1
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
2
|
Lin Y, Tang Y, Yi O, Zhu J, Su Z, Li G, Zhou H, Liu L, Liu B, Cai X. Graphene oxide quantum dots-loaded sinomenine hydrochloride nanocomplexes for effective treatment of rheumatoid arthritis via inducing macrophage repolarization and arresting abnormal proliferation of fibroblast-like synoviocytes. J Nanobiotechnology 2024; 22:383. [PMID: 38951875 PMCID: PMC11218134 DOI: 10.1186/s12951-024-02645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024] Open
Abstract
The characteristic features of the rheumatoid arthritis (RA) microenvironment are synovial inflammation and hyperplasia. Therefore, there is a growing interest in developing a suitable therapeutic strategy for RA that targets the synovial macrophages and fibroblast-like synoviocytes (FLSs). In this study, we used graphene oxide quantum dots (GOQDs) for loading anti-arthritic sinomenine hydrochloride (SIN). By combining with hyaluronic acid (HA)-inserted hybrid membrane (RFM), we successfully constructed a new nanodrug system named HA@RFM@GP@SIN NPs for target therapy of inflammatory articular lesions. Mechanistic studies showed that this nanomedicine system was effective against RA by facilitating the transition of M1 to M2 macrophages and inhibiting the abnormal proliferation of FLSs in vitro. In vivo therapeutic potential investigation demonstrated its effects on macrophage polarization and synovial hyperplasia, ultimately preventing cartilage destruction and bone erosion in the preclinical models of adjuvant-induced arthritis and collagen-induced arthritis in rats. Metabolomics indicated that the anti-arthritic effects of HA@RFM@GP@SIN NPs were mainly associated with the regulation of steroid hormone biosynthesis, ovarian steroidogenesis, tryptophan metabolism, and tyrosine metabolism. More notably, transcriptomic analyses revealed that HA@RFM@GP@SIN NPs suppressed the cell cycle pathway while inducing the cell apoptosis pathway. Furthermore, protein validation revealed that HA@RFM@GP@SIN NPs disrupted the excessive growth of RAFLS by interfering with the PI3K/Akt/SGK/FoxO signaling cascade, resulting in a decline in cyclin B1 expression and the arrest of the G2 phase. Additionally, considering the favorable biocompatibility and biosafety, these multifunctional nanoparticles offer a promising therapeutic approach for patients with RA.
Collapse
Affiliation(s)
- Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Ouyang Yi
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Junping Zhu
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoli Su
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
- College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, University of Chinese Medicine, Guangzhou, 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, University of Chinese Medicine, Guangzhou, 510006, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Cholerzyńska H, Zasada W, Tselios K, Grygiel-Górniak B. Sleep Disorders in Connective Tissue Diseases-Coexisting Diseases or Disease Components? J Clin Med 2024; 13:3656. [PMID: 38999222 PMCID: PMC11242285 DOI: 10.3390/jcm13133656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
This comprehensive review examines the complex relationship between sleep disorders and rheumatic diseases, supported by findings from the latest research articles. It encompasses various rheumatic conditions, including rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. The review reveals the bidirectional relationship between sleep disorders and these diseases, emphasizing their impact on disease progression and quality of life. Conventional and alternative therapeutic interventions for connective tissue diseases are presented, focusing on improving sleep quality and alleviating rheumatic symptoms. The role of pro-inflammatory cytokines and their potential modulation through pharmacological agents is also discussed. In the treatment of sleep disorders, various options are proposed, such as cognitive behavioral therapy for insomnia, physical activity, dietary modifications, and alternative approaches like reflexology and acupuncture. Thus, this review offers a nuanced understanding of the connection between sleep disorders and rheumatic diseases, supported by evidence from diverse studies. Such an approach is particularly important because it enhances sleep quality for overall patient well-being in the holistic management of rheumatic conditions.
Collapse
Affiliation(s)
- Hanna Cholerzyńska
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Wiktoria Zasada
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
4
|
Saidi O, Rochette E, Merlin E, Duché P. Pathways of sleep disturbances in juvenile idiopathic arthritis and recommendations for clinical management approaches: A critical review. Sleep Med Rev 2024; 73:101870. [PMID: 37897844 DOI: 10.1016/j.smrv.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease affecting young people. It has a profound impact on their physical, mental and social lives, leading to long-term disability. With the growing awareness of the importance of sleep in all areas of functioning in young people, an emerging literature has drawn attention to the role of sleep in the pathogenesis of JIA. Sleep disturbances in children and adolescents with JIA arise from a wide range of symptoms and pathways, leading to a vicious cycle that exacerbates subclinical inflammation, symptoms and disease progression. Putative factors contributing to sleep disturbances include chronic inflammation, JIA-associated sleep disorders, JIA symptoms (e.g. pain), psychological comorbidities and potential circadian disruption, which may be exacerbated by the transition to adolescence. Here, we review these pathways and advocate key strategies and alternatives for sleep management in young people with JIA in clinical settings. We identify gaps in knowledge and suggest future directions to improve our understanding of JIA sleep disorders, including clinical trials investigating potential strategies to improve sleep health in this young population.
Collapse
Affiliation(s)
- Oussama Saidi
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France.
| | - Emmanuelle Rochette
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France; Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000, Clermont-Ferrand, France; INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000, Clermont-Ferrand, France
| | - Etienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000, Clermont-Ferrand, France; INSERM, CIC 1405, CRECHE Unit, Clermont Auvergne University, F-63000, Clermont-Ferrand, France
| | - Pascale Duché
- Laboratory "Impact of Physical Activity on Health" (IAPS), Toulon University, F-83041, Toulon, France.
| |
Collapse
|
5
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Qin Z, Song J, Huang J, Jiang S, Zhang G, Huang M, Huang Z, Jin J. Mitigation of triptolide-induced testicular Sertoli cell damage by melatonin via regulating the crosstalk between SIRT1 and NRF2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154945. [PMID: 37437414 DOI: 10.1016/j.phymed.2023.154945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Triptolide (TP) is an important active compound from Tripterygium wilfordii Hook F (TwHF), however, it is greatly limited in clinical practice due to its severe toxicity, especially testicular injury. Melatonin is an endogenous hormone and has beneficial effects on the reproductive system. However, whether triptolide-induced testicular injury can be alleviated by melatonin and the underlying mechanism are not clear. PURPOSE In this study, we aimed to explore whether triptolide-induced testicular Sertoli cells toxicity can be mitigated by melatonin and the underlying mechanisms involved. METHODS Cell apoptosis was assessed by flow cytometry, western blot, immunofluorescence and immunohistochemistry. Fluorescent probe Mito-Tracker Red CMXRos was used to observe the mitochondria morphology. Mitochondrial membrane potential and Ca2+ levels were used to investigate mitochondrial function by confocal microscope and flow cytometry. The expression levels of SIRT1/Nrf2 pathway were detected by western blot, immunofluorescence and immunohistochemistry. Small interfering RNA of NRF2 and SIRT1 inhibitor EX527 was used to confirm the role of SIRT1/NRF2 pathway in the mitigation of triptolide-induced Sertoli cell damage by melatonin. Co-Immunoprecipitation assay was used to determine the interaction between SIRT1 and NRF2. RESULTS Triptolide-induced dysfunction of testicular Sertoli cells was significantly improved by melatonin treatment. Specifically, triptolide-induced oxidative stress damage and changes of mitochondrial morphology, mitochondrial membrane potential, and BTB integrity were alleviated by melatonin. Mechanistically, triptolide inhibited SIRT1 and then reduced the activation of NRF2 pathway via regulating the interaction between SIRT1 and NRF2, thereby downregulating the downstream antioxidant genes, which was reversed by melatonin. Nevertheless, knockdown of NRF2 or inhibition of SIRT1 abolished the protective effect of melatonin. CONCLUSION Triptolide-induced testicular Sertoli cell damage could be alleviated by melatonin via regulating the crosstalk between SIRT1 and NRF2, which is helpful for developing a new strategy to alleviate triptolide-induced toxicity.
Collapse
Affiliation(s)
- Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianxun Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gengyi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
de Carvalho JF, Skare TL. Melatonin supplementation improves rheumatological disease activity: A systematic review. Clin Nutr ESPEN 2023; 55:414-419. [PMID: 37202076 DOI: 10.1016/j.clnesp.2023.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Melatonin is a pineal hormone with a complex role. It is linked to sleep, inflammatory, oxidative, and immunological processes. AIM To review the use of melatonin supplementation in rheumatological diseases. METHODS A systematic search of PubMed, Embase, and Scielo databases was performed, looking for articles on Melatonin and rheumatic diseases published between 1966 and August 2022. RESULTS Thirteen articles were identified: in fibromyalgia (n = 5 articles), rheumatoid arthritis (n = 2), systemic sclerosis (n = 1), systemic lupus erythematosus (n = 1) and osteoporosis/osteopenia (n = 3) and osteoarthritis (n = 1). There were positive results of melatonin administration in fibromyalgia, osteoarthritis, and osteoporosis/osteopenia but not in rheumatoid arthritis and lupus. The drug was well tolerated with mild side effects. CONCLUSION This review shows the efficacy of Melatonin in some rheumatic diseases. However, new studies are needed to elucidate the real role of this treatment in rheumatology.
Collapse
Affiliation(s)
- Jozélio Freire de Carvalho
- Núcleo de Pesquisa Em Doenças Crônicas Não Transmissíveis (NUPEN), School of Nutrition from the Federal University of Bahia, Salvador, Bahia, Brazil.
| | - Thelma L Skare
- Serviço de Reumatologia, Hospital Universitário Evangélico Mackenzie, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Azizli A, Sargın G, Senturk T. The effect of disease-modifying antirheumatic drugs on sleep and quality of life in older patients with rheumatoid arthritis. JOURNAL OF RHEUMATIC DISEASES 2023; 30:99-105. [PMID: 37483477 PMCID: PMC10324934 DOI: 10.4078/jrd.22.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 07/25/2023]
Abstract
Objective The sleep quality is worse in rheumatoid arthritis (RA) patients than in healthy controls and it is more difficult to achieve a satisfactory quality of life after treatment with age. Our aim is to assess the quality of life and sleep in elderly onset RA patients and to analyze the effect of disease-modifying agents on sleep and quality of life. Methods Thirty-four older patients with RA patients and 30 healthy controls are included in the study. Sleep quality was evaluated with the Pittsburg sleep quality index and quality of life with Short Form-36. Parametric/non-parametric tests and Spearman/Pearson correlation analysis were applied for the data according to the distribution. Results While the rate of poor sleep quality before treatment was 67.6%, the rate was 26.5% after treatment. There was a statistically significant difference before and after treatment in terms of subjective sleep quality, sleep latency, sleep duration, sleep efficiency, and scores for sleep disturbance. The mean steroid dose and Disease Activity Score-28 were higher in patients with poor sleep quality than in patients with good sleep quality. Patients with poor sleep quality had lower mean physical function, pain, general health, social function, emotional role difficulties, and energy/vitality values than patients with good sleep quality. Conclusion Both sleep and quality of life improved after treatment in older patients with RA patients. In older patients, it should be regularly evaluated in terms of sleep and quality of life and appropriate treatment should be provided.
Collapse
Affiliation(s)
- Ali Azizli
- Department of Rheumatology, Faculty of Medicine, Aydin Adnan Menderes University, Aydın, Turkey
| | - Gökhan Sargın
- Department of Rheumatology, Faculty of Medicine, Aydin Adnan Menderes University, Aydın, Turkey
| | - Taskin Senturk
- Department of Rheumatology, Faculty of Medicine, Aydin Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
9
|
Association between levels of serotonin, melatonin, cortisol and the clinical condition of patients with rheumatoid arthritis. Rheumatol Int 2023; 43:859-866. [PMID: 36912941 PMCID: PMC10073159 DOI: 10.1007/s00296-023-05296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic connective tissue disease of autoimmune basis. It is characterized by inflammation of joints and systemic complications. The etiopathogenesis is still unknown. Predisposing factors for the disease include genetic, immunological and environmental. Chronic disease and the stress experienced by patients disrupt the body's homeostatic state and weaken the human immune system. Reduced immunity and endocrine disruption may influence the development of autoimmune diseases and exacerbate their course. The aim of the study was to investigate whether there is a relationship between the blood levels of hormones such as cortisol, serotonin, melatonin and the clinical status of RA patients as determined by the DAS28 index and CRP protein. A total of 165 people participated in the study of these 84 subjects had RA and the rest were the control group. All participants completed a questionnaire and had their blood drawn to determine hormones. Patients with RA had higher plasma cortisol (324.6 ng/ml vs. 292.9 ng/ml) and serotonin concentrations (67.9 ng/ml vs. 22.1 ng/ml) and lower plasma melatonin (116.8 pg/ml vs. 330.2 pg/ml) compared to controls. Patients whose CRP concentration were above normal also had elevated plasma cortisol concentration. No significant association was observed in RA patients between plasma melatonin, serotonin and DAS28 values. However, it can be concluded that those with high disease activity had lower melatonin levels as compared to patients with low and moderate DAS28 values. Significant differences were found between RA patients not using steroids and plasma cortisol (p = 0.035). In RA patients, it was observed that as plasma cortisol concentration increased, the chance of having an elevated DAS28 score, indicating high disease activity, increased.
Collapse
|
10
|
Rochette E, Saidi O, Merlin É, Duché P. Physical activity as a promising alternative for young people with juvenile idiopathic arthritis: Towards an evidence-based prescription. Front Immunol 2023; 14:1119930. [PMID: 36860845 PMCID: PMC9969142 DOI: 10.3389/fimmu.2023.1119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young people. Although biologics now enable most children and adolescents with JIA to enjoy clinical remission, patients present lower physical activity and spend more time in sedentary behavior than their healthy counterparts. This impairment probably results from a physical deconditioning spiral initiated by joint pain, sustained by apprehension on the part of both the child and the child's parents, and entrenched by lowered physical capacities. This in turn may exacerbate disease activity and lead to unfavorable health outcomes including increased risks of metabolic and mental comorbidities. Over the past few decades, there has been growing interest in the health benefits of increased overall physical activity as well as exercise interventions in young people with JIA. However, we are still far from evidence-based physical activity and / or exercise prescription for this population. In this review, we give an overview of the available data supporting physical activity and / or exercise as a behavioral, non-pharmacological alternative to attenuate inflammation while also improving metabolism, disease symptoms, poor sleep, synchronization of circadian rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical implications, identify gaps in knowledge, and outline a future research agenda.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Oussama Saidi
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Étienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
| | - Pascale Duché
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| |
Collapse
|
11
|
Córdoba-Moreno MO, Mendes MT, Markus RP, Fernandes PA. Rat resistance to rheumatoid arthritis induction as a function of the early-phase adrenal-pineal crosstalk. J Physiol 2023; 601:535-549. [PMID: 36287128 DOI: 10.1113/jp283456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/07/2022] [Indexed: 02/03/2023] Open
Abstract
Chronic inflammatory diseases are triggered by causal stimuli that might occur long before the appearance of the symptoms. Increasing evidence suggests that these stimuli are necessary but not always sufficient to induce the diseases. The murine model of type II collagen emulsified in Freund's incomplete adjuvant (collagen-induced arthritis) to induce rheumatoid arthritis (RA) follows this pattern as some animals do not develop the chronically inflamed phenotype. Considering that in the immune-pineal axis (IPA) theory adrenal-pineal cross-talk adjusts early phases of inflammatory processes, we investigated whether differences in IPA activation could explain why some animals are resistant (RES) while others develop RA. We observed a similar increase in 6-sulfatoxymelatonin (aMT6s) excretion from day 3 to 13 in both RES and RA animals, followed by a significant decrease in RA animals. This pattern of aMT6s excretion positively correlated with plasma corticosterone (CORT) in RES animals. Additionally, RA animals presented a lower aMT6s/CORT ratio than saline-injected or RES animals. Plasmatic levels of tumour necrosis factor were similar in both groups, but interleukin (IL)-1β and monocyte chemotactic protein 1 (MCP-1) levels were lower in RES compared to RA animals. IL-2 and IL-4 were decreased in RES animals compared to saline-injected animals. The aMT6s/CORT ratio inversely correlated with the paw thickness and the inflammatory score (levels of IL-1β, MCP-1, IL-2 and IL-4 combined). Thus, adrenocortical-pineal positive interaction is an early defence mechanism for avoiding inflammatory chronification. KEY POINTS: Immune-pineal axis imbalance is observed in early-phase rheumatoid arthritis development. Only resistant animals present a positive association between adrenal and pineal hormones. The 6-sulfatoxymelatonin/corticosterone ratio is decreased in animals that develop rheumatoid arthritis. The inflammatory score combining the levels of nocturnal interleukin (IL)-1β, monocyte chemotactic protein 1, IL-2 and IL-4 presents a very strong positive correlation with the size of inflammatory lesion. The 6-sulfatoxymelatonin/corticosterone ratio presents a strong negative correlation with the inflammatory score and paw oedema size.
Collapse
Affiliation(s)
| | | | - Regina P Markus
- Department of Physiology, University of São Paulo, São Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
12
|
He X, Yu M, Zhao J, Wang A, Yin J, Wang H, Qiu J, He X, Wu X. Chrono-moxibustion adjusts circadian rhythm of CLOCK and BMAL1 in adjuvant-induced arthritic rats. Am J Transl Res 2022; 14:4880-4897. [PMID: 35958509 PMCID: PMC9360894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The clinical symptoms of rheumatoid arthritis (RA) have significant circadian rhythms, with morning stiffness and joint pain. Moxibustion is effective in the treatment of RA, while the underlying therapeutic mechanisms remain limited. Thus, we explored whether moxibustion could adjust the circadian rhythm of RA by modulating the core clock genes CLOCK and BMAL1 at the molecular level. METHODS 144 Sprague Dawley rats were randomly divided into four groups: control group (group A), model group (group B), 7-9 am moxibustion treatment group (group C), and 5-7 pm moxibustion treatment group (group D). Each group was divided into 6 time points (0 am, 4 am, 8 am, 12 N, 6 pm, and 8 pm) with an equal number of rats at each time point. Except for group A, all rats were injected with Freund's Complete Adjuvant (FCA) 0.15 ml on the right foot pad to establish the RA model. The rats of the two moxibustion treatment groups were respectively subjected to moxibustion at 7-9 am and 5-7 pm. After 3 weeks of treatment, the tissues were collected at 6 time points during the next 24 hours. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to test the mRNA expression of CLOCK and BMAL1 in the hypothalamus and synovial tissues. CLOCK and BMAL1 protein expression in synovial tissues were detected with western blot. RESULTS Compared to group A, group B showed significantly down-regulated expression levels of CLOCK and BMLA1 at synovial tissue (P < 0.05), while no statistically significant difference was found in the hypothalamus (P > 0.05). The expression levels of CLOCK and BMLA1 were up-regulated in the moxibustion treatment groups in different tissues, especially in synovial tissue (P < 0.05) compared to group B. Nevertheless, no difference was observed between groups C and D (P > 0.05). CONCLUSIONS Moxibustion could treat RA by modulating clock core genes CLOCK and BMAL1 to regulate the circadian rhythm. However, there was no significant difference between the 7-9 am moxibustion treatment group and the 5-7 pm moxibustion treatment group. This study provides a basis for research on moxibustion in the treatment of RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Luzhou T.C.M. HospitalLuzhou 646000, Sichuan, China
| | - Jiasong Zhao
- Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610072, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| |
Collapse
|
13
|
Palimi T, Zilaee M, Rajaei E, Karandish M. Effects of Melatonin on Sleep Quality and Disease Activity in Patients With Rheumatoid Arthritis. SLEEP MEDICINE RESEARCH 2022. [DOI: 10.17241/smr.2022.01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objective In rheumatoid arthritis (RA) patients sleep disturbance is one of serious and prevalent problems. Considering the known effects of melatonin on sleep quality and inflammation, this study aimed to investigate melatonin supplementation effect on quality of sleep and disease activity in patients with RA.Methods In this randomized, placebo-controlled trial (double-blind), 64 RA patients were selected and divided into experimental and placebo groups randomly; experimental group received 3 mg/d of melatonin and another group consumed placebo for 60 days. Before and after the investigation, assessment of the quality of sleep determined using the Pittsburgh Sleep Quality Index (PSQI). Disease Activity Score-28 (DAS28) and the Visual Analogue Scale (VAS) questionnaires were used for evaluation of disease activity and pain intensity, respectively.Results Melatonin significantly reduced PSQI, DAS28 and VAS scores, when values compared with baseline. In contrast to placebo group, good sleep quality within the melatonin group increased significantly compared to baseline and this improvement in sleep quality was significant when compared between groups. The scores of DAS28 and pain VAS at the end of trial were significantly reduced compared to the baseline in both groups. However, reduction in the DAS28 and VAS scores of the melatonin group were stronger than reductions in the placebo receiving group.Conclusions This study results revealed that melatonin was safe and effective in improving sleep quality and reducing DAS28 and pain VAS scores in RA patients.
Collapse
|
14
|
Ortega MA, García-Montero C, Fraile-Martinez O, Alvarez-Mon MA, Gómez-Lahoz AM, Lahera G, Monserrat J, Rodriguez-Jimenez R, Quintero J, Álvarez-Mon M. Immune-Mediated Diseases from the Point of View of Psychoneuroimmunoendocrinology. BIOLOGY 2022; 11:973. [PMID: 36101354 PMCID: PMC9312038 DOI: 10.3390/biology11070973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) represent a large group of diseases (Crohn's, ulcerative colitis, psoriasis, lupus, and rheumatoid arthritis) evidenced by systemic inflammation and multiorgan involvement. IMIDs result in a reduced quality of life and an economic burden for individuals, health care systems, and countries. In this brief descriptive review, we will focus on some of the common biological pathways of these diseases from the point of view of psychoneuroimmunoendocrinology (PNIE). PNIE consists of four medical disciplines (psychology, nervous system, immune system, and endocrine system), which are key drivers behind the health-disease concept that a human being functions as a unit. We examine these drivers and emphasize the need for integrative treatments that addresses the disease from a psychosomatic point of view.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
| | - Ana Maria Gómez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias (CIBERSAM), 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Roberto Rodriguez-Jimenez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
15
|
Hosseini A, Badri T, Esmaeili Gouvarchin Ghaleh H, Hassanpour K, Alishiri G, Akbariqomi M, Farnoosh G. Melatonin as a complementary and prophylactic agent against COVID‐19 in high‐risk populations: A narrative review of recent findings from clinical and preclinical studies. Fundam Clin Pharmacol 2022; 36:918-929. [DOI: 10.1111/fcp.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology Shahid Beheshti University Tehran Iran
| | - Taleb Badri
- Neuroscience Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | | | - Kazem Hassanpour
- Department of Pediatric, School of Medicine Sabzevar University of Medical Sciences Sabzevar Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mostafa Akbariqomi
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Anti-Inflammatory Effects of Melatonin in Rats with Induced Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040574. [PMID: 35455066 PMCID: PMC9029934 DOI: 10.3390/life12040574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction: Insulin resistance is associated with a pro-inflammatory state increasing the risk for complications in patients with type 2 diabetes mellitus (T2DM). In addition to its chronobiotic effects, the pineal hormone melatonin is known to exert anti-inflammatory and antioxidant effects. Melatonin was also suggested to affect insulin secretion. The aim of this study was therefore to investigate the effect of melatonin on inflammation in diabetic rats and to study the possible involvement of the melatonin receptor, MT2. Materials and Methods: Male Sprague Dawley rats were randomly divided into four experimental groups (n = 10 per group): (1) control, (2) streptozotocin/nicotinamide induced diabetes type 2 (T2DM), (3) T2DM treated with melatonin (500 µg/kg/day), and (4) T2DM treated with melatonin (500 µg/kg/day for 6 weeks) and the selective MT2 receptor antagonist luzindole (0.25 g/kg/day for 6 weeks). Blood samples were taken for biochemical parameters and various tissue samples (liver, adipose tissue, brain) were removed for immunohistochemistry (IHC), Western blot (WB), and Q-PCR analyses, respectively. Results: Melatonin significantly reduced increased blood levels of liver transaminases (AST, ALT), blood urea nitrogen (BUN), triglyceride, very low-density lipoprotein (VLDL), and cholesterol in diabetic rats with luzindole treatment partly reversing this effect regarding the lipids. Furthermore, the liver and adipose tissues of T2DM rats treated with melatonin showed lower expression of the inflammatory markers IL-1β, IL-6, TNF-α, and NF-κB as compared to the T2DM group without melatonin. The results also showed that the MT2 receptor is at least partly involved in the protective effects of melatonin. Conclusions: Our results suggest that melatonin exerts relevant anti-inflammatory effects on various tissues in type 2 diabetic rats.
Collapse
|
17
|
Leelaviwat N, Mekraksakit P, Cross KM, Landis DM, McLain M, Sehgal L, Payne JD. Melatonin: Translation of Ongoing Studies Into Possible Therapeutic Applications Outside Sleep Disorders. Clin Ther 2022; 44:783-812. [DOI: 10.1016/j.clinthera.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
|
18
|
Yang CR, Ding HJ, Yu M, Zhou FH, Han CY, Liang R, Zhang XY, Zhang XL, Meng FJ, Wang S, Li DD, Sun WZ, Meng B, Zhou XF. proBDNF/p75NTR promotes rheumatoid arthritis and inflammatory response by activating proinflammatory cytokines. FASEB J 2022; 36:e22180. [PMID: 35129860 DOI: 10.1096/fj.202101558r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
P75 pan-neurotrophin receptor (p75NTR) is an important receptor for the role of neurotrophins in survival and death of neurons during development and after nerve injury. Our previous research found that the precursor of brain-derived neurotrophic factor (proBDNF) regulates pain as an inflammatory mediator. The current understanding of the role of proBDNF/p75NTR signaling pathway in inflammatory arthritis pain and rheumatoid arthritis (RA) is unclear. We recruited 20 RA patients, 20 healthy donors (HDs), and 10 osteoarthritis (OA) patients. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of proBDNF and p75NTR in synovial membrane were performed and evaluated. We next examined the mRNA and protein expression of proBDNF/p75NTR signaling pathway in peripheral blood mononuclear cells (PBMCs) and synovial tissue. ELISA and flow cytometry were assessed between the blood of RA patients and HD. To induce RA, collagen-induced arthritis (CIA) were induced in mice. We found over-synovitis of RA synovial membrane compared to OA controls in histologic sections. P75NTR and sortilin mRNA, and proBDNF protein level were significantly increased in PBMCs of RA patients compared with the HD. Consistently, ELISA showed that p75NTR, sortilin, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) levels in the serum of RA patients were increased compared with HD and p75NTR, sortilin were positively correlated with Disease Activity Score in 28 joints (DAS28). In addition, using flow cytometry we showed that the increased levels of proBDNF and p75NTR characterized in CD4+ and CD8+ T cells of RA patients were subsequently reversed with methotrexate (MTX) treatment. Furthermore, we found pathological changes, inflammatory pain, upregulation of the mRNA and protein expression of proBDNF/p75NTR signaling pathway, and upregulation of inflammatory cytokines in spinal cord using a well-established CIA mouse model. We showed intravenous treatment of recombinant p75ECD-Fc that biologically blocked all inflammatory responses and relieved inflammatory pain of animals with CIA. Our findings showed the involvement of proBDNF/p75NTR pathway in the RA inflammatory response and how blocking it with p75ECD-Fc may be a promising therapeutic treatment for RA.
Collapse
Affiliation(s)
- Chun-Rui Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, P. R. China.,Department of Pathology, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Hong-Jun Ding
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, P. R. China.,Tianjin Public Security Profession College, Tianjin, P. R. China
| | - Miao Yu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Fiona-H Zhou
- Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Chen-Yang Han
- Pain Treatment Center, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Rui Liang
- Department of Pathology, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Xiao-Yang Zhang
- Department of Pathology, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Xiang-Lian Zhang
- Department of Pathology, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Fan-Jie Meng
- Department of Thoracic Surgery, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Shuo Wang
- Department of Thoracic Surgery, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - De-Dong Li
- Department of Anesthesiology, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Wei-Zong Sun
- Department of Orthopedics, Tianjin Medical University Second Hospital, Tianjin, P. R. China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Ditmer M, Gabryelska A, Turkiewicz S, Białasiewicz P, Małecka-Wojciesko E, Sochal M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J Clin Med 2021; 11:67. [PMID: 35011807 PMCID: PMC8745687 DOI: 10.3390/jcm11010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have shown that individuals with sleep problems are at a greater risk of developing immune and chronic inflammatory diseases. As sleep disorders and low sleep quality in the general population are frequent ailments, it seems important to recognize them as serious public health problems. The exact relation between immunity and sleep remains elusive; however, it might be suspected that it is shaped by others stress and alterations of the circadian rhythm (commonly caused by for example shift work). As studies show, drugs used in the therapy of chronic inflammatory diseases, such as steroids or monoclonal antibodies, also influence sleep in more complex ways than those resulting from attenuation of the disease symptoms. Interestingly, the relation between sleep and immunity appears to be bidirectional; that is, sleep may influence the course of immune diseases, such as inflammatory bowel disease. Thus, proper diagnosis and treatment of sleep disorders are vital to the patient's immune status and, in effect, health. This review examines the epidemiology of sleep disorders and immune diseases, the associations between them, and their current treatment and novel perspectives in therapy.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| |
Collapse
|
20
|
Chronobiology and Chronotherapy in Inflammatory Joint Diseases. Pharmaceutics 2021; 13:pharmaceutics13111832. [PMID: 34834246 PMCID: PMC8621834 DOI: 10.3390/pharmaceutics13111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Circadian rhythm perturbations can impact the evolution of different conditions, including autoimmune diseases. This narrative review summarizes the current understanding of circadian biology in inflammatory joint diseases and discusses the potential application of chronotherapy. Proinflammatory cytokines are key players in the development and progression of rheumatoid arthritis (RA), regulating cell survival/apoptosis, differentiation, and proliferation. The production and secretion of inflammatory cytokines show a dependence on the human day–night cycle, resulting in changing cytokine plasma levels over 24 h. Moreover, beyond the circadian rhythm of cytokine secretion, disturbances in timekeeping mechanisms have been proposed in RA. Taking into consideration chronotherapy concepts, modified-release (MR) prednisone tablets have been introduced to counteract the negative effects of night-time peaks of proinflammatory cytokines. Low-dose MR prednisone seems to be able to improve the course of RA, reduce morning stiffness and morning serum levels of IL-6, and induce significant clinical benefits. Additionally, methotrexate (MTX) chronotherapy has been reported to be associated with a significant improvement in RA activity score. Similar effects have been described for polymyalgia rheumatica and gout, although the available literature is still limited. Growing knowledge of chronobiology applied to inflammatory joint diseases could stimulate the development of new drug strategies to treat patients in accordance with biological rhythms and minimize side effects.
Collapse
|
21
|
MacDonald IJ, Tsai HC, Chang AC, Huang CC, Yang SF, Tang CH. Melatonin Inhibits Osteoclastogenesis and Osteolytic Bone Metastasis: Implications for Osteoporosis. Int J Mol Sci 2021; 22:ijms22179435. [PMID: 34502344 PMCID: PMC8430520 DOI: 10.3390/ijms22179435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoblasts and osteoclasts are major cellular components in the bone microenvironment and they play a key role in the bone turnover cycle. Many risk factors interfere with this cycle and contribute to bone-wasting diseases that progressively destroy bone and markedly reduce quality of life. Melatonin (N-acetyl-5-methoxy-tryptamine) has demonstrated intriguing therapeutic potential in the bone microenvironment, with reported effects that include the regulation of bone metabolism, acceleration of osteoblastogenesis, inhibition of osteoclastogenesis and the induction of apoptosis in mature osteoclasts, as well as the suppression of osteolytic bone metastasis. This review aims to shed light on molecular and clinical evidence that points to possibilities of melatonin for the treatment of both osteoporosis and osteolytic bone metastasis. It appears that the therapeutic qualities of melatonin supplementation may enable existing antiresorptive osteoporotic drugs to treat osteolytic metastasis.
Collapse
Affiliation(s)
- Iona J. MacDonald
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (H.-C.T.)
| | - Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (H.-C.T.)
| | - An-Chen Chang
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City 111, Taiwan;
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (H.-C.T.)
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-2205-2121 (ext. 7726)
| |
Collapse
|
22
|
Li X, Lei Y, Gao Z, Wu G, Gao W, Xia L, Lu J, Shen H. IL-34 affects fibroblast-like synoviocyte proliferation, apoptosis and function by regulating IL-17. Sci Rep 2021; 11:16378. [PMID: 34385542 PMCID: PMC8361173 DOI: 10.1038/s41598-021-95839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of fibroblast-like synoviocytes (FLSs).The biology and functions of interleukin (IL)-34 are only beginning to be uncovered. We previously demonstrated IL-34 could upregulate the expression of IL-17 in RA patients. In this study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry of Annexin V and PI staining were performed to assess cell proliferation and apoptosis progression in RA-FLSs after stimulated with increasing concentrations of IL-34, respectively. Inflammatory cytokines and angiogenic factors were measured using quantitative real-time PCR, Western blotting and ELISA. We explored the association between IL-34 and RA-FLS proliferation and apoptosis in the context of RA. Stimulating RA-FLSs with different concentrations of IL-34 significantly promoted the proliferation and inhibited the apoptosis of RA-FLSs in a concentration-dependent manner. Neutralization of IL-17 with the IL-17 inhibitor plumbagin (PB) reduced the effects of IL-34. Proinflammatory cytokine (IL-17A IL-6 and tumor necrosis factor-α, TNF-α) and angiogenic factor (vascular endothelial growth factor, VEGF and hypoxia-inducible factor-1α, HIF-1α) expression was markedly upregulated in RA-FLSs stimulated by IL-34. PB-mediated inhibition of IL-17A also decreased the expression of IL-6, TNF-α, HIF-1α and VEGF in RA-FLSs. Taken together, these findings suggest that targeting IL-34 production in RA-FLSs may be a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Xin Li
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China.,Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Yimeng Lei
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Ziyu Gao
- 104k Class 86, China Medical University, Shen Yang, 110001, China
| | - Gang Wu
- Department of General Surgery, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Wei Gao
- Department of Rheumatology, 1st Affiliated Hospital of Jin Zhou Medical University, Jin Zhou, 121000, China
| | - Liping Xia
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Jing Lu
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China
| | - Hui Shen
- Department of Rheumatology, 1st Hospital of China Medical University, Shen Yang, 110001, China.
| |
Collapse
|
23
|
Melatonin as a Potential Adjuvant Treatment for COVID-19 beyond Sleep Disorders. Int J Mol Sci 2021; 22:ijms22168623. [PMID: 34445329 PMCID: PMC8395320 DOI: 10.3390/ijms22168623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melatonin is registered to treat circadian rhythm sleep–wake disorders and insomnia in patients aged 55 years and over. The essential role of the circadian sleep rhythm in the deterioration of sleep quality during COVID-19 confinement and the lack of an adverse effect of melatonin on respiratory drive indicate that melatonin has the potential to be a recommended treatment for sleep disturbances related to COVID-19. This review article describes the effects of melatonin additional to its sleep-related effects, which make this drug an attractive therapeutic option for treating patients with COVID-19. The preclinical data suggest that melatonin may inhibit COVID-19 progression. It may lower the risk of the entrance of the SARS-CoV-2 virus into cells, reduce uncontrolled hyper-inflammation and the activation of immune cells, limit the damage of tissues and multiorgan failure due to the action of free radicals, and reduce ventilator-induced lung injury and the risk of disability resulting from fibrotic changes within the lungs. Melatonin may also increase the efficacy of COVID-19 vaccination. The high safety profile of melatonin and its potential anti-SARS-CoV-2 effects make this molecule a preferable drug for treating sleep disturbances in COVID-19 patients. However, randomized clinical trials are needed to verify the clinical usefulness of melatonin in the treatment of COVID-19.
Collapse
|
24
|
Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021; 26:molecules26134105. [PMID: 34279445 PMCID: PMC8271479 DOI: 10.3390/molecules26134105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melatonin and several of its metabolites are interfering with reactive nitrogen. With the notion of prevailing melatonin formation in tissues that exceeds by far the quantities in blood, metabolites come into focus that are poorly found in the circulation. Apart from their antioxidant actions, both melatonin and N1-acetyl-5-methoxykynuramine (AMK) downregulate inducible and inhibit neuronal NO synthases, and additionally scavenge NO. However, the NO adduct of melatonin redonates NO, whereas AMK forms with NO a stable product. Many other melatonin metabolites formed in oxidative processes also contain nitrosylatable sites. Moreover, AMK readily scavenges products of the CO2-adduct of peroxynitrite such as carbonate radicals and NO2. Protein AMKylation seems to be involved in protective actions.
Collapse
|
25
|
Differential and Overlapping Effects of Melatonin and Its Metabolites on Keratinocyte Function: Bioinformatics and Metabolic Analyses. Antioxidants (Basel) 2021; 10:antiox10040618. [PMID: 33920561 PMCID: PMC8073250 DOI: 10.3390/antiox10040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of melatonin and its selected metabolites, i.e., N1-Acetyl-N2-formyl-5-methoxykynurenamine (AFMK) and 6-hydroxymelatonin (6(OH)Mel), on cultured human epidermal keratinocytes (HEKs) to assess their homeostatic activities with potential therapeutic implications. RNAseq analysis revealed a significant number of genes with distinct and overlapping patterns, resulting in common regulation of top diseases and disorders. Gene Set Enrichment Analysis (GSEA), Reactome FIViZ, and Ingenuity Pathway Analysis (IPA) showed overrepresentation of the p53-dependent G1 DNA damage response gene set, activation of p53 signaling, and NRF2-mediated antioxidative pathways. Additionally, GSEA exhibited an overrepresentation of circadian clock and antiaging signaling gene sets by melatonin derivatives and upregulation of extension of telomere signaling in HEKs, which was subsequently confirmed by increased telomerase activity in keratinocytes, indicating possible antiaging properties of metabolites of melatonin. Furthermore, Gene Ontology (GO) showed the activation of a keratinocyte differentiation program by melatonin, and GSEA indicated antitumor and antilipidemic potential of melatonin and its metabolites. IPA also indicated the role of Protein Kinase R (PKR) in interferon induction and antiviral response. In addition, the test compounds decreased lactate dehydrogenase A (LDHA) and lactate dehydrogenase C (LDHC) gene expression. These results were validated by qPCR and by Seahorse metabolic assay with significantly decreased glycolysis and lactate production under influence of AFMK or 6(OH)Mel in cells with a low oxygen consumption rate. In summary, melatonin and its metabolites affect keratinocytes’ functions via signaling pathways that overlap for each tested molecule with some distinctions.
Collapse
|
26
|
Increased Serum Levels of Brain-Derived Neurotrophic Factor Contribute to Inflammatory Responses in Patients with Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms22041841. [PMID: 33673283 PMCID: PMC7918107 DOI: 10.3390/ijms22041841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to investigate the role of brain-derived neurotrophic factor (BDNF) in the inflammatory responses in patients with rheumatoid arthritis (RA). Serum levels of BDNF and the precursor form of BDNF (proBDNF) from 625 RA patients and 40 controls were analyzed using enzyme-linked immunosorbent assay. Effects of BDNF on the mitogen-activated protein kinase pathway were analyzed by Western blotting. Microarray analysis was conducted to search BDNF regulated gene expression in Jurkat cells, and the differentially expressed genes were validated using T cells from patients with RA and controls. Serum BDNF levels were significantly elevated in patients with RA compared with the controls. Low serum BDNF levels were found in RA patients with anxiety or receiving biologics treatment. BDNF (20 ng/mL) enhanced the phosphorylation of ERK, JNK, and c-Jun, but suppressed the phosphorylation of p38, whereas BDNF (200 ng/mL) enhanced the phosphorylation of ERK and p38. After validation, the expression of CAMK2A, MASP2, GNG13, and MUC5AC, regulated by BDNF and one of its receptors, NGFR, was increased in RA T cells. BDNF increased the IL-2, IL-17, and IFN-γ expression in Jurkat cells and IL-2 and IFN-γ secretion in activated peripheral blood mononuclear cells.
Collapse
|
27
|
Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0. Int J Mol Sci 2020; 21:ijms21218125. [PMID: 33143215 PMCID: PMC7663604 DOI: 10.3390/ijms21218125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis has a high prevalence globally and includes over 100 types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. All types of arthritis share common features of disease, including monocyte infiltration, inflammation, synovial swelling, pannus formation, stiffness in the joints and articular cartilage destruction. The exact etiology of arthritis remains unclear, and no cure exists as of yet. Anti-inflammatory drugs (NSAIDs and corticosteroids) are commonly used in the treatment of arthritis. However, these drugs are associated with significant side effects, such as gastric bleeding and an increased risk for heart attack and other cardiovascular problems. It is therefore crucial that we continue to research the pathogenesis of arthritis and seek to discover novel modes of therapy. This editorial summarizes and discusses the themes of the 27 articles published in our Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis 2.0”, a continuation of our 2019 Special Issue “Research of Pathogenesis and Novel Therapeutics in Arthritis”. These Special Issues detail important novel research discoveries that contribute to our current understanding of arthritis.
Collapse
|
28
|
Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe? Biomolecules 2020; 10:biom10091280. [PMID: 32899743 PMCID: PMC7563518 DOI: 10.3390/biom10091280] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.
Collapse
|
29
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|