1
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
6
|
Zhang H, Zhang X, Liang S, Wang J, Zhu Y, Zhang W, Liu S, Schwarz S, Xie F. Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms. NPJ Biofilms Microbiomes 2023; 9:16. [PMID: 37024490 PMCID: PMC10078070 DOI: 10.1038/s41522-023-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.
Collapse
Affiliation(s)
- Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany.
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
7
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
8
|
Qin T, Liu M, Lv Y, Zheng A, Wang L, Wu Y, Kasianenko O, Wei X, Teng Z, Xia X, Hu J. Comprehensive Analysis of lncRNA and mRNA Expression Profile of Macrophage RAW264.7 Stimulated by Antimicrobial Peptide BSN-37. Protein Pept Lett 2023; 30:783-793. [PMID: 37587823 DOI: 10.2174/0929866530666230816110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND BSN-37, a novel antimicrobial peptide (AMP) containing 37 amino acid residues isolated from the bovine spleen, has not only antibacterial activity but also immunomodulatory activity. Recent evidence shows that long non-coding RNAs (lncRNAs) play an important role in regulating the activation and function of immune cells. The purpose of this experiment was to investigate the lncRNA and mRNA expression profile of mouse macrophages RAW264.7 stimulated by bovine antimicrobial peptide BSN-37. METHODS The whole gene expression microarray was used to detect the differentially expressed lncRNA and mRNA between antimicrobial peptide BSN-37 activated RAW264.7 cells and normal RAW264.7 cells. KEGG pathway analysis and GO function annotation analysis of differentially expressed lncRNAs and mRNA were carried out. Eight kinds of lncRNAs and nine kinds of mRNA with large differences were selected for qRT-PCR verification, respectively. RESULTS In the current study, we found that 1294 lncRNAs and 260 mRNAs were differentially expressed between antibacterial peptide BSN-37 treatment and control groups. Among them, Bcl2l12, Rab44, C1s, Cd101 and other genes were associated with immune responses and were all significantly up-regulated. Mest and Prkcz are related to cell growth, and other genes are related to glucose metabolism and lipid metabolism. In addition, some immune-related terms were also found in the GO and KEGG analyses. At the same time, real-time quantitative PCR was used to verify selected lncRNA and mRNA with differential expression. The results of qRT-PCR verification were consistent with the sequencing results, indicating that our data were reliable. CONCLUSION This study provides the lncRNA and mRNA expression profiles of RAW264.7 macrophages stimulated by antimicrobial peptide BSN-37 and helps to provide a reference value for subsequent studies on lncRNA regulation of antimicrobial peptide BSN-37 immune function.
Collapse
Affiliation(s)
- Ting Qin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Yanhe Lv
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Airong Zheng
- Forage and Feed Station of Henan Province, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Oksana Kasianenko
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, Ukraine
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
9
|
Ishchenko O, Koshevaya I, Zhernosekova I, Garets V, Stepanskyi D. The Levels of the Human-β-Defensin-2 and LL-37 in the Sputum of Children with Cystic Fibrosis: A Case–control Study and Literature Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND: Cystic fibrosis (CF) is a genetic disorder with an autosomal-recessive type of inheritance. Based on their host-defending and pro-inflammatory functions, antimicrobial peptides (AMPs) likely have one of the central roles in the pathogenesis of lung disease in CF.
AIM: The purpose of the study was to measure the concentration of AMPs in the sputum of children with CF and evaluate any correlation with a bacterial profile of the lungs.
METHODS: Lung colonization was evaluated using a culture-dependent method, sputum was utilized. A sandwich-ELISA was used to measure hBD-2 and hCAP-18/LL-37 in the sputum.
RESULTS: There were 27 children enrolled in the study group, median age of inclusion was 11.4 (8.5; 14.8) years old. The control group consisted of 14 children, 11.6 (8.6; 12.6) years old. The concentration of AMPs was not correlating with participants` age (rs = −0.286, p = 0.148 – defensin hDB-2; rs = −0.084, p = 0.676 – cathelicidin hCAP-18/LL-37). The concentration of hBD-2 was from 64.01 to 813.61 pg/mL. The concentration of hCAP-18/LL-37 was from 3.24 to 35.98 ng/mL. There were significant differences in the content of AMPs on respiratory samples between study and control group (U = 976.5, p = 0.001 – for hBD-2; U = 1080.5, p < 0.001). The correlation between current infection Pseudomonas aeruginosa and concentration of hBD-2 (rs = 0.167; p = 0.406) was not found. However, the presence of P. aeruginosa correlated with density of neutrophilic infiltration (rs = 0.622; p = 0.001). The concentration of hBD-2 showed direct medium correlation with total cells count (rs = 0.881, p < 0.001). Correlation between current infection P. aeruginosa and concentration of hCAP-18/LL-37 (rs = 0.788; p < 0.001) was observed. With increases in total cell count and relative neutrophils count, the concentration of hCAP-18/LL-37 was increased and the power of the association was medium (rs = 0.453; p = 0,018; rs = 0,592; p = 0,001). The correlation between concentrations of hBD-2 and hCAP-18/LL-37 (rs = 0.316, p > 0.1) was not found.
CONCLUSIONS: Measured AMPs correlated with cellular inflammatory markers and, probably, their overexpression is dedicated to stimulating a cellular component of innate immune response; there was no correlation between bacterial colonization of lungs and levels of hBD-2, so our findings sustain that P. aeruginosa is a leading but non-single contributor to persistent local inflammation in polymicrobial lungs.
Collapse
|
10
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
11
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
12
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
13
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|