1
|
Almeida-Ferreira C, Rodrigues F, Marto CM, Botelho MF, Laranjo M. Cold atmospheric plasma for breast cancer treatment: what next? Med Gas Res 2025; 15:110-111. [PMID: 39436174 PMCID: PMC11515082 DOI: 10.4103/mgr.medgasres-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Catarina Almeida-Ferreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Francisca Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, Coimbra, Portugal; Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Coimbra, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
2
|
Safi-Samghabadi A, Atyabi SM, Shams-Ghahfarokhi M, Salehi Z, Eslamifar A, Jamzivar F, Razzaghi-Abyaneh M. Cold atmospheric plasma as a promising tool in treatment of Trichophyton rubrum-induced skin infection in a guinea pig model of experimental dermatophytosis. Diagn Microbiol Infect Dis 2024; 110:116555. [PMID: 39406041 DOI: 10.1016/j.diagmicrobio.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
The emergence of high-resistance strains to known antifungal drugs has highlighted the urgency of developing novel therapies for chronic dermatophytosis as a global health problem. An experimental dermatophytosis model in guinea pigs was developed to investigate the in vivo wound healing effects of cold atmospheric plasma (CAP) on T. rubrum skin invasion. Guinea pigs were experimentally infected with T. rubrum and wound healing was evaluated at 1, 4, 8 and 12 days post infection in the CAP-treated, terbinafine-treated and non-treated controls. Our results showed that CAP strongly inhibited the fungal virulence in vitro in culture media and in vivo on the skin lesions of experimentally infected guinea pigs even more efficient than that of terbinafine, resulting in complete wound healing at 8 days post infection. These results indicate that CAP would be considered as a promising tool comparable to conventional chemical therapies, for the treatment of drug-resistant chronic dermatophytosis caused by T. rubrum.
Collapse
Affiliation(s)
- Asal Safi-Samghabadi
- Department of Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zahra Salehi
- Department of Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | | |
Collapse
|
3
|
Shambharkar A, Thompson TP, McClenaghan LA, Bourke P, Gilmore BF, Skvortsov T. Plasma activated water pre-treatment substantially enhances phage activity against Proteus mirabilis biofilms. Biofilm 2024; 8:100230. [PMID: 39498232 PMCID: PMC11532937 DOI: 10.1016/j.bioflm.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
The ongoing antimicrobial resistance crisis has incentivised research into alternative antibacterial and antibiofilm agents. One of them is plasma-activated water (PAW), which is produced by exposing water to a cold plasma discharge. This process generates a diverse array of reactive oxygen and nitrogen species (ROS/RNS) with antimicrobial properties. Another intensively studied class of alternative antimicrobials are bacteriophages, attracting attention due to their specificity and strong antibacterial activity. As combinations of different types of antimicrobials are known to often exhibit synergistic interactions, in this study we investigated the combined use of cold atmospheric-pressure plasma-activated water and the bacteriophage vB_PmiS_PM-CJR against Proteus mirabilis biofilms as a potential option for treatment of catheter-associated urinary tract infections (CAUTIs). We compared the effect of two cold plasma discharge setups for PAW production on its antimicrobial efficacy against P. mirabilis planktonic and biofilm cultures. Next, we assessed the stability of the phage vB_PmiS_PM-CJR in PAW. Finally, we tested the antimicrobial activity of the phages and PAW against biofilms, both individually and in combinations. Our findings demonstrate that the combination of PAW with phage is more effective against biofilms compared to individual treatments, being able to reduce the number of biofilm-embedded cells by approximately 4 log. We were also able to show that the order of treatment plays an important role in the anti-biofilm activity of the phage-PAW combination, as the exposure of the biofilm to PAW prior to phage administration results in a stronger effect than the reverse order. This research underlines PAW's ability to potentiate phage activity, showcasing a considerable reduction in biofilm viability and biomass. Additionally, it contributes to the growing body of evidence supporting the use of phage-based combinatorial treatments. Overall, this sequential treatment strategy demonstrates the potential of leveraging multiple approaches to address the mounting challenge of antibiotic resistance and offers a promising avenue for enhancing the efficacy of CAUTI management.
Collapse
Affiliation(s)
- Akash Shambharkar
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Thomas P. Thompson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Laura A. McClenaghan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Paula Bourke
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
| | - Brendan F. Gilmore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Timofey Skvortsov
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
4
|
Rahati Ghuchani Z, Sayar F, Hodjat M. The effect of cold atmospheric plasma on viability of osteoblasts and expression of RANKL and OPG genes in medium with bisphosphonates. Sci Rep 2024; 14:27021. [PMID: 39506017 PMCID: PMC11542051 DOI: 10.1038/s41598-024-78138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Medication-related osteonecrosis of the jaw is a rare but severe complication with challenging treatment protocols. Cold atmospheric plasma (CAP) has shown promising effects in wound healing, cell proliferation and viability. This study investigated the effect of CAP on osteoblasts in a culture medium containing bisphosphonates. Pilot study was designed to determine the optimal setting of CAP. MG-63 cells were exposed to zoledronic acid at a concentration of 10 micromolar for 72 h. Study groups with the best MTT assay results, were chosen for assessing OPG and RANKL genes by RT-PCR. Cell viability was significantly higher in groups 9 kV.1 mm.90 s, 10 kV.1 mm.60 s, and 12 kV.1 mm.60 s (P < 0.05). Expression of RANKL in these groups was significantly lower than the positive control group (medium culture without zoledronic and plasma treatment) and higher than the BP group (culture with zoledronic without plasma treatment), except for the 12 kV.1 mm.60 s group, which did not differ significantly from the positive control group (P > 0.05). OPG decreased in all test groups compared to BP (p < 0.05), except for the 12 kV.1 mm.60 s group, which did not significantly differ from BP (P > 0.05). RANKL/OPG ratio in groups 9 kV.1 mm.90 s and 12 kV.1 mm.60 s significantly increased compared to BP (P < 0.05).CAP treatment may enhance the viability of osteoblasts exposed to bisphosphonates, increase their activity levels, enhance osteoclast activity, and improve bone turnover rates.
Collapse
Affiliation(s)
| | - Ferena Sayar
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Dai X, Feng S, Zheng Y. Cold Atmospheric Plasma: Possible Cure of Autoimmune Disorders and Cancer via Attenuating Inflammation. Int J Biol Sci 2024; 20:5436-5449. [PMID: 39494336 PMCID: PMC11528447 DOI: 10.7150/ijbs.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases and cancers, two seemingly unrelated diseases, have been threatening human health, and many of them have no cure. By identifying pathological inflammation as the driving cause of uncontrolled cell proliferation in both classes of diseases, and differentiating autoimmune disorders and cancers by whether the cell death programs are under control, we propose the attenuation of prolonged inflammation via maintaining mitochondrial reduction-oxidation (redox) homeostasis being a possible cure of both diseases. Importantly, we propose the feasibility of applying cold atmospheric plasma (CAP) in treating autoimmune disorders and cancers given its redox-modulatory nature, which not only extends the medical utilities of CAP to autoimmune diseases and all other inflammation-driven disorders, but also positions the efficacy of CAP against cancer cells to its suppressive role on prolonged inflammation. Our insights may open an innovative avenue towards a unified view on the molecular mechanism driving the diversified types of medical miracles of CAP and what CAP can do in the field of plasma medicine.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Shuo Feng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
6
|
Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res 2024; 29:487. [PMID: 39367460 PMCID: PMC11453049 DOI: 10.1186/s40001-024-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
Cold atmospheric plasma (CAP) technology has emerged as a revolutionary therapeutic technology in dermatology, recognized for its safety, effectiveness, and minimal side effects. CAP demonstrates substantial antimicrobial properties against bacteria, viruses, and fungi, promotes tissue proliferation and wound healing, and inhibits the growth and migration of tumor cells. This paper explores the versatile applications of CAP in dermatology, skin health, and skincare. It provides an in-depth analysis of plasma technology, medical plasma applications, and CAP. The review covers the classification of CAP, its direct and indirect applications, and the penetration and mechanisms of action of its active components in the skin. Briefly introduce CAP's suppressive effects on microbial infections, detailing its impact on infectious skin diseases and its specific effects on bacteria, fungi, viruses, and parasites. It also highlights CAP's role in promoting tissue proliferation and wound healing and its effectiveness in treating inflammatory skin diseases such as psoriasis, atopic dermatitis, and vitiligo. Additionally, the review examines CAP's potential in suppressing tumor cell proliferation and migration and its applications in cosmetic and skincare treatments. The therapeutic potential of CAP in treating immune-mediated skin diseases is also discussed. CAP presents significant promise as a dermatological treatment, offering a safe and effective approach for various skin conditions. Its ability to operate at room temperature and its broad spectrum of applications make it a valuable tool in dermatology. Finally, introduce further research is required to fully elucidate its mechanisms, optimize its use, and expand its clinical applications.
Collapse
Grants
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Medical College, Anhui University of Science and Technology (AUST), Huainan, 232001, China
| | - Ahmed N Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kaixuan Ren
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Xiaoming Liu
- Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Chiappim W, Kodaira FVDP, Castro GFSD, Silva DMD, Tavares TF, Almeida ACDPL, Leal BHS, Quade A, Koga-Ito CY, Kostov KG. Proposing an Affordable Plasma Device for Polymer Surface Modification and Microbial Inactivation. Molecules 2024; 29:4270. [PMID: 39275117 PMCID: PMC11397143 DOI: 10.3390/molecules29174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Felipe Vicente de Paula Kodaira
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Gisele Fátima Soares de Castro
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
| | - Diego Morais da Silva
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Groupe de Recherches sur l'Energétique des Milieux Ionisés (GREMI), UMR 7344, CNRS/Université d'Orléans, 45067 Orléans, France
| | - Thayna Fernandes Tavares
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Ana Carla de Paula Leite Almeida
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Bruno Henrique Silva Leal
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| | - Antje Quade
- Leibniz Institute for Plasma Science and Technology-INP, 17489 Greifswald, Germany
| | - Cristiane Yumi Koga-Ito
- Department of Environment Engineering and Sciences Applied to Oral Health Graduate Program, São José dos Campos Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil
| | - Konstantin Georgiev Kostov
- Laboratory of Plasmas and Applications, Department of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
| |
Collapse
|
8
|
Das S, Mohapatra S, Kar S. Elucidating the bacterial inactivation mechanism by argon cold atmospheric pressure plasma jet through spectroscopic and imaging techniques. J Appl Microbiol 2024; 135:lxae238. [PMID: 39264067 DOI: 10.1093/jambio/lxae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
AIMS This study aims to assess the potential bacterial inactivation pathway triggered by argon (Ar) cold atmospheric pressure plasma jet (CAPJ) discharge using spectroscopic and imaging techniques. METHODS AND RESULTS Electrical and reactive species of the Ar CAPJ discharge was characterized. The chemical composition and morphology of bacteria pre- and post-CAPJ exposure were assessed using Fourier transform infrared (FTIR), Raman micro-spectroscopy, and transmission electron microscopy (TEM). A greater than 6 log reduction of Escherichia coli and Staphylococcus aureus was achieved within 60 and 120 s of CAPJ exposure, respectively. Extremely low D-values (<20 s) were recorded for both the isolates. The alterations in the FTIR spectra and Raman micro-spectra signals of post-CAPJ exposed bacteria revealed the degree of destruction at the molecular level, such as lipid peroxidation, protein oxidation, bond breakages, etc. Further, TEM images of exposed bacteria indicated the incurred damages on cell morphology by CAPJ reactive species. Also, the inactivation process varied for both isolates, as evidenced by the correlation between the inactivation curve and FTIR spectra. It was observed that the identified gas-phase reactive species, such as Ar I, O I, OH•, NO+, OH+, NO2-, NO3-, etc. played a significant role in bacterial inactivation. CONCLUSIONS This study clearly demonstrated the effect of CAPJ exposure on bacterial cell morphology and molecular composition, illuminating potential bacterial inactivation mechanisms.
Collapse
Affiliation(s)
- Sarthak Das
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sarita Mohapatra
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Satyananda Kar
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
10
|
Kenzhekhanova M, Mukhametov A, Gaisin I, Mamayeva L. Multimodal intelligent approach to low-temperature atmospheric plasma processing of apple slices before drying. FOOD SCI TECHNOL INT 2024:10820132241274966. [PMID: 39169785 DOI: 10.1177/10820132241274966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study presents a comprehensive analysis of the impact of plasma treatment on the browning inhibition. A 30 min plasma treatment resulted in a pronounced decrease in the concentration of flavan-3-ols, which play a pivotal role in antioxidant defense and browning prevention. This significant reduction is likely due to plasma-induced oxidative stress, which can lead to the breakdown of these compounds or their conversion into other phenolic structures. Simultaneously, a slight increase in dihydrochalcones and flavonols was observed, suggesting a selective effect of plasma on different phenolic classes. The increase in these compounds could be attributed to the plasma's ability to induce specific reactions that generate these phenolics from other precursors present in the apples. The reduction in flavan-3-ols may affect the antioxidant capacity and health benefits associated with the apples, while the increase in dihydrochalcones and flavonols could have a positive impact on the flavor profile and potential health-promoting properties. Moreover, these modifications could contribute to the extension of shelf-life and maintenance of sensory qualities, making plasma treatment a valuable tool in the food industry for enhancing product stability and consumer appeal.
Collapse
Affiliation(s)
- Mereke Kenzhekhanova
- Department of Technology and Food Safety, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Almas Mukhametov
- Department of Technology and Food Safety, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Irek Gaisin
- Department of High-Energy Processes and Assemblies, Naberezhnye Chelny Institute (branch) Kazan Federal University, Naberezhnye Chelny, Russia
| | - Laura Mamayeva
- Department of Technology and Food Safety, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| |
Collapse
|
11
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
12
|
Soulat A, Mohsenpour T, Roshangar L, Naghshara H. A Two-Stage Transferred Cold Atmospheric Plasma as a Unique Therapeutic Strategy for Targeting Colon Cancer Stem Cells. Adv Pharm Bull 2024; 14:400-411. [PMID: 39206394 PMCID: PMC11347729 DOI: 10.34172/apb.2024.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
The study examines the induction of apoptosis in colon cancer stem cells (CCSCs) within a 3D culture setting, employing an innovative cold atmospheric plasma (CAP) transmission method known as two-stage transferred cold atmospheric plasma (TS-TCAP). TS-TCAP is a partially or fully ionized non-thermal gaseous mixture that comprises photons, charged and neutral particles, and free radicals, which has gained traction in biomedical applications such as cancer therapy. TS-TCAP impacts CCSCs via a continuous, two-step transport process, facilitating the efficient delivery of reactive oxygen and nitrogen species (RONS). The key cellular factors of CCSCs impacted by TS-TCAP treatment, encompassing the secretion and expression levels of IL-6 and IL-8, apoptotic cell count, and expression of BAX, BCL-2, and KI-67 proteins, were evaluated using qrt-ELISA, Annexin V, and qrt-PCR procedures, respectively. The outcomes of CCSCs treatment with TS-TCAP reveal a notable rise in the number of apoptotic cells (P<0.0001), diminished secretion, and gene expression of IL-6 and IL-8 (P<0.0001), accompanied by favorable alterations in BCL-2 and BAX gene expression (P<0.0001). Additionally, a notable decrease in KI-67 expression was observed, correlating with a reduction in CCSCs proliferation (P<0.0001). As well, this study underscores the anti-cancer potential of TS-TCAP, showcasing its efficacy in reducing CCSCs survival rates. However, further pre-clinical and clinical trials are necessary to evaluate CAP's efficacy, safety, and potential synergistic effects with other therapies thoroughly. Overall, TS-TCAP presents a promising alternative for CCSCs treatment, pending further investigation and refinement.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614766, Tabriz, Iran
| | - Hamid Naghshara
- Faculty of Physics, University of Tabriz, 5166616471, Tabriz, Iran
| |
Collapse
|
13
|
Bokobza L. On the Use of Nanoparticles in Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3191. [PMID: 38998274 PMCID: PMC11242106 DOI: 10.3390/ma17133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone-implant interfacial area. Surface coatings via the sol-gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
14
|
Yarangsee P, Khacha-ananda S, Pitchakarn P, Intayoung U, Sriuan S, Karinchai J, Wijaikhum A, Boonyawan D. A Nonclinical Safety Evaluation of Cold Atmospheric Plasma for Medical Applications: The Role of Genotoxicity and Mutagenicity Studies. Life (Basel) 2024; 14:759. [PMID: 38929742 PMCID: PMC11204557 DOI: 10.3390/life14060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Atmospheric nonthermal plasma (ANTP) has rapidly evolved as an innovative tool in biomedicine with various applications, especially in treating skin diseases. In particular, the formation of reactive oxygen species (ROS) and nitrogen species (RNS), which are generated by ANTP, plays an important role in the biological signaling pathways of human cells. Unfortunately, excessive amounts of these reactive species significantly result in cellular damage and cell death induction. To ensure the safe application of ANTP, preclinical in vitro studies must be conducted before proceeding to in vivo or clinical trials involving humans. Our study aimed to investigate adverse effects on genetic substances in murine fibroblast cells exposed to ANTP. Cell viability and proliferation were markedly reduced after exposing the cells with plasma. Both extracellular and intracellular reactive species, especially RNS, were significantly increased upon plasma exposure in the culture medium and the cells. Notably, significant DNA damage in the cells was observed in the cells exposed to plasma. However, plasma was not classified as a mutagen in the Ames test. This suggested that plasma led to the generation of both extracellular and intracellular reactive species, particularly nitrogen species, which affect cell proliferation and are also known to induce genetic damage in fibroblast cells. These results highlight the genotoxic and mutagenic effects of ANTP, emphasizing the need for the cautious selection of plasma intensity in specific applications to avoid adverse side effects resulting from reactive species production.
Collapse
Affiliation(s)
- Piimwara Yarangsee
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Unchisa Intayoung
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Sirikhwan Sriuan
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.Y.); (U.I.); (S.S.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.)
| | - Apiwat Wijaikhum
- Research and Innovation Division, Electricity Generating Authority of Thailand, Nonthaburi 11130, Thailand;
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
15
|
Gkantaras A, Kotzamanidis C, Kyriakidis K, Farmaki E, Makedou K, Tzimagiorgis G, Bekeschus S, Malousi A. Multi-Cohort Transcriptomic Profiling of Medical Gas Plasma-Treated Cancers Reveals the Role of Immunogenic Cell Death. Cancers (Basel) 2024; 16:2186. [PMID: 38927892 PMCID: PMC11201794 DOI: 10.3390/cancers16122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of cold physical gas plasma operated at atmospheric pressure in oncology has been thoroughly demonstrated in numerous preclinical studies. The cytotoxic effect on malignant cells has been attributed mainly to biologically active plasma-generated compounds, namely, reactive oxygen and nitrogen species. The intracellular accumulation of reactive oxygen and nitrogen species interferes strongly with the antioxidant defense system of malignant cells, activating multiple signaling cascades and inevitably leading to oxidative stress-induced cell death. This study aims to determine whether plasma-induced cancer cell death operates through a universal molecular mechanism that is independent of the cancer cell type. Using whole transcriptome data, we sought to investigate the activation mechanism of plasma-treated samples in patient-derived prostate cell cultures, melanoma, breast, lymphoma, and lung cancer cells. The results from the standardized single-cohort gene expression analysis and parallel multi-cohort meta-analysis strongly indicate that plasma treatment globally induces cancer cell death through immune-mediated mechanisms, such as interleukin signaling, Toll-like receptor cascades, and MyD88 activation leading to pro-inflammatory cytokine release and tumor antigen presentation.
Collapse
Affiliation(s)
- Antonios Gkantaras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | | | | | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany;
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| |
Collapse
|
16
|
Oliver MA, Hussein LK, Molina EA, Keyloun JW, McKnight SM, Jimenez LM, Moffatt LT, Shupp JW, Carney BC. Cold atmospheric plasma is bactericidal to wound-relevant pathogens and is compatible with burn wound healing. Burns 2024; 50:1192-1212. [PMID: 38262886 DOI: 10.1016/j.burns.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Burn wound healing can be significantly delayed by infection leading to increased morbidity and hypertrophic scarring. An optimal antimicrobial agent would have the ability to kill bacteria without negatively affecting the host skin cells that are required for healing. Currently available products provide antimicrobial coverage, but may also cause reductions in cell proliferation and migration. Cold atmospheric plasma is a partially ionized gas that can be produced under atmospheric pressure at room temperature. In this study a novel handheld Aceso Plasma Generator was used to produce and test Aceso Cold Plasma (ACP) in vitro and in vivo. ACP showed a potent ability to eliminate bacterial load in vitro for a number of different species. Deep partial-thickness and full-thickness wounds that were treated with ACP after burning, after excision, after autografting, and at days 5, 7, and 9 did not show any negative effects on their wound healing trajectories. On par with in vitro analysis, bioburden was decreased in treated wounds vs. control. In addition, metrics of hypertrophic scar such as dyschromia, elasticity, trans-epidermal water loss (TEWL), and epidermal and dermal thickness were the same between the two treatment groups.It is likely that ACP can be used to mitigate the risk of bacterial infection during the phase of acute burn injury while patients await surgery for definitive closure. It may also be useful in treating wounds with delayed re-epithelialization that are at risk for infection and hypertrophic scarring. A handheld cold plasma device will be useful in treating all manner of wounds and surgical sites in order to decrease bacterial burden in an efficient and highly effective manner without compromising wound healing.
Collapse
Affiliation(s)
- Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lou'ay K Hussein
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Esteban A Molina
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Sydney M McKnight
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lesle M Jimenez
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States.
| |
Collapse
|
17
|
Irmak SE, Ozdemir GD, Ozdemir MA, Ercan UK. Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water. Biomed Phys Eng Express 2024; 10:045016. [PMID: 38697029 DOI: 10.1088/2057-1976/ad464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.
Collapse
Affiliation(s)
- Seyma Ecem Irmak
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Gizem Dilara Ozdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Mehmet Akif Ozdemir
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, 35620 Cigli, Izmir, Turkey
| |
Collapse
|
18
|
Subramaniam MD, Bae JS, Son J, Anggradita LD, Kim MK, Lee MY, Jang S, Choi K, Lee JC, Nam SM, Hwang Y. Floating electrode-dielectric barrier discharge-based plasma promotes skin regeneration in a full-thickness skin defect mouse model. Biomed Eng Lett 2024; 14:605-616. [PMID: 38645591 PMCID: PMC11026333 DOI: 10.1007/s13534-024-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 04/23/2024] Open
Abstract
Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-β1 (TGF-β1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-β1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Joon Suk Bae
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Jiwon Son
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Laurensia Danis Anggradita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Min-Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Min Yong Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Seokyoon Jang
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Kwangok Choi
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Justine C. Lee
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095 USA
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| |
Collapse
|
19
|
Bhatt P, Garad PS, Rayala VVSPK, Radhakrishnanand P, Sankaranarayanan K. Non-thermal plasma modulated l-tyrosine self-assemblies: a potential avenue for fabrication of supramolecular self-assembled biomaterials. RSC Adv 2024; 14:13984-13996. [PMID: 38686299 PMCID: PMC11056826 DOI: 10.1039/d4ra01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Aromatic amino acids (AAs) have garnered particular interest due to their pivotal roles in numerous biological processes and disorders. Variations in AA self-assembly not only affect protein structures and functions, but their non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π stacking, yield versatile assemblies vital in bio-inspired material fabrication. Tyrosine (Tyr), a non-essential aromatic amino acid, holds multifaceted significance in the body as a protein building block, neurotransmitter precursor, thyroid hormone contributor, and melanin synthesis regulator. The proficiency of Cold Atmospheric Plasma (CAP) in generating a spectrum of reactive oxygen and nitrogen species has spurred innovative research avenues in the studies of biomolecular components, including its potential for targeted cancer cell ablation and biomolecule modification. In this work, we have assessed the chemical as well as the structural changes in Tyrosine-derived self-assembled structures arising from the CAP-induced reactive species. For a comprehensive understanding of the mechanism, different treatment times, feed gases, and the role of solvent acidification are compared using various spectroscopic and microscopic techniques. LC-ESI-QQQ mass spectra unveiled the emergence of oxygenated and nitro derivatives of l-tyrosine following its interaction with CAP-derived ROS/RNS. SEM and TEM images demonstrated an enhanced surface size of self-assembled structures and the formation of novel nanomaterial-shaped assemblies following CAP treatment. Overall, this study aims to explore CAP's interaction with a single-amino acid, hypothesizing the creation of novel supramolecular structures and scrutinizing CAP-instigated transformations in l-tyrosine self-assembled structures, potentially advancing biomimetic-attributed nanomaterial fabrication which might present a novel frontier in the field of designing functional biomaterials.
Collapse
Affiliation(s)
- Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Campus Postal Staff College Area Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Prajakta Sharad Garad
- Department of Medical Device, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
20
|
Liu C, Zha J, Sun T, Kong L, Zhang X, Wang D, Ni G. Cold atmospheric plasma attenuates skin cancer via ROS induced apoptosis. Mol Biol Rep 2024; 51:518. [PMID: 38622261 DOI: 10.1007/s11033-024-09486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.
Collapse
Affiliation(s)
- Changqing Liu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jingjing Zha
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tao Sun
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Ling Kong
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xinru Zhang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Guohua Ni
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei, 230031, China.
| |
Collapse
|
21
|
Gao S, Rao Y, Wang X, Zhang Q, Zhang Z, Wang Y, Guo J, Yan F. Chlorella-Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307585. [PMID: 38307004 DOI: 10.1002/adma.202307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Hypoxia and infection are urgent clinical problems in chronic diabetic wounds. Herein, living Chlorella-loaded poly(ionic liquid)-based microneedles (PILMN-Chl) are constructed for microacupuncture oxygen and antibacterial therapy against methicillin-resistant Staphylococcus aureus (MRSA)-infected chronic diabetic wounds. The PILMN-Chl can stably and continuously produce oxygen for more than 30 h due to the photosynthesis of the loaded self-supported Chlorella. By combining the barrier penetration capabilities of microneedles, the continuous and sufficient oxygen supply of Chlorella, and the sterilization activities of PIL, the PILMN-Chl can accelerate chronic diabetic wounds in vivo by topical targeted sterilization and hypoxia relief in deep parts of wounds. Thus, the self-oxygen produced microneedles modality may provide a promising and facile therapeutic strategy for treating chronic, hypoxic, and infected diabetic wounds.
Collapse
Affiliation(s)
- Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuxuan Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Almeida-Ferreira C, Marto CM, Carmo C, Almeida-Ferreira J, Frutuoso C, Carvalho MJ, Botelho MF, Laranjo M. Efficacy of Cold Atmospheric Plasma vs. Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3254. [PMID: 38542225 PMCID: PMC10970295 DOI: 10.3390/ijms25063254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer is a growing disease, with a high worldwide incidence and mortality rate among women. Among the various types, the treatment of triple-negative breast cancer (TNBC) remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231 cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness of the data. There was found to be a decrease in cell proliferation after both chemotherapy and CAP; however, different protocol settings, including an extensive range of drug doses and CAP exposure times, were reported. For both therapies, a considerable reduction in tumor volume was observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This systematic review presents a comprehensive overview of the treatment landscape in chemotherapy and CAP regarding their efficacy in TNBC cell lines.
Collapse
Affiliation(s)
- Catarina Almeida-Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
- Laboratory for Evidence-Based Sciences and Precision Dentistry, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Chrislaura Carmo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Center (CQC), Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Cristina Frutuoso
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
| | - Maria João Carvalho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Gynecology Service, Coimbra Hospital and University Centre, Coimbra Health Local Unit, 3004-561 Coimbra, Portugal
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (C.M.M.); (C.C.); (C.F.); (M.J.C.); (M.F.B.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
23
|
Schultze-Rhonhof L, Marzi J, Carvajal Berrio DA, Holl M, Braun T, Schäfer-Ruoff F, Andress J, Bachmann C, Templin M, Brucker SY, Schenke-Layland K, Weiss M. Human tissue-resident peritoneal macrophages reveal resistance towards oxidative cell stress induced by non-invasive physical plasma. Front Immunol 2024; 15:1357340. [PMID: 38504975 PMCID: PMC10949891 DOI: 10.3389/fimmu.2024.1357340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.
Collapse
Affiliation(s)
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Daniel Alejandro Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Holl
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Theresa Braun
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
- University Development, Research and Transfer, University of Konstanz, Konstanz, Germany
| | - Felix Schäfer-Ruoff
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Jürgen Andress
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Cornelia Bachmann
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Templin
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Martin Weiss
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
24
|
Yan C, Zhao L, Zhang X, Chu Z, Zhou T, Zhang Y, Geng S, Guo K. Cold atmospheric plasma sensitizes melanoma cells to targeted therapy agents in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300356. [PMID: 38041219 DOI: 10.1002/jbio.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Cold atmospheric plasma (CAP) has been reported to kill melanoma cells in vitro and in vivo. BRAF and MEK inhibitors are targeted therapy agents for advanced melanoma patients with BRAF mutations. However, low overall survival and relapse-free survival are still tough challenges due to drug resistance. In this study, we confirmed that CAP alleviated innate drug resistance and promoted the anti-tumor effect of targeted therapy in A875 and WM115 melanoma cells in vitro. Further, we revealed that CAP altered the expression of various molecules concerning MAPK and PI3K-AKT pathways in A875 cells. This study demonstrates that CAP promises to work as adjuvant treatment with targeted therapy to overcome drug resistance for malignant tumors in future.
Collapse
Affiliation(s)
- Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
25
|
Bakhtiyari-Ramezani M, Nohekhan M, Akbari ME, Abbasvandi F, Bayat M, Akbari A, Nasiri M. Comparative assessment of direct and indirect cold atmospheric plasma effects, based on helium and argon, on human glioblastoma: an in vitro and in vivo study. Sci Rep 2024; 14:3578. [PMID: 38347045 PMCID: PMC10861458 DOI: 10.1038/s41598-024-54070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran.
| | - Mojtaba Nohekhan
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Mahdis Bayat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
26
|
Wang Y, Mang X, Li D, Wang Z, Chen Y, Cai Z, Tan F. Cold atmospheric plasma sensitizes head and neck cancer to chemotherapy and immune checkpoint blockade therapy. Redox Biol 2024; 69:102991. [PMID: 38103343 PMCID: PMC10764269 DOI: 10.1016/j.redox.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Head and neck cancer (HNC) is the seventh most prevalent cancer globally, often characterized by chemo-resistance and immunosuppression, which significantly hampers treatment efficacy. Cold atmospheric plasma (CAP) has recently emerged as a promising adjuvant oncotherapy with substantial potential and advantages. In this study, Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. We aimed to investigate the effects of CAPPZ2 on various types of HNC cells and elucidate the underlying mechanisms. In addition, we endeavored to examine the efficacy of combining CAPPZ2 with chemotherapy drugs (i.e., cisplatin) or immune checkpoint blockade (ICB, i.e., PD1 antibody) in HNC treatment. Firstly, the results demonstrated that CAPPZ2 exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promoting apoptosis and autophagy. Secondly, using transcriptomic sequencing, Western blotting, and quantitative real-time PCR, the mechanisms underlying CAPPZ2 treatment in vitro was presumed to be a multitargeted blockade of major cancer survival pathways, such as redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling. Lastly, combinatorial thearpy containing CAPPZ2 and cisplatin or PD-1 antibody significantly suppressed tumor growth and prolonged recipient survival in vivo. Collectively, the synergistic effects of CAPPZ2 and cisplatin or PD-1 antibody could serve as a promising solution to enhance head and neck tumor elimination.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China; The Royal College of Surgeons in Ireland, Dublin, Ireland; The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
27
|
Wang P, Zhou R, Zhou R, Feng S, Zhao L, Li W, Lin J, Rajapakse A, Lee CH, Furnari FB, Burgess AW, Gunter JH, Liu G, Ostrikov KK, Richard DJ, Simpson F, Dai X, Thompson EW. Epidermal growth factor potentiates EGFR(Y992/1173)-mediated therapeutic response of triple negative breast cancer cells to cold atmospheric plasma-activated medium. Redox Biol 2024; 69:102976. [PMID: 38052106 PMCID: PMC10746566 DOI: 10.1016/j.redox.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.
Collapse
Affiliation(s)
- Peiyu Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Liqian Zhao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou 510515, PR China
| | - Wenshao Li
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jinyong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Aleksandra Rajapakse
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Chia-Hwa Lee
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Frank B Furnari
- Department of Medicine, University of California San Diego, California 92093, USA
| | - Antony W Burgess
- Walter and Elisa Hall Institute, Melbourne, Victoria 3052, Australia
| | - Jennifer H Gunter
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia; Cancer and Ageing Research Program, Woolloongabba, Queensland 4102, Australia
| | - Fiona Simpson
- Frazer Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Erik W Thompson
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
28
|
Espona-Noguera A, Tampieri F, Canal C. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. Int J Biol Macromol 2024; 257:128841. [PMID: 38104678 DOI: 10.1016/j.ijbiomac.2023.128841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Reactive Oxygen and Nitrogen Species (RONS) in biological systems display hormetic effects, capable of either promoting cell regenerative effects or inducing cell death. Recently, hydrogels have emerged as a promising delivery platform for RONS generated from Cold Atmospheric Plasmas (CAP), known as Plasma-Treated Hydrogels (PTH). PTH have been proposed as an alternative therapy to conventional cancer treatments, offering reduced side effects through the controlled and localized delivery of plasma-derived RONS. In this work, we have developed alginate-based PTH with dual therapeutic action provided by plasma-derived RONS acting as selective anticancer agents for osteosarcoma treatment, and biomolecules (hyaluronic acid and gelatin) to promote stem cell-mediated bone regeneration. For this purpose, we designed a novel manufacturing process to maximize the load of plasma-derived RONS within the PTH. Then, we assessed the PTH bioactivity on osteosarcoma MG-63 cells, and human mesenchymal stem cells (hMSCs). The results showed that the PTH composed of 0.25 % alginate +1 % hyaluronic acid is the most promising formulation in osteosarcoma treatment, showing a dual-action bioactivity as a selective cytotoxic anticancer agent, and as promoter of the proliferation and osteogenic differentiation of hMSCs. These findings provide strong evidence of the significant potential of PTH in the oncological field.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain.
| |
Collapse
|
29
|
Elmore L, Minissale NJ, Israel L, Katz Z, Safran J, Barba A, Austin L, Schaer TP, Freeman TA. Evaluating the Healing Potential of J-Plasma Scalpel-Created Surgical Incisions in Porcine and Rat Models. Biomedicines 2024; 12:277. [PMID: 38397879 PMCID: PMC10886613 DOI: 10.3390/biomedicines12020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Cold atmospheric plasma devices generate reactive oxygen and nitrogen species that can be anti-microbial but also promote cell migration, differentiation, and tissue wound healing. This report investigates the healing of surgical incisions created using cold plasma generated by the J-Plasma scalpel (Precise Open handpiece, Apyx Medical, Inc.) compared to a steel scalpel in in vivo porcine and rat models. The J-Plasma scalpel is currently FDA approved for the delivery of helium plasma to cut, coagulate, and ablate soft tissue during surgical procedures. To our knowledge, this device has not been studied in creating surgical incisions but only during deeper dissection and hemostasis. External macroscopic and histologic grading by blinded reviewers revealed no significant difference in wound healing appearance or physiology in incisions created using the plasma scalpel as compared with a steel blade scalpel. Incisions created with the plasma scalpel also had superior hemostasis and a reduction in tissue and blood carryover. Scanning electron microscopy (SEM) and histology showed collagen fibril fusion occurred as the plasma scalpel incised through the tissue, contributing to a sealing effect. In addition, when bacteria were injected into the dermis before incision, the plasma scalpel disrupted the bacterial membrane as visualized in SEM images. External macroscopic and histologic grading by blinded reviewers revealed no significant difference in wound healing appearance or physiology. Based on these results, we propose additional studies to clinically evaluate the use of cold plasma in applications requiring hemostasis or when an increased likelihood of subdermal pathogen leakage could cause surgical site infection (i.e., sites with increased hair follicles).
Collapse
Affiliation(s)
- Lilith Elmore
- Department of Orthopaedic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA (J.S.)
| | | | - Lauren Israel
- Department of Orthopaedic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA (J.S.)
| | - Zoe Katz
- Department of Orthopaedic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA (J.S.)
| | - Jordan Safran
- Department of Orthopaedic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA (J.S.)
| | - Adriana Barba
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA (T.P.S.)
| | - Luke Austin
- Rothman Orthopaedic Institute, Philadelphia, PA 19107, USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA (T.P.S.)
| | - Theresa A. Freeman
- Department of Orthopaedic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA (J.S.)
| |
Collapse
|
30
|
Vasilieva T, Nikolskaya E, Vasiliev M, Mollaeva M, Chirkina M, Sokol M, Yabbarov N, Shikova T, Abramov A, Ugryumov A. Applicability of Electron-Beam and Hybrid Plasmas for Polyethylene Terephthalate Processing to Obtain Hydrophilic and Biocompatible Surfaces. Polymers (Basel) 2024; 16:172. [PMID: 38256971 PMCID: PMC10819425 DOI: 10.3390/polym16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The applicability of beam-plasma chemical reactors generating cold hybrid plasma for the production of noncytotoxic polymeric surfaces with high hydrophilicity and good biocompatibility with human fibroblast culture and human red blood cells was studied. Oxygen hybrid plasma was excited by the joint action of a continuous scanning electron beam and a capacity-coupled RF-gas discharge. Experiments showed that hybrid plasma treatment caused polar oxygen-containing functional group formation in the surface layer of poly (ethylene terephthalate) films. No thermal or radiative damage in tested polymer samples was found. The plasma-modified polymers turned out to be noncytotoxic and revealed good biocompatibility with human fibroblasts BJ-5ta as well as lower hemolytic activity than untreated poly (ethylene terephthalate). Experiments also demonstrated that no phenomena caused by the electrostatic charging of polymers occur in hybrid plasma because the electron beam component of hybrid plasma eliminates the item charge when it is treated. The electron beam can effectively control the reaction volume geometry as well as the fluxes of active plasma particles falling on the item surface. This provides new approaches to the production of abruptly structured patterns or smooth gradients of functionalities on a plane and 3D polymeric items of complicated geometry.
Collapse
Affiliation(s)
- Tatiana Vasilieva
- Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya st. 13 Bd. 2, 125412 Moscow, Russia;
| | - Elena Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; (E.N.); (M.M.); (M.C.); (M.S.); (N.Y.)
| | - Michael Vasiliev
- Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya st. 13 Bd. 2, 125412 Moscow, Russia;
| | - Mariia Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; (E.N.); (M.M.); (M.C.); (M.S.); (N.Y.)
| | - Margarita Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; (E.N.); (M.M.); (M.C.); (M.S.); (N.Y.)
| | - Maria Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; (E.N.); (M.M.); (M.C.); (M.S.); (N.Y.)
| | - Nikita Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; (E.N.); (M.M.); (M.C.); (M.S.); (N.Y.)
| | - Tatiana Shikova
- Department of Electronic Devices and Materials, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Prospect 7, 153000 Ivanovo, Russia;
| | - Artem Abramov
- TVEL JSC, Kashirskoye Shosse 49, 115409 Moscow, Russia; (A.A.); (A.U.)
| | | |
Collapse
|
31
|
Karthik C, Sarngadharan SC, Thomas V. Low-Temperature Plasma Techniques in Biomedical Applications and Therapeutics: An Overview. Int J Mol Sci 2023; 25:524. [PMID: 38203693 PMCID: PMC10779006 DOI: 10.3390/ijms25010524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Plasma, the fourth fundamental state of matter, comprises charged species and electrons, and it is a fascinating medium that is spread over the entire visible universe. In addition to that, plasma can be generated artificially under appropriate laboratory techniques. Artificially generated thermal or hot plasma has applications in heavy and electronic industries; however, the non-thermal (cold atmospheric or low temperature) plasma finds its applications mainly in biomedicals and therapeutics. One of the important characteristics of LTP is that the constituent particles in the plasma stream can often maintain an overall temperature of nearly room temperature, even though the thermal parameters of the free electrons go up to 1 to 10 keV. The presence of reactive chemical species at ambient temperature and atmospheric pressure makes LTP a bio-tolerant tool in biomedical applications with many advantages over conventional techniques. This review presents some of the important biomedical applications of cold-atmospheric plasma (CAP) or low-temperature plasma (LTP) in modern medicine, showcasing its effect in antimicrobial therapy, cancer treatment, drug/gene delivery, tissue engineering, implant modifications, interaction with biomolecules, etc., and overviews some present challenges in the field of plasma medicine.
Collapse
Affiliation(s)
- Chandrima Karthik
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| | | | - Vinoy Thomas
- Department of Materials & Mechanical Engineering, University of Alabama at Birmingham, 1150 10th Avenue South, Birmingham, AL 35205, USA;
| |
Collapse
|
32
|
Gelli R, Tonelli M, Ridi F, Terefinko D, Dzimitrowicz A, Pohl P, Bielawska-Pohl A, Jamroz P, Klimczak A, Bonini M. Effect of Atmospheric Pressure Plasma Jet Treatments on Magnesium Phosphate Cements: Performance, Characterization, and Applications. ACS Biomater Sci Eng 2023; 9:6632-6643. [PMID: 37982239 PMCID: PMC10716815 DOI: 10.1021/acsbiomaterials.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells. MPCs were prepared and treated for 5, 7.5, and 10 min with a cold atmospheric pressure plasma jet. The reactive nitrogen and oxygen species formed during the treatment were characterized. The surfaces of MPCs were studied in terms of the phase composition, morphology, and topography. After a preliminary test in simulated body fluid, the proliferation, adhesion, and osteogenic differentiation of human mesenchymal cells on MPCs were assessed. Plasma treatments induce modifications in the relative amounts of struvite, newberyite, and farringtonite on the surfaces on MPCs in a time-dependent fashion. Nonetheless, all investigated scaffolds show a good biocompatibility and cell adhesion, also supporting osteogenic differentiation of mesenchymal cells.
Collapse
Affiliation(s)
- Rita Gelli
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Monica Tonelli
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Ridi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Dominik Terefinko
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Anna Dzimitrowicz
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Pawel Pohl
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of
Sciences, The Laboratory of Biology of Stem
and Neoplastic Cells, 12 R. Weigla, 53-114 Wroclaw, Poland
| | - Piotr Jamroz
- Department
of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, Faculty of Chemistry, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
| | - Aleksandra Klimczak
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of
Sciences, The Laboratory of Biology of Stem
and Neoplastic Cells, 12 R. Weigla, 53-114 Wroclaw, Poland
| | - Massimo Bonini
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
33
|
Chen Y, He Y, Jin T, Dai C, Xu Q, Wu Z. Bactericidal effect of low-temperature atmospheric plasma against the Shigella flexneri. Biomed Eng Online 2023; 22:119. [PMID: 38071319 PMCID: PMC10709968 DOI: 10.1186/s12938-023-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Shigella flexneri (S. flexneri) is a common intestinal pathogenic bacteria that mainly causes bacillary dysentery, especially in low socioeconomic countries. This study aimed to apply cold atmospheric plasma (CAP) on S. flexneri directly to achieve rapid, efficient and environmentally friendly sterilization. METHODS The operating parameters of the equipment were determined by plasma diagnostics. The plate count and transmission electron microscope were employed to calculate bacterial mortality rates and observe the morphological damage of bacterial cells. Measurement of intracellular reactive oxygen species (ROS) and superoxide anions were detected by 2,7-dichlorodihydrofluorescein (DCFH) and Dihydroethidium fluorescence probes, respectively. The fluorescence intensity (a. u.) reflects the relative contents. Additionally, the experiment about the single effect of temperature, ultraviolet (UV), and ROS on bacteria was conducted. RESULTS The peak discharge voltage and current during plasma operation were 3.92kV and 66mA. After discharge, the bacterial mortality rate of 10, 20, 30 and 40 s of plasma treatment was 60.71%, 74.02%, 88.11% and 98.76%, respectively. It was shown that the intracellular ROS content was proportional to the plasma treatment time and ROS was the major contributor to bacterial death. CONCLUSION In summary, our results illustrated that the plasma treatment could inactivate S. flexneri efficiently, and the ROS produced by plasma is the leading cause of bacterial mortality. This highly efficient sterilization method renders plasma a highly promising solution for hospitals, clinics, and daily life.
Collapse
Affiliation(s)
- Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China.
| | - Zhengwei Wu
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
34
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
35
|
Baz A, Bakri A, Butcher M, Short B, Ghimire B, Gaur N, Jenkins T, Short RD, Riggio M, Williams C, Ramage G, Brown JL. Staphylococcus aureus strains exhibit heterogenous tolerance to direct cold atmospheric plasma therapy. Biofilm 2023; 5:100123. [PMID: 37138646 PMCID: PMC10149328 DOI: 10.1016/j.bioflm.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
The global clinical and socioeconomic impact of chronic wounds is substantial. The main difficulty that clinicians face during the treatment of chronic wounds is the risk of infection at the wound site. Infected wounds arise from an accumulation of microbial aggregates in the wound bed, leading to the formation of polymicrobial biofilms that can be largely resistant to antibiotic therapy. Therefore, it is essential for studies to identify novel therapeutics to alleviate biofilm infections. One innovative technique is the use of cold atmospheric plasma (CAP) which has been shown to possess promising antimicrobial and immunomodulatory properties. Here, different clinically relevant biofilm models will be treated with cold atmospheric plasma to assess its efficacy and killing effects. Biofilm viability was assessed using live dead qPCR, and morphological changes associated with CAP evaluated using scanning electron microscopy (SEM). Results indicated that CAP was effective against Candida albicans and Pseudomonas aeruginosa, both as mono-species biofilms and when grown in a triadic model system. CAP also significantly reduced viability in the nosocomial pathogen, Candida auris. Staphylococcus aureus Newman exhibited a level of tolerance to CAP therapy, both when grown alone or in the triadic model when grown alongside C. albicans and P. aeruginosa. However, this degree of tolerance exhibited by S. aureus was strain dependent. At a microscopic level, biofilm treatment led to subtle changes in morphology in the susceptible biofilms, with evidence of cellular deflation and shrinkage. Taken together, these results indicate a promising application of direct CAP therapy in combatting wound and skin-related biofilm infections, although biofilm composition may affect the treatment efficacy.
Collapse
Affiliation(s)
- Abdullah Baz
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Ahmed Bakri
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Mark Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Bhagirath Ghimire
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Nishtha Gaur
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Toby Jenkins
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Robert D. Short
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, United Kingdom
| | - Marcello Riggio
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Craig Williams
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
- Microbiology Department, Lancaster Royal Infirmary, University of Lancaster, Lancaster, LA1 4YW, United Kingdom
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Jason L. Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
- Corresponding author. Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|
36
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
37
|
Cheng YC, Chang KW, Pan JH, Chen CY, Chou CH, Tu HF, Li WC, Lin SC. Cold Atmospheric Plasma Jet Irradiation Decreases the Survival and the Expression of Oncogenic miRNAs of Oral Carcinoma Cells. Int J Mol Sci 2023; 24:16662. [PMID: 38068984 PMCID: PMC10705903 DOI: 10.3390/ijms242316662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Despite recent advancements, therapies against advanced oral squamous cell carcinoma (OSCC) remain ineffective, resulting in unsatisfactory therapeutic outcomes. Cold atmospheric plasma (CAP) offers a promising approach in the treatment of malignant neoplasms. Although the effects of CAP in abrogating OSCC have been explored, the exact mechanisms driving CAP-induced cancer cell death and the changes in microRNA (miRNA) expression are not fully understood. We fabricated and calibrated an argon-CAP device to explore the effects of CAP irradiation on the growth and expression of oncogenic miRNAs in OSCC. The analysis revealed that, in OSCC cell lines following CAP irradiation, there was a significant reduction in viability; a downregulation of miR-21, miR-31, miR-134, miR-146a, and miR-211 expression; and an inactivation of the v-akt murine thymoma viral oncogene homolog (AKT) and extracellular signal-regulated kinase (ERK) signals. Pretreatment with blockers of apoptosis, autophagy, and ferroptosis synergistically reduced CAP-induced cell death, indicating a combined induction of variable death pathways via CAP. Combined treatments using death inhibitors and miRNA mimics, alongside the activation of AKT and ERK following the exogenous expression, counteracted the cell mortality associated with CAP. The CAP-induced downregulation of miR-21, miR-31, miR-187, and miR-211 expression was rescued through survival signaling. Additionally, CAP irradiation notably inhibited the growth of SAS OSCC cell xenografts on nude mice. The reduced expression of oncogenic miRNAs in vivo aligned with in vitro findings. In conclusion, our study provides new lines of evidence demonstrating that CAP irradiation diminishes OSCC cell viability by abrogating survival signals and oncogenic miRNA expression.
Collapse
Affiliation(s)
- Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| | - Jian-Hua Pan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| |
Collapse
|
38
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
39
|
Yang Y, Wang Y, Wei S, Wang X, Zhang J. Effects and Mechanisms of Non-Thermal Plasma-Mediated ROS and Its Applications in Animal Husbandry and Biomedicine. Int J Mol Sci 2023; 24:15889. [PMID: 37958872 PMCID: PMC10648079 DOI: 10.3390/ijms242115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Non-thermal plasma (NTP) is an ionized gas composed of neutral and charged reactive species, electric fields, and ultraviolet radiation. NTP presents a relatively low discharge temperature because it is characterized by the fact that the temperature values of ions and neutral particles are much lower than that of electrons. Reactive species (atoms, radicals, ions, electrons) are produced in NTP and delivered to biological objects induce a set of biochemical processes in cells or tissues. NTP can mediate reactive oxygen species (ROS) levels in an intensity- and time-dependent manner. ROS homeostasis plays an important role in animal health. Relatively low or physiological levels of ROS mediated by NTP promote cell proliferation and differentiation, while high or excessive levels of ROS mediated by NTP cause oxidative stress damage and even cell death. NTP treatment under appropriate conditions not only produces moderate levels of exogenous ROS directly and stimulates intracellular ROS generation, but also can regulate intracellular ROS levels indirectly, which affect the redox state in different cells and tissues of animals. However, the treatment condition of NTP need to be optimized and the potential mechanism of NTP-mediated ROS in different biological targets is still unclear. Over the past ten decades, interest in the application of NTP technology in biology and medical sciences has been rapidly growing. There is significant optimism that NTP can be developed for a wide range of applications such as wound healing, oral treatment, cancer therapy, and biomedical materials because of its safety, non-toxicity, and high efficiency. Moreover, the combined application of NTP with other methods is currently a hot research topic because of more effective effects on sterilization and anti-cancer abilities. Interestingly, NTP technology has presented great application potential in the animal husbandry field in recent years. However, the wide applications of NTP are related to different and complicated mechanisms, and whether NTP-mediated ROS play a critical role in its application need to be clarified. Therefore, this review mainly summarizes the effects of ROS on animal health, the mechanisms of NTP-mediated ROS levels through antioxidant clearance and ROS generation, and the potential applications of NTP-mediated ROS in animal growth and breeding, animal health, animal-derived food safety, and biomedical fields including would healing, oral treatment, cancer therapy, and biomaterials. This will provide a theoretical basis for promoting the healthy development of animal husbandry and the prevention and treatment of diseases in both animals and human beings.
Collapse
Affiliation(s)
| | | | | | | | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.Y.); (Y.W.); (S.W.); (X.W.)
| |
Collapse
|
40
|
Wang Y, Mang X, Li D, Chen Y, Cai Z, Tan F. Piezoeletric cold atmospheric plasma induces apoptosis and autophagy in human hepatocellular carcinoma cells through blocking glycolysis and AKT/mTOR/HIF-1α pathway. Free Radic Biol Med 2023; 208:134-152. [PMID: 37543168 DOI: 10.1016/j.freeradbiomed.2023.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the fourth leading cause of cancer-related death worldwide. Advanced or metastatic HCC is currently managed using systemic drug therapy with unsatisfactory patient survival. Cold atmospheric plasma has emerged as a promising, physicochemical, and broad-spectrum oncotherapy. In this preclinical study, we investigated the anti-neoplastic functions and mechanism of piezoelectric direct discharge technology-based CAP, Piezo-CAP, on HCC in vitro and in vivo. Various HCC cells lines, such as SMMC7721, HepG2 and LM3, were used as in vitro cancer model for the phenotypic and mechanistic studies. Specifically, the cell counting Kit-8 and colony formation assay, flow cytometry, Transwell assay, Western blot, reactive oxygen species (ROS) assay, and glutathione to oxidized glutathione ratio (GSH/GSSG) assay were used to demonstrate plasma-induced changes in HCC cell proliferation, cell cycle progression, migration and invasion, epithelial-to-mesenchymal transition, intracellular ROS, and antioxidant capacity, respectively. In addition, the Acridine orange and ethidium bromide (AO/EB) staining and transmission electron microscopy were performed for cellular and subcellular assessment of HCC cell apoptosis. The Ad-mCherry-RFP-LC3B fluorescent double-labeled lentiviral system was used to detect autophagic flux. On the other hand, RNA-sequencing, quantitative real-time PCR, and Western blot were used to demonstrate plasma-induced metabolic and molecular disruption of tumor glycolysis and oncogenic proliferation, respectively. In vivo experiments using a human cell-line-derived xenograft model and immunohistochemistry (IHC) were utilized to investigate the mechanism. Piezo-CAP exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promote cell apoptosis and autophagy. Treatment of Piezo-CAP could suppress proliferation and induce autophagy of HCC cells through simultaneously disrupts cancer survival pathways of redox deregulation, glycolytic pathway, and PI3K/AKT/mTOR/HIF1α pathway signaling. Moreover, upon translation of these in vitro results into the tissue level, Piezo-CAP significantly suppressed in situ tumor growth. These findings collectively suggest that Piezo-CAP-induced apoptosis and autophagy of HCC cells though a multitargeted blockade of major cancer survival pathways of deregulated redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China; Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou 730000, Gansu, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, And School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai 200432, China; The Royal College of Surgeons in Ireland, Dublin, Ireland; The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
41
|
Hamza IA, El-Kalliny AS, Abd-Elmaksoud S, Marouf MA, Abdel-Wahed MS, El-Liethy MA, Hefny MM. Cold atmospheric plasma: a sustainable approach to inactivating viruses, bacteria, and protozoa with remediation of organic pollutants in river water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116214-116226. [PMID: 37910365 PMCID: PMC10682252 DOI: 10.1007/s11356-023-30298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Innovative technologies are needed to enhance access to clean water and avoid waterborne diseases. We investigated the performance of cold atmospheric plasma (CAP), a clean and sustainable approach for microbial inactivation and total organic carbon (TOC) degradation in environmental water. Water matrices played a crucial role in the performance of CAP efficacy; for example, complete removal of ɸX174 from dH2O required 1 min of treatment, while ɸX174 reductions of ~ 2log10 and 4log10 were obtained after 10 min of CAP exposure in river water and wastewater samples, respectively. Similarly, after 10 min of CAP treatment, bacterial concentrations decreased by 3 log10 and 4 log10, in river and wastewater samples, respectively. In contrast, after 30 s of contact time, a 4 log10 reduction of bacteria was accomplished in dH2O. Complete removal of Acanthamoeba from dH2O was found after 30 min of CAP treatment, whereas it was not removed from surface water or wastewater at the same exposure time. Additionally, the approach successfully reduced TOC, and the degradation kinetics of TOC were represented by pseudo-first-order. CAP showed higher rates of TOC degradation in the final effluent of the wastewater treatment plant compared to surface water. The difference in CAP performance between river water and wastewater could be attributed to the bulk structure of humic acids in river water compared to small organic byproducts in the final effluent of WWTP. Overall, the findings reported here support the idea that CAP holds promise as a sustainable solution for controlling pathogens, removing organic water pollution, and integrating with traditional purification processes. Low-cost systems may advance CAP technology and increase its widespread use.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amer S El-Kalliny
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Sherif Abd-Elmaksoud
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed A Marouf
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud S Abdel-Wahed
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Mokhtar Hefny
- Engineering Mathematics and Physics Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
42
|
Das S, Mohapatra S, Kar S, Bhatt S, Pundir S. Reactive species variation in cold atmospheric pressure plasma jet discharge under the influence of intrinsic parameters and its effect on E. coli inactivation. Biointerphases 2023; 18:061003. [PMID: 38078794 DOI: 10.1116/6.0003042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Cold atmospheric pressure plasma jet (CAPJ) has piqued the interest of researchers for various antimicrobial applications such as disinfection, wound decontamination, etc. In the current context, a deeper understanding of the correlation between CAPJ's intrinsic parameters, discharge characteristics, species composition, and antimicrobial activity is required for any successful application. This research evaluated the effect of intrinsic operational parameters such as voltage, frequency, gas flow rate, and operating gas on the reactive species composition of an in-house-developed CAPJ discharge along with the antimicrobial activity. It was observed that the identified excited atoms (Ar I, He I, N2, and O I), ions (Ar+, N2+, N+, H2O+, H3O+, etc.), radical reactive oxygen and nitrogen species (RONS) (OH•), and nonradical RONS (O I, O+, OH+, NO+, O2+, O2-, NO2-, N2O2-, NO3-, N2O3-, etc.) might play a synergistic role in bacterial inactivation via oxidative and electrostatic stress. The variation in voltage, frequency, gas flow rate, and operating gas influenced the discharge chemistry, leading to variation in bacterial inactivation. The reactive species in the discharge responsible for such variation was evaluated extensively. This investigation into various operational parameters would aid in determining the most effective settings for a developed CAPJ to achieve high productivity.
Collapse
Affiliation(s)
- Sarthak Das
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sarita Mohapatra
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Satyananda Kar
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Satyendra Bhatt
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Swati Pundir
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
43
|
Souza AMTDE, Braz JKFDAS, Martins GM, Vitoriano JDEO, G A Neto A, Nery DM, Sabino VG, Lucena EEDES, Rocha HADEO, Barboza CAG, A Júnior C, Moura CEBDE. Comparative analysis of the biocompatibility of endothelial cells on surfaces treated by thermal plasma and cold atmospheric plasma. AN ACAD BRAS CIENC 2023; 95:e20220865. [PMID: 37878908 DOI: 10.1590/0001-3765202320220865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/02/2023] [Indexed: 10/27/2023] Open
Abstract
In recent years, cold atmospheric plasma (CAP) is used for surface disinfection. However, little is known about its ability to improve biocompatibility of metallic surfaces when compared to thermal plasma methods. In this context, the study aimed to evaluate the response of human endothelial cells (Ea.hy926) on titanium surfaces treated by non-thermal plasma method and thermal plasma method under nitriding atmosphere. The wettability was characterized by the sessile drop method, the topography and roughness were evaluated by atomic force microscopy (AFM), and the microstructure by grazing angle X-ray diffraction (GIXRD). Endothelial cells were cultured and evaluated for morphology by scanning electron microscopy and viability by an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. CAP treatment reduced the contact angle of the Ti surface (13.43° ± 1.48; p<0.05), increasing hydrophilicity. Rz roughness was higher on the nitrided surface (220.44±20.30; p< 0.001) compared to the CAP treated surfaces (83.29 ± 11.61; p< 0.001) and polished (75.98 ±34.21a); p<0.001). The different applied plasma treatments created different titanium surfaces improving the biocompatibility of endothelial cells, however CAP results demonstrate its potential for biomedical applications, considering the low cost and ease of use of the technique, allowing surface treatments before clinical procedures.
Collapse
Affiliation(s)
- Alan Max T DE Souza
- Programa de Pós-Graduação em Saúde e Sociedade, Universidade do Estado do Rio Grande do Norte (UERN), Rua Miguel Antônio da Silva Neto, s/n, Aeroporto, 59607-360 Mossoró, RN, Brazil
| | - Janine Karla F DA Silva Braz
- Universidade Federal do Rio Grande do Norte (UFRN), Escola Multicampi de Ciências Médicas do RN, Av. Cel. Martiniano, 541, 59300-000 Caicó, RN, Brazil
| | - Gabriel M Martins
- Universidade Federal Rural do Semi-árido (UFERSA), Departamento de Ciências Animais, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Jussier DE Oliveira Vitoriano
- Universidade Federal Rural do Semi-árido (UFERSA), Laboratório de Plasma Aplicado a Agricultura, Saúde e Meio Ambiente, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Aurélio G A Neto
- Universidade Federal do Rio Grande do Norte (UFRN), Escola Multicampi de Ciências Médicas do RN, Av. Cel. Martiniano, 541, 59300-000 Caicó, RN, Brazil
| | - David M Nery
- Universidade Federal do Rio Grande do Norte (UFRN), Escola Multicampi de Ciências Médicas do RN, Av. Cel. Martiniano, 541, 59300-000 Caicó, RN, Brazil
| | - Vladimir G Sabino
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Morfologia, Campus Universitário UFRN, Av. Sen. Salgado Filho, 3000, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Eudes E DE Souza Lucena
- Programa de Pós-Graduação em Saúde e Sociedade, Universidade do Estado do Rio Grande do Norte (UERN), Rua Miguel Antônio da Silva Neto, s/n, Aeroporto, 59607-360 Mossoró, RN, Brazil
- Universidade Federal do Rio Grande do Norte (UFRN), Escola Multicampi de Ciências Médicas do RN, Av. Cel. Martiniano, 541, 59300-000 Caicó, RN, Brazil
| | - Hugo Alexandre DE Oliveira Rocha
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Bioquímica, Campus Universitário UFRN, Av. Sen. Salgado Filho, 3000, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Carlos Augusto G Barboza
- Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Morfologia, Campus Universitário UFRN, Av. Sen. Salgado Filho, 3000, Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Clodomiro A Júnior
- Universidade Federal Rural do Semi-árido (UFERSA), Laboratório de Plasma Aplicado a Agricultura, Saúde e Meio Ambiente, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Carlos Eduardo B DE Moura
- Universidade Federal Rural do Semi-árido (UFERSA), Departamento de Ciências Animais, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
- Universidade Federal Rural do Semi-árido (UFERSA), Laboratório de Plasma Aplicado a Agricultura, Saúde e Meio Ambiente, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, RN, Brazil
| |
Collapse
|
44
|
Larkin JO, Mozden SC, Chyan Y, Zheng Q, Cherukuri P, Tour JM, Ball ZT. Capacitively Coupled Plasma from Laser-Induced Graphene Points to Ozone as the Major Mediator of Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45601-45605. [PMID: 37724983 DOI: 10.1021/acsami.3c09216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Low-temperature plasma is an emerging approach for the treatment of bacterial infections. Nonchemical treatments such as cold plasma offer potential solutions to antibiotic resistance. We investigated the use of laser-induced graphene as an inexpensive, lightweight, and portable electrode for generating cold plasma. At the same time, the mechanism or molecular mediators of cold plasma-induced antibacterial activity remain poorly understood. This study validates graphene as an efficient structure for producing therapeutic cold plasma, and this study also indicates that ozone is the primary mediator of antibacterial activity in graphene-mediated cold plasmas for bacterial growth under the conditions studied.
Collapse
Affiliation(s)
- James O Larkin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah C Mozden
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yieu Chyan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qingxin Zheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Rice Nexus, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Smalley-Curl Institute and the NanoCarbon Center, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Computer Science, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Institute of Biosciences and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
45
|
Sreedevi PR, Suresh K. Cold atmospheric plasma mediated cell membrane permeation and gene delivery-empirical interventions and pertinence. Adv Colloid Interface Sci 2023; 320:102989. [PMID: 37677997 DOI: 10.1016/j.cis.2023.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Delivery of genetic material to cells is an integral tool to analyze and reveal the genetic interventions in normal cellular processes and differentiation, disease development and for gene therapy. It has profound applications in pharmaceutical, agricultural, environmental and biotechnological sectors. The major methods relied for gene delivery or transfection requires either viral vectors or xenogenic carrier molecules, which renders probabilistic carcinogenic, immunogenic and toxic effects. A newly evolved physical method, Cold atmospheric plasma induced transfection neither needs vector nor carriers. The 4th state of matter 'Plasma' is a quasineutral ionized gas-containing ions, neutral atoms, electrons and reactive radical molecules; and possess electric and magnetic field, along with emanating photons and UV radiations. Plasma produced at atmospheric pressure conditions, and having room temperature is conferred as Low temperature plasma or Cold atmospheric plasma. Selective and controlled application of cold atmospheric plasma on tissues creates temporary, restorable pores on cell membranes that could be diligently manipulated for gene delivery. Research in this regard attained pace since 2016. Cold atmospheric plasma induces transfection by lipid peroxidation, electroporation, and clathrin dependent endocytosis in cell membranes, by virtue of its reactive radicals and electric field. Plasma formed reactive radicals, especially 'OH' penetrates to the cell membrane and cleaves the phosphate head group of membrane lipids, peroxidize and detaches fatty acid tails. This decreases membrane thickness, increases membrane fluidity and permeability. Simultaneously plasma formed ions, electrons and reactive radicals accumulate over cells, generating local electric field and neutralize the negative charge of cell membrane. This induces stress on cell membrane and disrupts its structural integrity, by infringing the dynamic equilibrium between surface tension, spatial repulsion and linear tension between the head groups of phospholipids, generating minute pores. Neutralization of membrane charge promote foreign, external plasmid and gene movement towards cells and its enhanced binding with ligands and receptors on cell membrane, instigating clathrin dependent endocytosis. In vitro and in vivo studies have successfully delivered plasmids, linear DNA, siRNA and miRNA to several established cell lines like, HeLa, PC12, CHL, HUVEC, Jurkat, MCF, SH-SY5Y, HT, B16F10, HaCaT, LP-1, etc., and live C57BL/6 and BALB/c mice, using cold atmospheric plasma. This review delineates the cell surface mechanism of plasma-induced transfection, critically summarizes the research progress in this context, plasma devices used, and the inimitable features of this method. Metabolic activity, cell function, and viability are not adversely affected by this process; moreover, the cell permeating plasma-formed reactive radicals are effectively defended by cellular antioxidant mechanisms like superoxide dismutase, glutathione reductase and cytokines, alleviating its toxicity. A deeper understanding on mechanism of plasma action on cells, its aftermath, and the research status in this field would provide a better insight on future avenues of research.
Collapse
Affiliation(s)
- P R Sreedevi
- Cold Plasma Bio-research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - K Suresh
- Cold Plasma Bio-research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
46
|
Hämmerle G, Ascher S, Gebhardt L. Positive effects of cold atmospheric plasma on pH in wounds: a pilot study. J Wound Care 2023; 32:530-536. [PMID: 37682787 DOI: 10.12968/jowc.2023.32.9.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
OBJECTIVE Cold atmospheric plasma (CAP) is a promising new option for the treatment of hard-to-heal (chronic) wounds. The aim of this study was to observe the effect of CAP on wound pH, as a correlation between the pH of a wound and its healing tendency has been established in the literature. METHOD Patients with hard-to-heal wounds were treated with CAP in addition to standard treatment. Treatment was performed with the aid of a small, mobile plasma device, which was used for one minute at a time during dressing changes. The pH value, wound size, and other parameters, such as exudate and signs of infection, were recorded for each treatment. RESULTS A total of 10 patients took part in the study. During the observation period, there was a significant reduction in pH from a markedly alkaline pH of 9.6 to a neutral pH of 7. This was accompanied by a marked reduction in wound size by an average of 76% with seven applications of CAP within 28 days. The evaluation of tissue granulation, exudate and signs of infection showed a positive trend. CONCLUSION The number of patients in the present study is not sufficient to prove the relationship between the pH value of the wound and the treatment with CAP. However, there are clear indications that the positive effects of CAP on wound healing, which are recognised in several publications, are also due to its influence on wound pH value.
Collapse
|
47
|
Viswanadh V, Gaikwad RP, Kar R, Nagar V, Dhalkari CD, Banodkar A, Maiti N. Cold atmospheric plasma: Its time-dependent effects on the elimination of bacterial colony on periodontal manual scalers. J Indian Soc Periodontol 2023; 27:503-507. [PMID: 37781338 PMCID: PMC10538514 DOI: 10.4103/jisp.jisp_309_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background This in vitro study investigated the time-dependent bactericidal effects of cold atmospheric argon plasma treatment of periodontal hand scalers as well as the scanning electron microscopic view of the scaler tip surfaces before and after plasma treatment. Materials and Methods The study used 34 periodontal hand scalers which were divided into test and control groups. The scaler tips were inoculated with Escherichia coli and Staphylococcus aureus bacteria, following which the scalers in the control and test groups were subjected to conventional sterilization and argon plasma sterilization, respectively. Varying exposure times of plasma treatment were done on the test group samples to evaluate the minimum time required for complete sterilization. Subsequently, streaks were made on plate count agar using each of these instruments. The agar plates were then kept in an incubator for 24 h, following which bacterial colony count was assessed (colony-forming units/mL). Furthermore, the scanning electron microscopic (SEM) view of the scaler tip was studied before and after plasma treatment. Results A complete elimination of bacterial load (Gram-positive as well as Gram-negative) from the instrument surface was achieved by the plasma exposure time of 15-20 s. SEM analysis did not show a significant difference before and after plasma treatment as not many organic residues were present on the scaler tip. Conclusion Cold atmospheric pressure plasma is an efficient and time-saving method of sterilization, capable of destroying both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Veena Viswanadh
- Department of Periodontology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Rajesh Prabhakar Gaikwad
- Department of Periodontology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Rajib Kar
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vandan Nagar
- Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | | | - Akshaya Banodkar
- Department of Periodontology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Namita Maiti
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
48
|
Abu Rached N, Kley S, Storck M, Meyer T, Stücker M. Cold Plasma Therapy in Chronic Wounds-A Multicenter, Randomized Controlled Clinical Trial (Plasma on Chronic Wounds for Epidermal Regeneration Study): Preliminary Results. J Clin Med 2023; 12:5121. [PMID: 37568525 PMCID: PMC10419810 DOI: 10.3390/jcm12155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic wounds (CWs) pose a significant health challenge in clinical practice. Standard wound therapy (SWT) is currently considered the gold standard. However, recent evidence suggests that cold plasma therapy (CPT) holds promise for improving CWs. In light of this, the POWER study was conducted as a multicenter, randomized clinical trial to investigate the effect of large-area plasma application compared with SWT in patients with chronic, non-healing arterial or venous wounds on the lower leg. To analyze the interim results, we employed a comprehensive range of statistical tests, including both parametric and non-parametric methods, as well as GLS model regression and an ordinal mixed model. Our findings clearly demonstrate that CPT therapy significantly accelerates wound closure compared with SWT. In fact, complete wound closure was exclusively observed in the CPT group during the intervention period. Additionally, the CPT group required significantly less antibiotic therapy (4%) compared with the SWT group (23%). Furthermore, CPT led to a significant reduction in wound pain and improved quality of life compared with SWT. In conclusion, the study highlights that the combination of CPT and SWT surpasses monotherapy with SWT alone.
Collapse
Affiliation(s)
- Nessr Abu Rached
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Susanne Kley
- Scientific Institute for Health Economics and Health Research, Markt 9, 04109 Leipzig, Germany;
| | - Martin Storck
- Municipal Hospital Karlsruhe gGmbH, Moltkestraße 90, 76133 Karlsruhe, Germany;
| | - Thomas Meyer
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Markus Stücker
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
49
|
Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12618-w. [PMID: 37421472 PMCID: PMC10390405 DOI: 10.1007/s00253-023-12618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/10/2023]
Abstract
The grim situation of bacterial infection has undoubtedly become a major threat to human health. In the context of frequent use of antibiotics, a new bactericidal method is urgently needed to fight against drug-resistant bacteria caused by non-standard use of antibiotics. Cold atmospheric plasma (CAP) is composed of a variety of bactericidal species, which has excellent bactericidal effect on microbes. However, the mechanism of interaction between CAP and bacteria is not completely clear. In this paper, we summarize the mechanisms of bacterial killing by CAP in a systematic manner, discuss the responses of bacteria to CAP treatment that are considered to be related to tolerance and their underlying mechanisms, review the recent advances in bactericidal applications of CAP finally. This review indicates that CAP inhibition and tolerance of survival bacteria are a set of closely related mechanisms and suggests that there might be other mechanisms of tolerance to survival bacteria that had not been discovered yet. In conclusion, this review shows that CAP has complex and diverse bactericidal mechanisms, and has excellent bactericidal effect on bacteria at appropriate doses. KEY POINTS: • The bactericidal mechanism of CAP is complex and diverse. • There are few resistant bacteria but tolerant bacteria during CAP treatment. • There is excellent germicidal effect when CAP in combination with other disinfectants.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chengxi Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qi Han
- Department of Oral Pathology, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
50
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|