1
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
2
|
Zhao Y, Xu S, Hao W, Fu Y. Morin reverses P-glycoprotein-mediated multidrug-resistance in KBChR-8-5 cancer cell lines. Cell Biochem Funct 2024; 42:e4083. [PMID: 38938150 DOI: 10.1002/cbf.4083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Multidrug resistance (MDR) during clinical chemotherapy for cancer has been considered a major obstacle to treatment efficacy. The involvement of adenosine triphosphate-binding cassette (ABC) transporters in the MDR mechanism significantly reduces the efficacy of chemotherapeutics. This study investigates the potential of morin, a dietary bioflavonoid, to overcome colchicine resistance in KBChR-8-5 MDR cells. The P-gp inhibitory activity by morin was measured by calcein-AM drug efflux assay. Western blot analysis was employed to evaluate P-gp messenger RNA and protein expressions following morin treatment. Flow cytometry analysis and acridine orange/ethidium bromide fluorescence staining were utilised to investigate the induction of apoptosis and cell cycle arrest upon treatment with morin and paclitaxel in combination. Additionally, polymerase chain reaction (PCR) array analysis was conducted to study the gene expression profiles related to MDR, apoptosis and cell cycle arrest during treatment with morin, paclitaxel or their combination. Morin exhibited a strong binding interaction with human P-gp. This was corroborated by drug efflux assays, which showed a reduction in P-gp efflux function with increasing morin concentration. Furthermore, morin and paclitaxel combination potentiated the induction of apoptosis and G2/M phase cell cycle arrest. Morin treatment significantly downregulated the gene expression of ABCB1 and P-gp membrane expressions in MDR cells. Additionally, PCR array gene expression analysis revealed that the combination treatment with morin and paclitaxel upregulated proapoptotic and cell cycle arrest genes while downregulating ABCB1 gene and antiapoptotic genes. Thus, morin effectively reversed paclitaxel resistance in KBChR-8-5 drug-resistant cancer cells and concluded that morin resensitized the paclitaxel resistance in KBChR8-5 drug-resistant cancer cells.
Collapse
MESH Headings
- Humans
- Flavonoids/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Apoptosis/drug effects
- Paclitaxel/pharmacology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Cell Line, Tumor
- Cell Cycle Checkpoints/drug effects
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Flavones
Collapse
Affiliation(s)
- Yan Zhao
- Department of Stomatology, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Sanhui Xu
- Department of Clinical Laboratory, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Weiting Hao
- Department of Stomatology, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Yongqing Fu
- Department of Clinical Laboratory, Xingtai People's Hospital, Xingtai, Hebei Province, China
| |
Collapse
|
3
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
4
|
Li J, Wu Z, Pan Y, Chen Y, Chu J, Cong Y, Fang Q. GNL3L exhibits pro-tumor activities via NF-κB pathway as a poor prognostic factor in acute myeloid leukemia. J Cancer 2024; 15:4072-4080. [PMID: 38947394 PMCID: PMC11212074 DOI: 10.7150/jca.95339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 07/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is the leukemia with the worst prognosis, and current knowledge of AML pathogenesis and available therapies for AML remain limited. 40% of AML patients exhibit elevated nuclear factor kappa B (NF-κB) activity, which provides a compelling rationale for targeting the NF-κB pathway in AML. Guanine nucleotide-binding protein-like 3-like protein (GNL3L) is a recently identified pro-oncogene that promotes NF-κB activation in a variety of malignancies. For the first time, we comprehensively examined GNL3L expression in AML, reporting GNL3L as a poor prognostic factor in three independent AML cohorts. GNL3L enhanced RELA activity, activated NF-κB, promoted AML cell proliferation, resisted apoptosis, and encouraged cytarabine resistance in AML. In conclusion, these data suggest a role for GNL3L in the malignant process of AML and as a promising therapeutic target.
Collapse
Affiliation(s)
- Ji Li
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhimin Wu
- Guiyang maternal and child health care hospital, Guiyang Children's Hospital, Guiyang, Guizhou, 550003, China
| | - Yipeng Pan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
| | - Yi Chen
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Breast and Thyroid Surgery, the Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, 830011, China
| | - Junfeng Chu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, 450008, China
| | - Yun Cong
- Department of Oncology II, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Qingliang Fang
- Radiation Oncology Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
5
|
Damiani D, Tiribelli M. ATP-Binding Cassette Subfamily G Member 2 in Acute Myeloid Leukemia: A New Molecular Target? Biomedicines 2024; 12:111. [PMID: 38255216 PMCID: PMC10813371 DOI: 10.3390/biomedicines12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the progress in the knowledge of disease pathogenesis and the identification of many molecular markers as potential targets of new therapies, the cure of acute myeloid leukemia remains challenging. Disease recurrence after an initial response and the development of resistance to old and new therapies account for the poor survival rate and still make allogeneic stem cell transplantation the only curative option. Multidrug resistance (MDR) is a multifactorial phenomenon resulting from host-related characteristics and leukemia factors. Among these, the overexpression of membrane drug transporter proteins belonging to the ABC (ATP-Binding Cassette)-protein superfamily, which diverts drugs from their cellular targets, plays an important role. Moreover, a better understanding of leukemia biology has highlighted that, at least in cancer, ABC protein's role goes beyond simple drug transport and affects many other cell functions. In this paper, we summarized the current knowledge of ABCG2 (formerly Breast Cancer Resistance Protein, BCRP) in acute myeloid leukemia and discuss the potential ways to overcome its efflux function and to revert its ability to confer stemness to leukemia cells, favoring the persistence of leukemia progenitors in the bone marrow niche and justifying relapse also after therapy intensification with allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, 33100 Udine, Italy;
- Department of Medicine, Udine University, 33100 Udine, Italy
| |
Collapse
|
6
|
Alshwyeh HA, Al-Sheikh WMS, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells. Mol Cell Oncol 2024; 11:2299046. [PMID: 38196561 PMCID: PMC10773660 DOI: 10.1080/23723556.2023.2299046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
Collapse
Affiliation(s)
- Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Abdullah Rasedee
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
8
|
Putnam CM, Kondeti L, Kesler MBA, Varney ME. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem Cell Biol 2023; 101:481-495. [PMID: 37566901 DOI: 10.1139/bcb-2022-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Modulating the immune system to treat diseases, including myeloid malignancies, has resulted in the development of a multitude of novel therapeutics in recent years. Myelodysplastic syndromes or neoplasms (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that arise from defects in hematopoietic stem and progenitor cells (HSPCs). Dysregulated immune responses, especially in innate immune and inflammatory pathways, are highly associated with the acquisition of HSPC defects in MDS and AML pathogenesis. In addition to utilizing the immune system in immunotherapeutic interventions such as chimeric antigen receptor T cell therapy, vaccines, and immune checkpoint inhibitors, mitigating dysregulation of innate immune and inflammatory responses in MDS and AML remains a priority in slowing the initiation and progression of these myeloid malignancies. This review provides a comprehensive summary of the current progress of diverse strategies to utilize or modulate the immune system in the treatment of MDS and AML.
Collapse
Affiliation(s)
- Caroline M Putnam
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Lahari Kondeti
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Meredith B A Kesler
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Melinda E Varney
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| |
Collapse
|
9
|
Mu H, Sun Y, Yuan B, Wang Y. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia 2023; 169:105617. [PMID: 37479118 DOI: 10.1016/j.fitote.2023.105617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Betulinic acid (BA) is a pentacyclic triterpene compound, which can be obtained by separation, chemical synthesis and biotransformation. BA has excellent biological activities, especially its role in the treatment of breast cancer deserves attention. Its mechanisms mainly include inducing mitochondrial oxidative stress, regulating specific protein (Sp) transcription factors, inhibiting breast cancer metastasis, inhibiting glucose metabolism and NF-κB pathway. In addition, BA can also increase the sensitivity of breast cancer cells to other chemotherapy drugs such as paclitaxel and reduce its toxic side effects. This article reviews the application and possible mechanism of BA in the treatment of breast cancer.
Collapse
Affiliation(s)
- Huijuan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuli Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
10
|
Mohanta O, Ray A, Jena S, Sahoo A, Panda SS, Das PK, Nayak S, Panda PC. Mesosphaerum suaveolens Essential Oil Attenuates Inflammatory Response and Oxidative Stress in LPS-Stimulated RAW 264.7 Macrophages by Regulating NF-κB Signaling Pathway. Molecules 2023; 28:5817. [PMID: 37570786 PMCID: PMC10420984 DOI: 10.3390/molecules28155817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mesosphaerum suaveolens (L.) Kuntze (Syn. Hyptis suaveolens (L.) Poit.) is a wild essential-oil-bearing plant having multiple uses in traditional medicine, perfumery, food, agriculture, and pharmaceutical industries. The present paper is the first report on the in vitro anti-inflammatory effects of the leaf essential oil of M. suaveolens (MSLEO) and unravels its molecular mechanism in LPS-stimulated RAW 264.7 macrophage cells. GC-MS analysis of the essential oil (EO) isolated from the leaves by hydro-distillation led to the identification of 48 constituents, accounting for 90.55% of the total oil, and β-caryophyllene (16.17%), phyllocladene (11.85%), abietatriene (11.46%), and spathulenol (7.89%) were found to be the major components. MSLEO treatment had no effect on the viability of RAW 264.7 cells up to a concentration of 100 μg/mL, and the EO was responsible for a reduction in proinflammatory cytokines like IL-6, IL-1β, and TNF-α, a decrease in intracellular ROS production, and the restoration of oxidative damage by elevating the levels of endogenous antioxidative enzymes like CAT, SOD, GPx, and GSH. RT-qPCR analysis indicated that MSLEO reduced the mRNA expression levels of iNOS and COX-2 as compared to the LPS-induced group. In addition, a confocal microscopy analysis showed that MSLEO inhibited the translocation of NF-κB from the cytosol to the nucleus. The results of this experiment demonstrate that MSLEO possesses significant anti-inflammatory potential by preventing the activation of NF-κB, which, in turn, inhibits the downstream expression of other inflammatory mediators associated with the activation of the NF-κB pathway in LPS-induced RAW 264.7 cells. Thus, the leaf essential oil of M. suaveolens may prove to be a promising therapeutic agent for the treatment of inflammation, and targeting the NF-κB signaling pathway may be considered as an attractive approach for anti-inflammatory therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar 751003, India
| |
Collapse
|
11
|
Shibabaw T, Teferi B, Ayelign B. The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol 2023; 14:1094823. [PMID: 36993955 PMCID: PMC10040566 DOI: 10.3389/fimmu.2023.1094823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Metastatic breast cancer is one of the most common and well-known causes of death for women worldwide. The inflammatory tumor cell and other cancer hallmarks dictate the metastatic form and dissemination of breast cancer. Taking these into account, from various components of the tumor microenvironment, a pro-inflammatory infiltrative cell known as Th-17 plays an immense role in breast cancer proliferation, invasiveness, and metastasis. It has been demonstrated that IL-17, a pleiotropic pro-inflammatory cytokine generated by Th-17, is upregulated in a metastatic form of breast cancer. Recent research updates stated that chronic inflammation and mediators like cytokines and chemokines are causative hallmarks in many human cancers, including breast cancer. Therefore, IL-17 and its multiple downward signaling molecules are the centers of research attention to develop potent treatment options for cancer. They provide information on the role of IL-17-activated MAPK, which results in tumor cell proliferation and metastasis via NF-kB-mediated expression of MMP signaling. Overall, this review article emphasizes IL-17A and its intermediate signaling molecules, such as ERK1/2, NF-kB, MMPs, and VEGF, as potential molecular targets for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, Australia
- *Correspondence: Birhanu Ayelign,
| |
Collapse
|
12
|
A Triphenylphosphonium-Functionalized Delivery System for an ATM Kinase Inhibitor That Ameliorates Doxorubicin Resistance in Breast Carcinoma Mammospheres. Cancers (Basel) 2023; 15:cancers15051474. [PMID: 36900267 PMCID: PMC10000448 DOI: 10.3390/cancers15051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.
Collapse
|
13
|
Zhao Q, Zhu L, Wang S, Gao Y, Jin F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115829. [PMID: 36252876 DOI: 10.1016/j.jep.2022.115829] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant essential oils (PEOs) extracted from aromatic compounds of the plant contain complex mixtures of volatile and lipophilic bioactive compounds. In ancient Egypt, Arabia, Greece, and China, PEOs were traditional used in aromatherapy for various health disorders, including pain and inflammation. AIM OF THE STUDY In this review, we provide an overview of the anti-inflammatory effects of PEOs and the underlying mechanisms associated with anti-inflammatory effects using in vitro and in vivo models. Further, clinical trials associated with PEOs were explored. MATERIALS AND METHODS The literature search was performed using various web-based tools and databases like Google Scholar, Web of Science, PubMed, CNKI and SCOPUS. The keywords used for conducting the literature review were general terms like "essential oils" followed by (AND) the subject of interest like "in vitro and/or in vivo anti-inflammatory models," "inflammatory response," "inflammatory indicators," "pro-inflammatory cytokines," "signaling pathway," "anti-inflammatory mechanism," "toxicology and side effects" and "clinical trials." The articles selected were published between 2017 and 2022. The articles prior to 2017 were only considered if they were associated with molecular mechanisms or signaling pathways involved in the inflammatory responses. RESULTS In vitro and in vivo inflammation models have been used to study the anti-inflammatory effects of 48 PEOs. Studies have reported that PEOs targets and inhibit multiple dysregulated signaling pathways associated with inflammation, including Toll-like receptors, nuclear transcription factor-κ B, mitogen-activated protein kinases, Nod-like receptor family pyrin domain containing 3, and auxiliary pathways like the nuclear factor erythroid 2-related factor 2/antioxidant response element and Janus kinase/signal transducers and activators of transcription) signaling pathways. CONCLUSION PEOs extracted from different plant materials had varied qualitative and quantitative compositions of biologically active compounds. Different anti-inflammatory potentials and different molecular signal transduction have been attributed to PEOs-derived bioactive compounds with different chemical structures. The data on therapeutic efficacy and the long-term side effects of PEOs as an anti-inflammatory drug are still unknown due to the lack of clinical trials on PEOs. There is still insufficient evidence to draw conclusions on anti-inflammatory properties of PEOs without promising outcomes from clinical trials.
Collapse
Affiliation(s)
- Qian Zhao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China.
| | - Liyun Zhu
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China.
| | - Sunan Wang
- Canadian Food and Wine Institute, Niagara College Canada, 135 Taylor Road, Niagara-on-the-Lake, Ontario, L0S1J0, Canada
| | - Yongsheng Gao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China
| | - Fei Jin
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China
| |
Collapse
|
14
|
Shaban NZ, El-Faham AA, Abu-Serie MM, Habashy NH. Targeting apoptosis in MCF-7 and Ehrlich ascites carcinoma cells by saponifiable fractions from green and black Vitis vinifera seed oil. Biomed Pharmacother 2023; 157:114017. [PMID: 36395612 DOI: 10.1016/j.biopha.2022.114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Grape seed (GS) oil is one of the potential functional foods. For the first time, we evaluated the therapeutic effects of GS oil saponifiable (Sap)-fraction from black (BSap) and green (GSap) grapes on MCF-7 cells and Ehrlich ascites carcinoma (EAC) in mice. The fatty acid composition of BSap and GSap was determined using gas chromatography-mass spectrometry analysis. Approximately twelve distinct fatty acids were detected in BSap and eleven in GSap. BSap showed a greater cytotoxic effect on MCF-7 cells than GSap did by inducing apoptosis and reducing inflammation, while both grape fractions had superior potency to 5-FU. Furthermore, BSap massively boosted apoptosis and lowered redox potential (Eh) and CD44+ cells in EAC cells of EAC-bearing mice more than GSap, and both fractions were more efficient than 5-FU. Blood tests and liver histopathology revealed significant improvement in EAC-induced pathological alterations with these fractions. The in silico analysis implied the competitive inhibitory impacts of the most abundant fatty acid composites in BSap and GSap on cancer-metastasis-associated proteases (cathepsin B and MMP9). Also, this analysis predicted that the apoptotic action of these Sap fractions is independent of the 5'AMP-activated protein kinase. Therefore, grape Sap-fraction, especially BSap, may be a useful agent for cancer prevention.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Ashraf A El-Faham
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
15
|
Lin X, Wang Q, Du S, Guan Y, Qiu J, Chen X, Yuan D, Chen T. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
17
|
Jovanović Galović A, Jovanović Lješković N, Vidović S, Vladić J, Jojić N, Ilić M, Srdić Rajić T, Kojić V, Jakimov D. The Effects of Resveratrol-Rich Extracts of Vitis vinifera Pruning Waste on HeLa, MCF-7 and MRC-5 Cells: Apoptosis, Autophagia and Necrosis Interplay. Pharmaceutics 2022; 14:pharmaceutics14102017. [PMID: 36297452 PMCID: PMC9607132 DOI: 10.3390/pharmaceutics14102017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-studied plant-derived molecule in cancer biology, with a plethora of documented in vitro effects. However, its low bioavailability and toxicity risk hamper its wider use. In this study, vine shoots after pruning were used as a source of resveratrol (RSV). The activity of subcritical water extract (SWE) and dry extract (DE) is examined on three cell lines: HeLa, MCF-7 and MRC-5. The cytotoxic effect is assessed by the MTT test and EB/AO staining, levels of apoptosis are determined by Annexin V assay, autophagia by ULK-1 expression using Western blot and NF-kB activation by p65 ELISA. Our results show that both resveratrol-rich extracts (DE, SWE) have a preferential cytotoxic effect on malignant cell lines (HeLa, MCF-7), and low cytotoxicity on non-malignant cells in culture (MRC-5). Further experiments indicate that the investigated malignant cells undergo different cell death pathways. MCF-7 cells died preferentially by apoptosis, while the HeLa cells died most likely by necrosis (possibly ferroptosis). Protective autophagia is diminished upon treatment with DE in both HeLa and MCF-7 cells, while SWE does not influence the level of autophagia. The extracts are effective even at low concentrations (below IC50) in the activation of NF-kB (p65 translocation).
Collapse
Affiliation(s)
- Aleksandra Jovanović Galović
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
- Correspondence:
| | | | - Senka Vidović
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Vladić
- Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Jojić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Milan Ilić
- Faculty of Pharmacy Novi Sad, University of Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Tatjana Srdić Rajić
- Institute for Oncology and Radiology of Serbia, Department of Experimental Oncology, Pasterova 14, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
18
|
Huang Q, Liu Y, Qiu M, Lin Q, Wei X, Zhou Z, Liang X, Li R, Chen W, Zhou X, Yu H. Potentially functional variants of MAP3K14 in the NF-κB signaling pathway genes predict survival of HBV-related hepatocellular carcinoma patients. Front Oncol 2022; 12:990160. [PMID: 36119471 PMCID: PMC9478184 DOI: 10.3389/fonc.2022.990160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background The NF-κB signaling pathway plays an important role in associating inflammation with tumor development and progression. However, few studies have reported that roles of genetic variants of the NF-κB signaling pathway genes in survival of patients with HBV-related hepatocellular carcinoma (HBV-HCC), especially with regards to potentially functional SNPs. Methods We used multivariate Cox proportional hazards regression to evaluate associations between 2,060 single nucleotide polymorphisms (SNPs) in 20 NF-κB signaling pathway genes and survival of 866 HBV-HCC patients, which were randomly split (1:1) into discovery and validation datasets. Expression quantitative trait loci (eQTL) analysis was conducted to identify associations between survival-associated SNPs and mRNA expression of corresponding genes. Furthermore, online database was used to assess mRNA expression of corresponding genes and survival. Finally, receiver operating characteristic (ROC) curves were used to assess the prediction accuracy of models integrating both clinical and genetic variables on HCC survival. Results A total of 6 SNPs in MAP3K14 remained significantly associated with OS of HBV-HCC patients (P<0.05, BFDP<0.8). Further eQTL analysis demonstrated that significant correlations between the rs2074292 (G>A) A allele was associated with higher mRNA expression levels of MAP3K14 (P=0.044) in normal liver tissue, which was associated with worse survival of HBV-HCC patients. In the additive model, after adjusting for age, sex, smoking status, drinking status, AFP level, cirrhosis, embolus and BCLC stage, the combined dataset showed that HBV-HCC patients carrying the rs2074292 AA and GA genotypes (HR=1.71, 95%CI= 1.29-2.27, P=0.000) (HR=1.40, 95%CI=1.10-1.77, P=0.005) have worse OS than GG genotype, respectively. The addition of risk genotypes to the prediction models increased the AUC significantly from 71.15% to 73.11% (P=0.012) and from 72.55% to 74.21% (P=0.010) for 1-year and 3-year OS, respectively. Conclusion Our study indicated that MAP3K14 rs2074292 A allele may be a potential predictor of HBV-HCC survival, likely regulating MAP3K14 mRNA expression.
Collapse
Affiliation(s)
- Qiongguang Huang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xueyan Wei
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Runwei Li
- Department of Occupational and Environmental Health, Indiana University, Bloomington, IN, United States
| | - Weiyi Chen
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Hongping Yu, ; Xianguo Zhou,
| | - Hongping Yu
- School of Public Health, Guangxi Medical University, Nanning, China
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
- Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Hongping Yu, ; Xianguo Zhou,
| |
Collapse
|
19
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Li L, Wang M, Yang H, Li Y, Huang X, Guo J, Liu Z. Fisetin Inhibits Trypsin Activity and Suppresses the Growth of Colorectal Cancer in Vitro and in Vivo. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with high incidence and bad prognosis. Therapies, which are more safe and effective, are urgently needed. Trypsin is proved to be crucial to cancer proliferation and migration, therefore, it is possible to control cancers by modulating its activity. Fisetin is a flavone with trypsin inhibition properties that was screened from more than 45 compounds derived from traditional Chinese medicine (TCM). However, the effects and mechanisms of fisetin on CRC have not been well investigated. In this study, we evaluated the effects of fisetin on 2 different CRC cell lines. Fisetin remarkably inhibited CRC cell proliferation and migration, as well as induced cell apoptosis and Go/G1 phase arrest in a dose-dependent manner. Mechanistic studies revealed that these effects were mediated partially through signaling pathways involving cell cycle regulators p21, p27, cyclinD1, and NF kappa B (NF-κB) p65. Administration of fisetin also significantly suppressed the tumor growth in tumor-bearing NOD/Shi-scid-IL2R gamma (null) (NOG) mice that had been inoculated with human HCT116 cells. Fisetin at the given dosage did not induce significant acute or chronic toxicity in rats. These data provide a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Lin Li
- Jinan University, Guangzhou, China
| | - Min Wang
- Jinan University, Guangzhou, China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, China
| | | | | | - Jialiang Guo
- Jinan University, Guangzhou, China
- School of Medicine, Foshan University, Foshan, China
| | - Zheng Liu
- School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
21
|
Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E, Zazzeroni F. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3557. [PMID: 35884618 PMCID: PMC9319319 DOI: 10.3390/cancers14143557] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.
Collapse
|
22
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
23
|
Cao H, Tadros V, Hiramoto B, Leeper K, Hino C, Xiao J, Pham B, Kim DH, Reeves ME, Chen CS, Zhong JF, Zhang KK, Xie L, Wasnik S, Baylink DJ, Xu Y. Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability. Biomedicines 2022; 10:biomedicines10051038. [PMID: 35625776 PMCID: PMC9138861 DOI: 10.3390/biomedicines10051038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls. Additionally, the GILT-treated blasts that survived were found to exhibit higher expressions of the CXCR2 gene and protein, a common receptor for MIF and pro-inflammatory cytokines. The supplementation of exogenous MIF to GILT-treated blasts revealed a group of CD44High+ cells that might be responsible for the relapse. Furthermore, we identified the highly activated non-classical NFKB2 pathway after GILT-treatment. The siRNA transient knockdown of NFKB2 significantly reduced the gene expressions of MIF, CXCR2, and CXCL5. Finally, treatments of AML patient samples ex vivo demonstrated that the combination of a pharmaceutical inhibitor of the NFKB family and GILT can effectively suppress primary blasts’ secretion of tumor-promoting cytokines, such as CXCL1/5/8. In summary, we provide the first evidence that targeting treatment-activated compensatory pathways, such as the NFKB2-MIF/CXCLs-CXCR2 axis could be a novel therapeutic strategy to overcome TKI-resistance and effectively treat AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Verena Tadros
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Benjamin Hiramoto
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Kevin Leeper
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Christopher Hino
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Bryan Pham
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Do Hyun Kim
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
- Correspondence: ; Tel.: +1-9096515887
| |
Collapse
|
24
|
Massaro M, Poma P, Cavallaro G, García-Villén F, Lazzara G, Notarbartolo M, Muratore N, Sánchez-Espejo R, Viseras Iborra C, Riela S. Prodrug based on halloysite delivery systems to improve the antitumor ability of methotrexate in leukemia cell lines. Colloids Surf B Biointerfaces 2022; 213:112385. [PMID: 35168104 DOI: 10.1016/j.colsurfb.2022.112385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/09/2023]
Abstract
The prodrug approach, as well as the development of specific systems able to deliver a chemotherapeutic agent in the target site, decreasing the side effects often associated with its administration, are still a challenging. In this context, both methotrexate drug molecules (MTX) and biotin ligand moieties, whose receptors are overexpressed on the surface of several cancer cells, were loaded on halloysite nanotubes (HNTs) to develop nanomaterial based on multifunctional and "smart" delivery systems. To highlight the crucial role played by biotin, carrier systems based on HNTs and MTX were also synthetized. In detail, several approaches were envisaged: i) a supramolecular interaction between the clay and the drug; ii) a covalent grafting of the drug onto the HNTs external surface and, iii) a combination of both approaches. The nanomaterials obtained were characterized by thermogravimetric analysis, FT-IR, and UV-vis spectroscopies, DLS and ζ-potential measurements and the morphologies were imaged by HAADF/STEM investigations. Kinetic release experiments at different pH conditions were also performed. Finally, as a proof-of-concept application of our pro-drug delivery systems based on HNTs in cancer therapy, the cytotoxic effects were evaluated on acute myeloid leukemia cell lines, HL60 and its multidrug resistance variant, HL60R. The obtained results showed that both the MTX prodrug system and the biotinylated ones played a crucial role in the biological activity and, they are promising agents for the cancer treatments.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo Viale delle Scienze, 90128 Palermo, Italy
| | - Paola Poma
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo Viale delle Scienze, 90128 Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica "E. Segrè (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, I-50121 Firenze, Italy
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica "E. Segrè (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, I-50121 Firenze, Italy
| | - Monica Notarbartolo
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Muratore
- Dipartimento di Fisica e Chimica "E. Segrè (DiFC), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rita Sánchez-Espejo
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - César Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Serena Riela
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo Viale delle Scienze, 90128 Palermo, Italy.
| |
Collapse
|
25
|
Vaseghi G, Pourhadi M, Ghasemi A, Abediny R, Haghjooy Javanmard S. The inhibitory effects of vanillin on the growth of melanoma by reducing nuclear factor-κB activation. Adv Biomed Res 2022; 11:68. [DOI: 10.4103/abr.abr_280_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/04/2022] Open
|
26
|
Tan B, Yuan Z, Zhang Q, Xiqiang X, Dong J. The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells. J Appl Biomed 2021; 19:190-201. [PMID: 34907738 DOI: 10.32725/jab.2021.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/23/2021] [Indexed: 11/05/2022] Open
Abstract
NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.
Collapse
Affiliation(s)
- Bingyi Tan
- Shandong First Medical University, Shandong Provincial Hospital, Department of Orthopaedics, Jinan City, China
| | - Zenong Yuan
- Shandong First Medical University, Shandong Provincial Hospital, Department of Orthopaedics, Jinan City, China
| | - Qingyu Zhang
- Shandong First Medical University, Shandong Provincial Hospital, Department of Orthopaedics, Jinan City, China
| | - Xu Xiqiang
- Shandong First Medical University, Shandong Provincial Hospital, Department of Orthopaedics, Jinan City, China
| | | |
Collapse
|
27
|
Yu CP, Li PY, Chen SY, Lin SP, Hou YC. Magnolol and Honokiol Inhibited the Function and Expression of BCRP with Mechanism Exploration. Molecules 2021; 26:7390. [PMID: 34885972 PMCID: PMC8659015 DOI: 10.3390/molecules26237390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Breast cancer resistance protein (BCRP), one of the ATP-binding cassette (ABC) transporters, was associated with the multidrug resistance (MDR) of chemotherapy. Magnolol (MN) and honokiol (HK) are major bioactive polyphenols of Magnolia officinalis. This study investigated the effects of MN and HK on the function and expression of BCRP for the purpose of developing BCRP inhibitor to overcome MDR. Cell lines including MDCKII-BCRP and MDCKII-WT were used for evaluating the function and expression of BCRP. The results showed that MN (100-12.5 µM) and HK (100-12.5 µM) significantly decreased the function of BCRP by 80~12% and 67~14%, respectively. In addition, MN and HK were verified as substrates of BCRP. Furthermore, MN and HK reduced the protein expression of BCRP, and inhibited the phosphorylation of epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K). In conclusion, both MN and HK decreased the function and expression of BCRP via EGFR/PI3K signaling pathway. Therefore, both compounds were promising candidates for reversing the MDR of chemotherapy.
Collapse
Affiliation(s)
- Chung-Ping Yu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (C.-P.Y.); (P.-Y.L.); (S.-Y.C.)
- Department of Pharmacy, China Medical University Hospital, Taichung 404332, Taiwan
| | - Pei-Ying Li
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (C.-P.Y.); (P.-Y.L.); (S.-Y.C.)
| | - Szu-Yu Chen
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (C.-P.Y.); (P.-Y.L.); (S.-Y.C.)
| | - Shiuan-Pey Lin
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (C.-P.Y.); (P.-Y.L.); (S.-Y.C.)
| | - Yu-Chi Hou
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan; (C.-P.Y.); (P.-Y.L.); (S.-Y.C.)
- Department of Pharmacy, China Medical University Hospital, Taichung 404332, Taiwan
- College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
28
|
Popović KJ, Popović DJ, Miljković D, Popović JK, Lalošević D, Poša M, Čapo I. Disulfiram and metformin combination anticancer effect reversible partly by antioxidant nitroglycerin and completely by NF-κB activator mebendazole in hamster fibrosarcoma. Biomed Pharmacother 2021; 143:112168. [PMID: 34536762 DOI: 10.1016/j.biopha.2021.112168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the anticancer effect of disulfiram and metformin combination on fibrosarcoma in hamsters. Hamsters of both sexes (~ 70 g) were randomly allocated to control and experimental groups (8 animals per group). In all 10 groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatments were carried out with disulfiram 50 mg/kg daily, or with metformin 500 mg/kg daily, or with their combination. Validation and rescue grups were treated by double doses of the single therapy and by the combination with addition of rescue daily doses of ROS inhibitor nitroglycerin 25 mg/kg or NF-κB stimulator mebendazole 460 mg/kg, via a gastric probe after tumor inoculation. After 19 days all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed (Ki-67, PCNA, CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS), and the main organs were toxicologically tested. The combination of disulfiram and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The single treatments did not show significant antisarcoma effect. Co-treatment with nitroglycerin partly rescued tumor progression, probably by ROS inhibition, while mebendazole completely blocked anticancer activity of the disulfiram and metformin combination, most likely by NF-κB stimulation. Combination of disulfiram with metformin may be used as an effective and safe candidate for novel nontoxic adjuvant and relapse prevention anticancer therapy.
Collapse
Affiliation(s)
- Kosta J Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Dušica J Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dejan Miljković
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jovan K Popović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dušan Lalošević
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
29
|
Rezaei M, Shahouzehi B, Rahemi S, Fallah H, Salarkarimi M. Effect of IRAK1/4 inhibitor on IL-1β, IL-6, INF-γ and TNF-α expression in breast cancer cells of several lines. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Shahouzehi B, Masoumi-Ardakani Y, Aminizadeh S, Nasri H. Expression of antioxidant enzymes genes in the liver and cardiac tissues of rats under L-carnitine administration and high-intensity. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Li J, Huang L, He Z, Chen M, Ding Y, Yao Y, Duan Y, Zixuan L, Qi C, Zheng L, Li J, Zhang R, Li X, Dai J, Wang L, Zhang QQ. Andrographolide Suppresses the Growth and Metastasis of Luminal-Like Breast Cancer by Inhibiting the NF-κB/miR-21-5p/PDCD4 Signaling Pathway. Front Cell Dev Biol 2021; 9:643525. [PMID: 34249905 PMCID: PMC8261247 DOI: 10.3389/fcell.2021.643525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor growth and metastasis are responsible for breast cancer-related mortality. Andrographolide (Andro) is a traditional anti-inflammatory drug used in the clinic that inhibits NF-κB activation. Recently, Andro has been found in the treatment of various cancers. Andro inhibits breast cell proliferation and invasion and induces apoptosis via activating various signaling pathways. Therefore, the underlying mechanisms with regard to the antitumor effects of Andro still need to be further confirmed. Herein, a MMTV-PyMT spontaneous luminal-like breast cancer lung metastatic transgenic tumor model was employed to estimate the antitumor effects of Andro on breast cancer in vivo. Andro significantly inhibited tumor growth and metastasis in MMTV-PyMT mice and suppressed the cell proliferation, migration, and invasion of MCF-7 breast cancer cells in vitro. Meanwhile, Andro significantly inhibited the expression of NF-κB, and the downregulated NF-κB reduced miR-21-5p expression. In addition, miR-21-5p dramatically inhibited the target gene expression of programmed cell death protein 4 (PDCD4). In the current study, we demonstrated the potential anticancer effects of Andro on luminal-like breast cancer and indicated that Andro inhibits the expression of miR-21-5p and further promotes PDCD4 via NF-κB suppression. Therefore, Andro could be an antitumor agent for the treatment of luminal-like breast cancer in the clinic.
Collapse
Affiliation(s)
- Junchen Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lixun Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zinan He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuying Yao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Youfa Duan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zixuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoming Li
- Department of Pathology, People's Hospital of Baoan District, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
32
|
Abdellatef AA, Zhou Y, Yamada A, Elmekkawy SA, Kohyama A, Yokoyama S, Meselhy MR, Matsuya Y, Sakurai H, Hayakawa Y. Synthetic E-guggulsterone derivative GSD-1 inhibits NF-κB signaling and suppresses the metastatic potential of breast cancer cells. Biomed Pharmacother 2021; 140:111737. [PMID: 34020249 DOI: 10.1016/j.biopha.2021.111737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022] Open
Abstract
Guggulsterone (GS) [4,17(20)-pregnadiene-3,16-dione], is the main active phytosterol constituent in guggul, the gum resin of Commiphora wightii (Arnott.) Bhand./Commiphora mukul Engl. tree, and is known for its medicinal effects. In this study, we report that GSD-1, a structurally-related synthetic GS derivative, strongly inhibits NF-κB activation induced by TNF-α. GSD-1 prevented the nuclear translocation of p65 through the blockade of IκBα degradation and p65 phosphorylation, and further inhibited the activation of upstream kinases, including transforming growth factor-β activated kinase 1 (TAK1), IκB kinase (IKK) α, and IKKβ. Furthermore, GSD-1 inhibited the cell-intrinsic activation of NF-κB, and exerted its direct anti-cancer and anti-metastatic effects in both murine and human breast cancer cell lines. This study demonstrated GSD-1 to be an attractive compound to target NF-κB activation that has potential for treating breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Amira A Abdellatef
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akane Yamada
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sahar A Elmekkawy
- Department of Chemistry of Natural Compounds, National Research Centre, Egypt
| | - Aki Kohyama
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuji Matsuya
- Department of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| |
Collapse
|
33
|
A Novel 1,8-Naphthyridine-2-Carboxamide Derivative Attenuates Inflammatory Responses and Cell Migration in LPS-Treated BV2 Cells via the Suppression of ROS Generation and TLR4/Myd88/NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms22052527. [PMID: 33802409 PMCID: PMC7959294 DOI: 10.3390/ijms22052527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Novel 1,8-naphthyridine-2-carboxamide derivatives with various substituents (HSR2101-HSR2113) were synthesized and evaluated for their effects on the production of pro-inflammatory mediators and cell migration in lipopolysaccharide (LPS)-treated BV2 microglial cells. Among the tested compounds, HSR2104 exhibited the most potent inhibitory effects on the LPS-stimulated production of inflammatory mediators, including nitric oxide (NO), tumor necrosis factor-α, and interleukin-6. Therefore, this compound was chosen for further investigation. We found that HSR2104 attenuated levels of inducible NO synthase and cyclooxygenase 2 in LPS-treated BV2 cells. In addition, it markedly suppressed LPS-induced cell migration as well as the generation of intracellular reactive oxygen species (ROS). Moreover, HSR2104 abated the LPS-triggered nuclear translocation of nuclear factor-κB (NF-κB) through inhibition of inhibitor kappa Bα phosphorylation. Furthermore, it reduced the expressions of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) in LPS-treated BV2 cells. Similar results were observed with TAK242, a specific inhibitor of TLR4, suggesting that TLR4 is an upstream regulator of NF-κB signaling in BV2 cells. Collectively, our findings demonstrate that HSR2104 exhibits anti-inflammatory and anti-migratory activities in LPS-treated BV2 cells via the suppression of ROS and TLR4/MyD88/NF-κB signaling pathway. Based on our observations, HSR2104 may have a beneficial impact on inflammatory responses and microglial cell migration involved in the pathogenesis of various neurodegenerative disorders.
Collapse
|
34
|
Menegazzi M, Masiello P, Novelli M. Anti-Tumor Activity of Hypericum perforatum L. and Hyperforin through Modulation of Inflammatory Signaling, ROS Generation and Proton Dynamics. Antioxidants (Basel) 2020; 10:antiox10010018. [PMID: 33379141 PMCID: PMC7824709 DOI: 10.3390/antiox10010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper we review the mechanisms of the antitumor effects of Hypericum perforatum L. (St. John's wort, SJW) and its main active component hyperforin (HPF). SJW extract is commonly employed as antidepressant due to its ability to inhibit monoamine neurotransmitters re-uptake. Moreover, further biological properties make this vegetal extract very suitable for both prevention and treatment of several diseases, including cancer. Regular use of SJW reduces colorectal cancer risk in humans and prevents genotoxic effects of carcinogens in animal models. In established cancer, SJW and HPF can still exert therapeutic effects by their ability to downregulate inflammatory mediators and inhibit pro-survival kinases, angiogenic factors and extracellular matrix proteases, thereby counteracting tumor growth and spread. Remarkably, the mechanisms of action of SJW and HPF include their ability to decrease ROS production and restore pH imbalance in tumor cells. The SJW component HPF, due to its high lipophilicity and mild acidity, accumulates in membranes and acts as a protonophore that hinders inner mitochondrial membrane hyperpolarization, inhibiting mitochondrial ROS generation and consequently tumor cell proliferation. At the plasma membrane level, HPF prevents cytosol alkalization and extracellular acidification by allowing protons to re-enter the cells. These effects can revert or at least attenuate cancer cell phenotype, contributing to hamper proliferation, neo-angiogenesis and metastatic dissemination. Furthermore, several studies report that in tumor cells SJW and HPF, mainly at high concentrations, induce the mitochondrial apoptosis pathway, likely by collapsing the mitochondrial membrane potential. Based on these mechanisms, we highlight the SJW/HPF remarkable potentiality in cancer prevention and treatment.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7168
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Via Roma 55, I-56126 Pisa, Italy; (P.M.); (M.N.)
| |
Collapse
|
35
|
Behl T, Sharma A, Sharma L, Sehgal A, Zengin G, Brata R, Fratila O, Bungau S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020; 8:E571. [PMID: 33291236 PMCID: PMC7762146 DOI: 10.3390/biomedicines8120571] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Withaferin A (WA), a manifold studied, C28-steroidal lactone withanolide found in Withania somnifera. Given its unique beneficial effects, it has gathered attention in the era of modern science. Cancer, being considered a "hopeless case and the leading cause of death worldwide, and the available conventional therapies have many lacunae in the form of side effects. The poly pharmaceutical natural compound, WA treatment, displayed attenuation of various cancer hallmarks by altering oxidative stress, promoting apoptosis, and autophagy, inhibiting cell proliferation, reducing angiogenesis, and metastasis progression. The cellular proteins associated with antitumor pathways were also discussed. WA structural modifications attack multiple signal transduction pathways and enhance the therapeutic outcomes in various diseases. Moreover, it has shown validated pharmacological effects against multiple neurodegenerative diseases by inhibiting acetylcholesterinases and butyrylcholinesterases enzyme activity, antidiabetic activity by upregulating adiponectin and preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ), cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis. The current review is an extensive survey of various WA associated disease targets, its pharmacokinetics, synergistic combination, modifications, and biological activities.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India; (A.S.); (L.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42250, Turkey;
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.B.); (O.F.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
36
|
Abstract
The role of NF-κB in all diseases characterized by an inflammatory process, from cancer to autoimmune diseases, is known, but-precisely because it is involved in many diseases-this transcriptional factor continues to attract scientific research and the new knowledge that emerges is fundamental in highlighting the therapeutic potential that this factor can have in the various diseases in which it is involved [...].
Collapse
|