1
|
Li Z, Li X, Liu K, Zhao J, Shang P, Hua C, Guo J, Xie F, Xie J. In vitro assessment of ferroptosis of cells exposed to cigarette smoke aerosol using a self-designed on-chip evaluation system based on gas-liquid dual-dimensional exposure. Talanta 2024; 277:126352. [PMID: 38838566 DOI: 10.1016/j.talanta.2024.126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Aerosol pollutants significantly cause health concerns. Herein, we established an original real-time aerosol exposure system that used a self-designed bionic-lung microfluidic chip. The chip features a 4 × 4 intersecting array within gas and liquid layers, creating 16 distinct microenvironments. A membrane situated between the layers offers attachment for cells and establishes a gas-liquid interface. This design provides a reliable screening capacity for investigating the biological effects of aerosol exposure in vitro by manipulating the gas and/or liquid conditions. Using this system, we validated that cigarette smoke (CS) aerosol triggered a concentration- and time-dependent reduction in cell viability and intracellular glutathione levels, accompanied by an increase in intracellular reactive oxygen species and Fe2+. Furthermore, CS aerosol significantly downregulated the expression of GPX4, SLC7A11, and FTL mRNA while inducing a notable increase in that of ACSL4 mRNA. Additionally, CS aerosol markedly stimulated the release of proinflammatory cytokines. Crucially, the ferroptosis inhibitor deferoxamine mesylate reversed these biological indicators. These results demonstrate that our novel bionic-lung chip presents a suitably achievable approach to investigate the biological effects induced by aerosol exposure.
Collapse
Affiliation(s)
- Zezhi Li
- Beijing Life Science Academy, Beijing, 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China; Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xiang Li
- Beijing Life Science Academy, Beijing, 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Junwei Zhao
- Beijing Life Science Academy, Beijing, 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Junwei Guo
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Jianping Xie
- Beijing Life Science Academy, Beijing, 102209, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
DiNicola ES, Martinez AV, Walker L, Wu Y, Burnikel BG, Mercuri J. Cigarette smoke extract exacerbates progression of osteoarthritic-like changes in cartilage explant cultures. J Orthop Res 2024; 42:1682-1695. [PMID: 38460961 DOI: 10.1002/jor.25828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1β and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1β and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.
Collapse
Affiliation(s)
- Emily Sawvell DiNicola
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Andrea Vera Martinez
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Lizzie Walker
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Yongren Wu
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Brian G Burnikel
- Prisma Health Steadman Hawkins Clinic of the Carolinas - Patewood, Greenville, South Carolina, USA
| | - Jeremy Mercuri
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
3
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
4
|
Peng P, Wu J, Fang W, Tian J, He M, Xiao F, Lin K, Xu X, He W, Liu W, Wei Q. Association between sarcopenia and osteoarthritis among the US adults: a cross-sectional study. Sci Rep 2024; 14:296. [PMID: 38167445 PMCID: PMC10761973 DOI: 10.1038/s41598-023-50528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The association between sarcopenia and OA still presents many uncertainties. We aimed to assess whether sarcopenia is associated with occurrence of OA in US adults. We conducted a cross-sectional study consisting of 11,456 participants from National Health and Nutrition Examination Survey 1999-2006. Sarcopenia was defined by a low muscle mass. The skeletal muscle index (SMI) was calculated as the appendicular skeletal muscle mass divided by body mass indexes (BMI) or body weight. OA status was assessed by using self-reported questionnaire. We evaluated the association between sarcopenia and OA using multivariate regression models. In addition, subgroup and interaction analysis were performed. Sarcopenia was associated with OA when it was defined by the BMI-adjusted SMI (OR = 1.23 [95% CI, 1.01, 1.51]; P = 0.038) and defined by the weight-adjusted SMI (OR = 1.30 [95% CI, 1.10, 1.55]; P = 0.003). Subgroup and interaction analysis found that the strongest positive association mainly exists in smoker (OR = 1.54 [95% CI, 1.21, 1.95], Pint = 0.006), and this association is not significant in other groups. In conclusion, we found that sarcopenia was associated with occurrence of OA. Subgroup analysis revealed that the association between sarcopenia and OA was more pronounced in smoker. Further well-designed prospective cohort studies are needed to assess our results.
Collapse
Affiliation(s)
- Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jiawei Wu
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jiaqing Tian
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Kun Lin
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xuemeng Xu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, No. 60, Hengfu Road, Yuexiu District, Guangzhou, 510405, People's Republic of China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wengang Liu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, No. 60, Hengfu Road, Yuexiu District, Guangzhou, 510405, People's Republic of China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Wang J, Zhang B, Peng L, Wang J, Xu K, Xu P. The Causal Association between Alcohol, Smoking, Coffee Consumption, and the Risk of Arthritis: A Meta-Analysis of Mendelian Randomization Studies. Nutrients 2023; 15:5009. [PMID: 38068867 PMCID: PMC10707754 DOI: 10.3390/nu15235009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Objective: To evaluate the genetic causality between alcohol intake, smoking, coffee consumption, and arthritis. Methods: Mendelian randomization (MR) studies with alcohol, smoking, and coffee consumption behaviors as exposures, and osteoarthritis (OA) and rheumatoid arthritis (RA) as outcomes were retrieved from up to July 2023. Two researchers with relevant professional backgrounds independently assessed the quality and extracted data from the included studies. Meanwhile, we applied MR analyses of four lifestyle exposures and five arthritis outcomes (two for OA and three for RA) with gene-wide association study (GWAS) data that were different from the included studies, and the results were also included in the meta-analysis. Statistical analyses were performed using Stata 16.0 and R software version 4.3.1. Results: A total of 84 studies were assessed. Of these, 11 were selected for meta-analysis. As a whole, the included studies were considered to be at a low risk of bias and were of high quality. Results of the meta-analysis showed no significant genetic causality between alcohol intake and arthritis (odds ratio (OR): 1.02 (0.94-1.11)). Smoking and arthritis had a positive genetic causal association (OR: 1.44 (1.27-1.64)) with both OA (1.44 (1.22-1.71)) and RA (1.37 (1.26-1.50)). Coffee consumption and arthritis also had a positive genetic causal association (OR: 1.02 (1.01-1.03)). Results from the subgroup analysis showed a positive genetic causality between coffee consumption and both OA (OR: 1.02 (1.00-1.03)) and RA (OR: 1.56 (1.19-2.05)). Conclusion: There is positive genetic causality between smoking and coffee consumption and arthritis (OA and RA), while there is insufficient evidence for genetic causality between alcohol intake and arthritis.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Leixuan Peng
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| |
Collapse
|
6
|
Fernández-Torres J, Aztatzi-Aguilar OG, Zamudio-Cuevas Y, Sierra-Vargas MP, Martínez-Nava GA, Montaño-Armendáriz N, López-Macay A, Suárez-Ahedo C, Ilizaliturri-Sánchez V, Nizama-Castillo EJ, Olivos-Meza A, Debray-García Y, Loaeza-Román A, Luján-Juárez IA, Vargas-Sánchez B, Sánchez-Sánchez R, Narváez-Morales J, Del Razo LM, Martínez-Flores K. Effect of smoking on the redox status of knee osteoarthritis: A preliminary study. Exp Biol Med (Maywood) 2023; 248:1754-1767. [PMID: 37916410 PMCID: PMC10792422 DOI: 10.1177/15353702231199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 11/03/2023] Open
Abstract
Even though smoking has been scarcely studied in osteoarthritis (OA) etiology, it is considered a controversial risk factor for the disease. Exposure to tobacco smoke has been reported to promote oxidative stress (OS) as part of the damage mechanism. The aim of this study was to assess whether smoking increases cartilage damage through the generation of OS. Peripheral blood (PB) and synovial fluid (SF) samples from patients with OA were analyzed. The samples were stratified according to smoking habit, Kellgren-Lawrence score, pain, and cotinine concentrations in PB. Malondialdehyde (MDA), methylglyoxal (MGO), advanced protein oxidation products (APOPs), and myeloperoxidase (MPO) were assessed; the activity of antioxidant enzymes such as gamma-glutamyl transferase (GGT), glutathione S-transferase (GST) and catalase (CAT), as well as the activity of arginase, which favors the destruction of cartilage, was determined. When stratified by age, for individuals <60 years, the levels of MDA and APOPs and the activity of MPO and GST were higher, as well as antioxidant system activity in the smoking group (OA-S). A greater degree of pain in the OA-S group increased the concentrations of APOPs and arginase activity (P < 0.01 and P < 0.05, respectively). Arginase activity increased significantly with a higher degree of pain (P < 0.01). Active smoking can be an important risk factor for the development of OA by inducing systemic OS in young adults, in addition to reducing antioxidant enzymes in older adults and enhancing the degree of pain and loss of cartilage.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, C.P. 04510, México
| | - Octavio Gamaliel Aztatzi-Aguilar
- Laboratorio de Toxicología de Contaminantes Atmosféricos y Estrés Oxidativo, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, C.P. 07360, México
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Martha Patricia Sierra-Vargas
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Ciudad de México, C.P. 14080, México
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Nathalie Montaño-Armendáriz
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara, C.P. 45129, México
| | - Ambar López-Macay
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Carlos Suárez-Ahedo
- División de Reconstrucción Articular Cadera y Rodilla, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
- Departamento de Ortopedia, Hospital Médica Sur, Ciudad de México, C.P. 14040, México
| | - Victor Ilizaliturri-Sánchez
- División de Reconstrucción Articular Cadera y Rodilla, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Edicson Jiichiro Nizama-Castillo
- División de Reconstrucción Articular Cadera y Rodilla, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Anell Olivos-Meza
- Departamento de Ortopedia, Hospital Médica Sur, Ciudad de México, C.P. 14040, México
| | - Yazmín Debray-García
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Ciudad de México, C.P. 14080, México
| | - Alejandra Loaeza-Román
- Departmento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Ciudad de México, C.P. 14080, México
| | - Iván Alejandro Luján-Juárez
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara, C.P. 45129, México
| | - Bertha Vargas-Sánchez
- Laboratorio de Microscopía Electrónica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
- Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey (TEC), Ciudad de México, C.P. 14380, México
| | - Juana Narváez-Morales
- Laboratorio de Toxicología Renal, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, C.P. 07360, México
| | - Luz María Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, C.P. 07360, México
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, C.P. 14389, México
| |
Collapse
|
7
|
Ni J, Wang P, Yin KJ, Huang JX, Tian T, Cen H, Sui C, Xu Z, Pan HF. Does smoking protect against developing osteoarthritis? Evidence from a genetically informed perspective. Semin Arthritis Rheum 2022; 55:152013. [DOI: 10.1016/j.semarthrit.2022.152013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
|
8
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Morris TM, Marlborough FJ, Montgomery RJ, Allison KP, Eardley WGP. Smoking and the patient with a complex lower limb injury. Injury 2021; 52:814-824. [PMID: 33495022 DOI: 10.1016/j.injury.2020.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Smoking is known to increase the risk of peri-operative complications in Orthoplastic surgery by impairing bone and wound healing. The effects of nicotine replacement therapies (NRTs) and electronic cigarettes (e-cigarettes) has been less well established. Previous reviews have examined the relationship between smoking and bone and wound healing separately. This review provides surgeons with a comprehensive and contemporaneous account of how smoking in all forms interacts with all aspects of complex lower limb trauma. We provide a guide for surgeons to refer to during the consent process to enable them to tailor information towards smokers in such a way that the patient may understand the risks involved with their surgical treatment. We update the literature with recently discovered methods of monitoring and treating the troublesome complications that occur more commonly in smokers effected by trauma.
Collapse
Affiliation(s)
- Timothy M Morris
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW.
| | - Fergal J Marlborough
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Richard J Montgomery
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Keith P Allison
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - William G P Eardley
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| |
Collapse
|
10
|
Khurana VG. Adverse impact of smoking on the spine and spinal surgery. Surg Neurol Int 2021; 12:118. [PMID: 33880223 PMCID: PMC8053459 DOI: 10.25259/sni_6_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Tobacco smokers and companies are well aware that smoking increases the risks for cancers, vascular morbidity, and early mortality. This is a review of the plethora of adverse effects chronic smoking has on spinal tissues and spinal surgery. Methods Medline (PubMed) and Google Scholar databases were searched for pertinent literature through keywords related to smoking, spondylosis, and spinal surgery. Results Smoking accelerates spondylosis by impairing spinal tissue vascular supply through atherosclerosis and thrombosis, while inducing local hypoxia, inflammation, proteolysis, and cell loss. It, thus, compromises disc, cartilage, synovium, bone, and blood vessels. It can lead to early surgery, delayed wound healing, increased surgical site infection, failed fusion, more re-operations, and chronic spinal pain. Conclusion There is ample evidence to support surgeons' declining to operate on chronic smokers. The need for immediate and permanent smoking cessation and its potential benefits should be emphasized for the patient considering or who has undergone spinal surgery.
Collapse
Affiliation(s)
- Vini G Khurana
- CNS Neurosurgery, Woolloomooloo, New South Wales, Australia
| |
Collapse
|
11
|
Zhu S, Aspera-Werz RH, Chen T, Weng W, Braun B, Histing T, Nüssler AK. Maqui berry extract prevents cigarette smoke induced oxidative stress in human osteoblasts in vitro. EXCLI JOURNAL 2021; 20:281-296. [PMID: 33628164 PMCID: PMC7898044 DOI: 10.17179/excli2020-3244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress which can be induced by cigarette smoke (CS) is associated with an altered osteoblast differentiation, and an inhibition of the mineralization process. Therefore, treatments focusing on reducing oxidative stress in osteoblasts could be a potential therapy supporting bone formation. Maqui berry extract (MBE) is the richest natural source of delphinidins with high antioxidant activity. In the present study, we pre-/ co-/ post-incubated MBE in cigarette smoke extract (CSE)-affected human osteoblasts (hOBs), to investigate the effects of MBE as an antioxidant on hOBs. Our results clearly showed that high concentrations of MBE are toxic for hOBs, while physiological concentrations of MBE have no negative effects in vitro. Physiological concentrations of MBE can reduce oxidative stress caused by CSE in hOBs by activating the antioxidative regulator Nrf2 and its regulated antioxidative enzymes. Moreover, the physiological concentration of MBE prevents the detrimental effects of CSE-induced oxidative damage on hOBs by increasing cell viability, differentiation capability and matrix mineralization. Pre-incubation with MBE showed a positive effect on the activation of the cellular antioxidant system in hOBs. Thus, we conclude that MBE at physiological concentrations can effectively protect osteoblasts from oxidative stress-induced damage by activating the cells' antioxidative defense system.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tao Chen
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Weidong Weng
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| |
Collapse
|