
Collapse
Affiliation(s)
- Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Camaioni L, Ustyanowski B, Buisine M, Lambert D, Sendid B, Billamboz M, Jawhara S. Natural Compounds with Antifungal Properties against Candida albicans and Identification of Hinokitiol as a Promising Antifungal Drug. Antibiotics (Basel) 2023; 12:1603. [PMID: 37998805 PMCID: PMC10668714 DOI: 10.3390/antibiotics12111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Candida albicans is an opportunistic yeast that causes most fungal infections. C. albicans has become increasingly resistant to antifungal drugs over the past decade. Our study focused on the identification of pure natural compounds for the development of antifungal medicines. A total of 15 natural compounds from different chemical families (cinnamic derivatives, aromatic phenols, mono- and sesquiterpenols, and unclassified compounds) were screened in this study. Among these groups, hinokitiol (Hi), a natural monoterpenoid extracted from the wood of the cypress family, showed excellent anti-C. albicans activity, with a MIC value of 8.21 µg/mL. Hi was selected from this panel for further investigation to assess its antifungal and anti-inflammatory properties. Hi exhibited significant antifungal activity against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. It also reduced biofilm formation and hyphal growth. Treatment with Hi protected Caenorhabditis elegans against infection with C. albicans and enhanced the expression of antimicrobial genes in worms infected with C. albicans. Aside from its antifungal activities against C. albicans, Hi challenge attenuated the LPS-induced expression of pro-inflammatory cytokines (IL-6, IL-1β, and CCL-2) in macrophages. Overall, Hi is a natural compound with antifungal and anti-inflammatory properties, making Hi a promising platform with which to fight against fungal infections.
Collapse
Affiliation(s)
- Louis Camaioni
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Bastien Ustyanowski
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Mathys Buisine
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Dylan Lambert
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France; (L.C.); (B.U.); (M.B.); (D.L.); (B.S.)
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
5
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
6
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Moraes DCDE. Recent developments on the anti-Candida effect of amphotericin B combined with a second drug - a mini-review. AN ACAD BRAS CIENC 2023; 95:e20220033. [PMID: 37162085 DOI: 10.1590/0001-3765202320220033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 05/11/2023] Open
Abstract
Invasive Candida infections threaten human health due to the increasing incidence of resistance to the currently available antifungal agents. Amphotericin B (AMB) is the gold standard therapy to treat these infections. Nevertheless, the use of such substance in the clinic is aggravated by its toxicity. Since AMB binds to membrane sterols, it forms pores on human plasma membranes, mainly in kidney cells, leading to nephrotoxicity. The combination of this drug to a second substance could allow for the use of smaller concentrations of AMB, consequently lowering the probability of adverse effects. This mini-review summarizes information regarding an array of substances that enhance AMB antifungal activity. It may be noticed that several of these compounds target plasma membrane. Interestingly, substances approved for human use also presented combinatory anti-Candida activity with AMB. These data reinforce the potential of associating AMB to another drug as a promising therapeutical alternative to treat Candida infections. Further studies, regarding mechanism of action, pharmacokinetics and toxicity parameters must be conducted to confirm the role of these substances as adjuvant agents in candidiasis therapy.
Collapse
Affiliation(s)
- Daniel C DE Moraes
- Universidade Estácio de Sá, Bolsista do Programa de Pesquisa e Produtividade UNESA, Rua Eduardo Luiz Gomes 134, Centro, 24020-340 Niterói, RJ, Brazil
| |
Collapse
|
8
|
Cordeiro LV, Souza HDS, Sousa AP, Andrade Júnior FPDE, Figueiredo PTRDE, Oliveira RFDE, Athayde Filho PFDE, Oliveira-Filho AA, Lima EDEO. Effect of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide in combination with antibacterial drugs against Klebsiella pneumoniae. AN ACAD BRAS CIENC 2023; 95:e20210141. [PMID: 36921147 DOI: 10.1590/0001-3765202320210141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/29/2021] [Indexed: 03/16/2023] Open
Abstract
Klebsiella pneumoniae is a species of Gram-negative bacteria related to a wide range of infections and high rates of drug resistance. The combined use of antibacterial agents is one of the strategies that has been analyzed in recent years as part of the alternatives in the treatment of drug-resistant infections. Recently, the antibacterial activity of of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide has been demonstrated against K. pneumoniae, also indicating that this acetamide did not show significant cytotoxic potential in preliminary tests. Thus, it becomes an interesting substance for future studies that explore its antimicrobial capacity, including investigating its association with antibacterial drugs. Based on this, this research aimed to analyze the effects of the association of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide (CFA) with ciprofloxacin, cefepime, ceftazidime, meropenem and imipenem against K. pneumoniae strains. The results showed additivity when the substance was combined with ciprofloxacin and cefepime, indifference when associated with ceftazidime and synergistic effect when combined with meropenem and imipenem. Thus, the acetamide was able to optimize the effects of antibacterial drugs, reducing the concentrations necessary to cause bacterial death. These data indicate a potential future clinical use of these combinations, and further studies are needed to analyze this viability.
Collapse
Affiliation(s)
- Laísa V Cordeiro
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Helivaldo D S Souza
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Química, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Aleson P Sousa
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Francisco P DE Andrade Júnior
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Pedro T R DE Figueiredo
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Rafael F DE Oliveira
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Química, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Petrônio F DE Athayde Filho
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Química, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| | - Abrahão A Oliveira-Filho
- Universidade Federal de Campina Grande, Centro de Saúde e Tecnologia Rural, Unidade Acadêmica de Ciências Biológicas, Rua Aprígio Veloso, 882, Campus Patos, 58429-900 Campina Grande, PB, Brazil
| | - Edeltrudes DE O Lima
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Jardim Universitário, Cidade Universitária, s/n, Campus I, Castelo Branco, 58051-900 João Pessoa, PB, Brazil
| |
Collapse
|
9
|
Buakaew W, Pankla Sranujit R, Noysang C, Krobthong S, Yingchutrakul Y, Thongsri Y, Potup P, Daowtak K, Usuwanthim K. Proteomic Analysis Reveals Proteins Involved in the Mode of Action of β-Citronellol Identified From Citrus hystrix DC. Leaf Against Candida albicans. Front Microbiol 2022; 13:894637. [PMID: 35677908 PMCID: PMC9168680 DOI: 10.3389/fmicb.2022.894637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Candida albicans is a fungus that lives primarily on the mucosal surfaces of healthy humans, such as the oral cavity, vagina, and gastrointestinal tract. This commensal organism can be controlled by other microbiota, while certain conditions can increase the risk of C. albicans outgrowth and cause disease. Prevalence of the drug-resistant phenotype, as well as the severity of C. albicans infection in immunocompromised patients, presents a challenge for scientists to develop novel, effective treatment, and prevention strategies. β-Citronellol is an intriguing active compound of several plants that has been linked to antifungal activity, but data on the mechanism of action in terms of proteomic profiling are lacking. Here, β-citronellol identified from Citrus hystrix DC. leaf against C. albicans were evaluated. A proteomic approach was used to identify potential target proteins involved in the mode of action of β-citronellol. This study identified and discussed three protein groups based on the 126 major proteins that were altered in response to β-citronellol treatment, 46 of which were downregulated and 80 of which were upregulated. Significant protein groups include cell wall proteins (e.g., Als2p, Rbt1p, and Pga4p), cellular stress response enzymes (e.g., Sod1p, Gst2p, and Ddr48p), and ATP synthesis-associated proteins (e.g., Atp3p, Atp7p, Cox1p, and Cobp). Results demonstrated the complexities of protein interactions influenced by β-citronellol treatment and highlighted the potential of antifungal activity for future clinical and drug development research.
Collapse
Affiliation(s)
- Watunyoo Buakaew
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Rungnapa Pankla Sranujit
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chanai Noysang
- Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Sucheewin Krobthong
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
10
|
Diniz-Neto H, Silva SL, Cordeiro LV, Silva DF, Oliveira RF, Athayde-Filho PF, Oliveira-Filho AA, Guerra FQS, Lima EO. Antifungal activity of 2-chloro-N-phenylacetamide: a new molecule with fungicidal and antibiofilm activity against fluconazole-resistant Candida spp. BRAZ J BIOL 2022; 84:e255080. [PMID: 35262564 DOI: 10.1590/1519-6984.255080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022] Open
Abstract
In the current context of emerging drug-resistant fungal pathogens such as Candida albicans and Candida parapsilosis, discovery of new antifungal agents is an urgent matter. This research aimed to evaluate the antifungal potential of 2-chloro-N-phenylacetamide against fluconazole-resistant clinical strains of C. albicans and C. parapsilosis. The antifungal activity of 2-chloro-N-phenylacetamide was evaluated in vitro by the determination of the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), inhibition of biofilm formation and its rupture, sorbitol and ergosterol assays, and association between this molecule and common antifungal drugs, amphotericin B and fluconazole. The test product inhibited all strains of C. albicans and C. parapsilosis, with a MIC ranging from 128 to 256 µg.mL-1, and a MFC of 512-1,024 µg.mL-1. It also inhibited up to 92% of biofilm formation and rupture of up to 87% of preformed biofilm. 2-chloro-N-phenylacetamide did not promote antifungal activity through binding to cellular membrane ergosterol nor it damages the fungal cell wall. Antagonism was observed when combining this substance with amphotericin B and fluconazole. The substance exhibited significant antifungal activity by inhibiting both planktonic cells and biofilm of fluconazole-resistant strains. Its combination with other antifungals should be avoided and its mechanism of action remains to be established.
Collapse
Affiliation(s)
- H Diniz-Neto
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| | - S L Silva
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| | - L V Cordeiro
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| | - D F Silva
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| | - R F Oliveira
- Universidade Federal da Paraíba - UFPB, Department of Chemistry - DQ, João Pessoa, PB, Brasil
| | - P F Athayde-Filho
- Universidade Federal da Paraíba - UFPB, Department of Chemistry - DQ, João Pessoa, PB, Brasil
| | - A A Oliveira-Filho
- Universidade Federal de Campina Grande - UFCG, Rural Health and Technology Center - CTSR, Patos, PB, Brasil
| | - F Q S Guerra
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| | - E O Lima
- Universidade Federal da Paraíba - UFPB, Department of Pharmaceutical Sciences - DCF, João Pessoa, PB, Brasil
| |
Collapse
|
11
|
Silva SL, de Oliveira Pereira F, Cordeiro LV, Diniz Neto H, Dos Santos Maia M, da Silva Souza HD, de Athayde-Filho PF, Scotti MT, Scotti L, de Oliveira Lima E. Antifungal activity of 2-Chloro-N-phenylacetamide, docking and molecular dynamics studies against clinical isolates of Candida tropicalis and Candida parapsilosis. J Appl Microbiol 2022; 132:3601-3617. [PMID: 35179275 DOI: 10.1111/jam.15498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study evaluated the antifungal, antibiofilm, and molecular docking of 2-Chloro-N-phenylacetamide against clinical isolates of Candida tropicalis and Candida parapsilosis. METHODS AND RESULTS MIC of the test drugs was determined by microdilution. A1Cl obtained MIC values ranging from 16 and 256 μg/mL. Fluconazole MIC ranging from 16 and 512 μg/mL. MIC of A1Cl showed fungicide activity, emphasizing the solid antifungal potential of this drug. An association study was performed with A1Cl and fluconazole (checkerboard), revealing indifference by decreasing. Thus, we conducted this study using A1Cl isolated. In the micromorphological assay, the test drugs reduced the production of virulence structures compared to the control (concentration-dependent effect). A1Cl inhibited in vitro biofilm formation at all concentrations tested (1/4MIC to 8xMIC) (p<0.05) and reduced mature biofilm biomass (p<0.05) against C. tropicalis and C. parapsilosis. In the ex vivo biofilm susceptibility testing (human nails fragments), A1Cl inhibited biofilm formation and reduced mature biofilm biomass (p<0.05) more than 50% at MIC. Fluconazole had a similar effect at 4xMIC. In silico studies suggest that the mechanism of antifungal activity of A1Cl involves the inhibition of the enzyme dihydrofolate reductase rather than geranylgeranyltransferase-I. CONCLUSIONS The results suggest that A1Cl is a promising antifungal agent. Furthermore, this activity is related to attenuation of expression of virulence factors and antibiofilm effects against C. tropicalis and C. parapsilosis. SIGNIFICANCE AND IMPACT OF THE STUDY Our study provides the first evidence that A1Cl, a novel synthetic drug, has fungicidal effects against C. tropicalis and C. parapsilosis. Furthermore, in vitro and ex vivo biofilms assays have demonstrated the potential antibiofilm of A1Cl. The mechanism of action involves inhibiting the enzyme dihydrofolate reductase, which was supported by in silico analyses. Therefore, this potential can be explored as a therapeutic alternative for onychomycosis and, at the same time, contribute to decreasing the resistance of clinical isolates of C. tropicalis and C. parapsilosis.
Collapse
Affiliation(s)
- Shellygton Lima Silva
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Fillipe de Oliveira Pereira
- Biochemistry Laboratory, Academic Unit of Health, Education and Health Center, Federal University of Campina Grande, Cuité, Brazil
| | - Laisa Vilar Cordeiro
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Hermes Diniz Neto
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Mayara Dos Santos Maia
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Helivado Diogenes da Silva Souza
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Petrônio F de Athayde-Filho
- Bioenergy and Organic Synthesis Research Laboratory, Department of Chemistry, University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| | - Edeltrudes de Oliveira Lima
- Postgraduate Program in Natural and Bioactive Synthetic Products, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
12
|
Júnior ACV, de Castro Nogueira Diniz Pontes M, Barbosa JP, Höfling JF, Araújo RM, Boniek D, de Resende Stoianoff MA, Andrade VS. Antibiofilm and Anti-Candidal Activities of the Extract of the Marine Sponge Agelas dispar. Mycopathologia 2021; 186:819-832. [PMID: 34564785 DOI: 10.1007/s11046-021-00591-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
This study aimed to determine the antifungal and antibiofilm activities of Agelas dispar on biofilm-producing Candida species. The methanolic extract of A. dispar was obtained and the fraction Ag2 showed inhibitory activity for all 13 Candida strains tested, in concentrations ranging from 2.5 to 0.15625 mg/mL. Antifungal activity of fungicidal nature was seen between 5.0 and 0.3125 mg/mL of extract against the strains. All the strains were classified as biofilm producers. The methanolic extract Ag2 was tested at concentrations of 2.5 and 1.25 mg/mL for antibiofilm activity against the biofilm formation and maturation in all the strains of the genus Candida. Treated and untreated biofilm samples were selected for visualization using scanning electron microscopy (SEM). SEM allowed the visualization of the quantitative decrease in the microbial community, alterations of structural morphology, and destruction of both the formation and maturation of biofilms, at the cellular level. The mechanism of action of this fraction is suggested to be at the plasma membrane and/or cell wall alteration level. Therefore, the use of the methanolic extract of A. dispar may be a promising antifungal and antibiofilm therapeutic strategy against different species of the genus Candida.
Collapse
Affiliation(s)
- Antonio Carlos Vital Júnior
- Department of Microbiology and Parasitology, Center of Biosciences, Federal University of Rio Grande do Norte, UFRN, Natal, Rio Grande do Norte, Brazil
| | | | - Janaina Priscila Barbosa
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - José Francisco Höfling
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Renata Mendonça Araújo
- Center of Exact and Earth Sciences, Chemistry Institute, Federal University of Rio Grande do Norte, UFRN, Natal, Rio Grande do Norte, Brazil
| | - Douglas Boniek
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Center of Biosciences, Federal University of Rio Grande do Norte, UFRN, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
13
|
Pino-Otín MR, Langa E, Val J, Mainar AM, Ballestero D. Impact of citronellol on river and soil environments using non-target model organisms and natural populations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112303. [PMID: 33714735 DOI: 10.1016/j.jenvman.2021.112303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Citronellol is an acyclic monoterpenoid with a wide range of pharmacological activities (antibacterial, antifungal, anti-lice, repellent, lipolytic, anti-allergic, anti-inflammatory, antispasmodic, antidiabetic, anti-cholesterol, among other) and potential to replace synthetic products. However, the impact of citronellol on the environment remains unknown. We analysed, for the first time, the environmental impact of citronellol on river and soil environments using non-target model organisms and natural populations. The acute toxicity of citronellol on the aquatic invertebrate Daphnia magna, the plant Allium cepa L and the earthworm Eisenia fetida was quantified. The effect of citronellol in a river ecosystem was analysed using river periphyton communities taxonomically characterised and a river microbial community characterised through 16 S rRNA gene sequencing. Finally, a microbial community from natural soil was used to monitor the effect of citronellol on the soil ecosystem. The results showed that E. fetida was most sensitive to citronellol (LC50 = 12.34 mg/L), followed by D. magna (LC50 = 14.11 mg/L). Citronellol affected the photosynthesis of the fluvial periphyton (LC50 = 94.10 mg/L) and was phytotoxic for A. cepa. Furthermore, citronellol modified the growth and metabolism of both fluvial (LC50 = 0.19% v/v) and edaphic (LC50 = 5.07% v/v) bacterial populations. The metabolism of the microorganisms in the soil and water exposed to citronellol decreased with respect to the control, especially their ability to metabolise carbohydrates. Our results show that citronellol has a negative impact on the environment. Although acute effects cannot be expected, it is necessary to quantify the environmental levels as well as the long-term and persistent effects of this monoterpene.
Collapse
Affiliation(s)
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
14
|
Herbal Products and Their Active Constituents Used Alone and in Combination with Antifungal Drugs against Drug-Resistant Candida sp. Antibiotics (Basel) 2021; 10:antibiotics10060655. [PMID: 34072664 PMCID: PMC8229001 DOI: 10.3390/antibiotics10060655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.
Collapse
|
15
|
Alves DDN, Ferreira AR, Duarte ABS, Melo AKV, de Sousa DP, de Castro RD. Breakpoints for the Classification of Anti- Candida Compounds in Antifungal Screening. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653311. [PMID: 33880374 PMCID: PMC8046529 DOI: 10.1155/2021/6653311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The absence of a standardized classification scheme for the antifungal potency of compounds screened against Candida species may hinder the study of new drugs. This systematic review proposes a scheme of interpretative breakpoints for the minimum inhibitory concentration (MIC) of bioactive compounds against Candida species in in vitro tests. MATERIALS AND METHODS A literature search was conducted in the PubMed, Scopus, Web of Science, Lilacs, and SciFinder databases for the period from January 2015 to April 2020. The following inclusion criterion was used: organic compounds tested by the microdilution technique according to the Clinical and Laboratory Standards Institute protocol against reference strains of the genus Candida. A total of 545 articles were retrieved after removing duplicates. Of these, 106 articles were selected after applying the exclusion criteria and were evaluated according to the number of synthesized molecules and their chemical classes, the type of strain (reference or clinical) used in the antifungal test, the Candida species, and the MIC (in μg/mL) used. RESULTS The analysis was performed based on the median, quartiles (25% and 75%), maximum, and minimum values of four groups: all strains, ATCC strains, C. albicans strains, and C. albicans ATCC strains. The following breakpoints were proposed to define the categories: MIC < 3.515 μg/mL (very strong bioactivity); 3.516-25 μg/mL (strong bioactivity); 26-100 μg/mL (moderate bioactivity); 101-500 μg/mL (weak bioactivity); 500-2000 μg/mL (very weak bioactivity); and >2000 μg/mL (no bioactivity). CONCLUSIONS A classification scheme of the antifungal potency of compounds against Candida species is proposed that can be used to identify the antifungal potential of new drug candidates.
Collapse
Affiliation(s)
- Danielle da Nóbrega Alves
- Department of Clinic and Social Dentistry, Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Center for Health Sciences, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Alana Rodrigues Ferreira
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Allana Brunna Sucupira Duarte
- Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Ana Karoline Vieira Melo
- Graduate Program in Dentistry (PPGO), Center for Health Sciences, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Ricardo Dias de Castro
- Department of Clinic and Social Dentistry, Graduate Program in Natural and Synthetic Bioactive Products (PgPNSB), Center for Health Sciences, Federal University of Paraiba, João Pessoa, PB, Brazil
- Graduate Program in Dentistry (PPGO), Center for Health Sciences, Federal University of Paraiba, João Pessoa, PB, Brazil
| |
Collapse
|
16
|
Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity. Pharmaceuticals (Basel) 2020; 13:ph13100291. [PMID: 33023068 PMCID: PMC7599878 DOI: 10.3390/ph13100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Isougenol is a phytoconstituent found in several essential oils. Since many natural products are potent antimicrobials, the synthesis of hybrid molecules-combining the chemical skeleton of the phytochemical with synthetic groups-can generate substances with enhanced biological activity. Based on this, the objective of this study was to evaluate the antifungal activity of isoeugenol and hybrid acetamides against Candida albicans isolated from the oral cavity. The methodologies used were the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), action on fungal micromorphology, interaction test with nystatin by the checkerboard method and molecular docking study with important enzymes in the maintenance of fungal viability. The synthetic molecules did not demonstrate significant antifungal activity in vitro. The isoeugenol MIC and MFC varied between 128 and 256 µg/mL, being the phytoconstituent able to interfere in the formation of blastoconid and chlamydoconid structures, important in the pathogenic process of the species. The molecular docking study revealed that isoeugenol is a potential inhibitor of the enzymes 14-α-demethylase and delta-14-sterol reductase, interfering in the fungal cell membrane biosynthesis. Thus, this research provides clearer expectations for future pharmacological studies with isoeugenol and derived molecules, aiming at its therapeutic application against infections caused by Candida spp.
Collapse
|
17
|
Cordeiro L, Diniz-Neto H, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Melo T, Ferreira E, Oliveira R, Athayde-Filho P, Barbosa-Filho J, Oliveira-Filho A, Lima E. Potential of 2-Chloro- N-(4-fluoro-3-nitrophenyl)acetamide Against Klebsiella pneumoniae and In Vitro Toxicity Analysis. Molecules 2020; 25:molecules25173959. [PMID: 32877986 PMCID: PMC7504751 DOI: 10.3390/molecules25173959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae causes a wide range of community and nosocomial infections. The high capacity of this pathogen to acquire resistance drugs makes it necessary to develop therapeutic alternatives, discovering new antibacterial molecules. Acetamides are molecules that have several biological activities. However, there are no reports on the activity of 2-chloro-N-(4-fluoro-3-nitrophenyl)acetamide. Based on this, this study aimed to investigate the in vitro antibacterial activity of this molecule on K. pneumoniae, evaluating whether the presence of the chloro atom improves this effect. Then, analyzing its antibacterial action more thoroughly, as well as its cytotoxic and pharmacokinetic profile, in order to contribute to future studies for the viability of a new antibacterial drug. It was shown that the substance has good potential against K. pneumoniae and the chloro atom is responsible for improving this activity, stabilizing the molecule in the target enzyme at the site. The substance possibly acts on penicillin-binding protein, promoting cell lysis. The analysis of cytotoxicity and mutagenicity shows favorable results for future in vivo toxicological tests to be carried out, with the aim of investigating the potential of this molecule. In addition, the substance showed an excellent pharmacokinetic profile, indicating good parameters for oral use.
Collapse
Affiliation(s)
- Laísa Cordeiro
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
- Correspondence: ; Tel.: +55-83-3216-7347
| | - Hermes Diniz-Neto
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Pedro Figueiredo
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Helivaldo Souza
- Chemistry Department, Exact and Natural Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Brazil; (H.S.); (R.O.); (P.A.-F.)
| | - Aleson Sousa
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Francisco Andrade-Júnior
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Thamara Melo
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Elba Ferreira
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Rafael Oliveira
- Chemistry Department, Exact and Natural Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Brazil; (H.S.); (R.O.); (P.A.-F.)
| | - Petrônio Athayde-Filho
- Chemistry Department, Exact and Natural Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Brazil; (H.S.); (R.O.); (P.A.-F.)
| | - José Barbosa-Filho
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| | - Abrahão Oliveira-Filho
- Rural Health and Technology Center, Federal University of Campina Grande, 58708-110 Patos, Brazil;
| | - Edeltrudes Lima
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, 58033-455 João Pessoa, Paraíba, Brazil; (H.D.-N.); (P.F.); (A.S.); (F.A.-J.); (T.M.); (E.F.); (J.B.-F.); (E.L.)
| |
Collapse
|
18
|
Cordeiro L, Figueiredo P, Souza H, Sousa A, Andrade-Júnior F, Barbosa-Filho J, Lima E. Antibacterial and Antibiofilm Activity of Myrtenol against Staphylococcus aureus. Pharmaceuticals (Basel) 2020; 13:ph13060133. [PMID: 32630561 PMCID: PMC7344394 DOI: 10.3390/ph13060133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
The increase in Staphylococcus aureus resistance to conventional antibacterials and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, has made the development of new therapeutic alternatives necessary. Medicinal plants are one of the main sources of bioactive molecules and myrtenol is a natural product with several biological activities, although its antimicrobial activity is little explored. Based on this, the objective of this study was to evaluate the antibacterial activity of myrtenol against S. aureus, determining the minimum inhibitory and bactericidal concentrations (MIC and MBC), investigating the possible molecular target through the analysis of molecular docking. It also aimed to evaluate the effect of its combination with antibacterial drugs and its activity against S. aureus biofilms, in addition to performing an in silico analysis of its pharmacokinetic parameters. Myrtenol showed MIC and MBC of 128 µg/mL (bactericidal action) and probably acts by interfering with the synthesis of the bacterial cell wall. The effects of the association with antibacterials demonstrate favorable results. Myrtenol has remarkable antibiofilm activity and in silico results indicate a good pharmacokinetic profile, which make myrtenol a potential drug candidate for the treatment of infections caused by S. aureus.
Collapse
Affiliation(s)
- Laísa Cordeiro
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
- Correspondence: ; Tel.: +55-83-3216-7347
| | - Pedro Figueiredo
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
| | - Helivaldo Souza
- Chemistry Department, Exact and Natural Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Brazil;
| | - Aleson Sousa
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
| | - Francisco Andrade-Júnior
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
| | - José Barbosa-Filho
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
| | - Edeltrudes Lima
- Department of Pharmaceutical Science, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, Paraíba, Brazil; (P.F.); (A.S.); (F.A.-J.); (J.B.-F.); (E.L.)
| |
Collapse
|
19
|
Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int J Mol Sci 2020; 21:ijms21124531. [PMID: 32630600 PMCID: PMC7350221 DOI: 10.3390/ijms21124531] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is able to rapidly develop mechanisms of resistance to various drugs and to form strong biofilms, which makes it necessary to develop new antibacterial drugs. The essential oil of Melaleuca alternifolia is used as an antibacterial, a property believed to be mainly due to the presence of terpinen-4-ol. Based on this, the objective of this study was to evaluate the antibacterial and antibiofilm potential of terpinen-4-ol against S. aureus. The Minimal Inhibitory and Minimal Bactericidal Concentrations (MIC and MBC) of terpinen-4-ol were determined, and the effect of its combination with antibacterial drugs as well as its activity against S. aureus biofilms were evaluated. In addition, an in silico analysis of its pharmacokinetic parameters and a molecular docking analysis were performed. Terpinen-4-ol presented a MIC of 0.25% (v/v) and an MBC of 0.5% (v/v) (bactericidal action); its association with antibacterials was also effective. Terpinen-4-ol has good antibiofilm activity, and the in silico results indicated adequate absorption and distribution of the molecule in vivo. Molecular docking indicated that penicillin-binding protein 2a is a possible target of terpinen-4-ol in S. aureus. This work highlights the good potential of terpinen-4-ol as an antibacterial product and provides support for future pharmacological studies of this molecule, aiming at its therapeutic application.
Collapse
|