1
|
Wang Y, Li H, Huang J, Jiang M, Tian S, Liu S, Zhang L, Wu S, Kan H, Gao X. Short-Term PM 2.5 Exposure and DNA Methylation Changes of Circadian Rhythm Genes: Evidence from Two Experimental Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9991-10000. [PMID: 38814053 DOI: 10.1021/acs.est.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The circadian rhythm regulates many crucial physiological processes, impacting human aging and aging-related outcomes. Observational evidence links circadian rhythm disturbance to PM2.5 exposure, yet the underlying DNA methylation mechanisms remain unclear due to limited PM2.5-dominated experimental settings. Therefore, we investigated the associations between short-term PM2.5 exposure and DNA methylation changes of 1188 CpG candidates across circadian genes among 32 young adults in the FDU study, with the validation in 26 individuals from the PKU study. Further mediation analyses tested whether DNA methylation of circadian genes could mediate the influence of PM2.5 on aging measured by three epigenetic ages: DNAmGrimAge, DunedinPoAm, and the mortality risk score. We identified three CpG sites associated with personal PM2.5 exposure: cg01248361 (CSNK2A2), cg17728065 (RORA), and cg22513396 (PRKAG2). Acute effects of PM2.5 on the three loci could be mediated by several circulating biomarkers, including MDA and EGF, with up to ∼30% of mediated proportions. Three loci further showed varying potentials in mediating the aging acceleration effect of PM2.5. Locus cg17728065 is the key site exhibiting a robust mediating effect (7.54-12.52%) on PM2.5-induced aging acceleration. Our findings demonstrated that PM2.5, even short-term peaks, could leave imprints on human aging via inducing aberrant temporal fluctuation in circadian homeostasis captured by DNA methylation profiles.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Meijie Jiang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Sifan Tian
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710049, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710049, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710049, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100871, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100871, China
- Peking University Institute of Environmental Medicine, Beijing 100191, China
- Center for Healthy Aging, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
2
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
4
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
5
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
6
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
7
|
He L, Wang J, Wang F, Wang L, Liu Y, Zhou F, Xu F. Depression status and functional outcome of patients with ischemic stroke and the impact on caregivers living in Chengdu: a cross-sectional study. Front Psychiatry 2023; 14:1166273. [PMID: 37469357 PMCID: PMC10353739 DOI: 10.3389/fpsyt.2023.1166273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Objectives To investigate the associations between risk factors and depression symptoms in ischemic stroke (IS) survivors and the effect of IS survivors' depression status and functional outcomes on caregiver burden in Chengdu, China. Methods In this cross-sectional study, we recruited a convenience sample of patients with IS and paired caregivers living in Chengdu from February 2022 to May 2022. Depression symptoms were assessed using the 17-item Chinese Hamilton Depression Rating Scale, the social support of patients was assessed using the perceived social support scale (PSSS), caregiver burden was assessed using the Zarit burden interview (ZBI). Multivariable logistic regression analysis was used to analyze the data between risk factors and depression symptoms, and multiple linear regression models were constructed to examine the depression symptoms and functional outcomes of stroke survivors, and caregiver burden. Results In total, 966 IS survivors and paired caregivers were included in this study. Among IS survivors, 35.51% (343/966) experienced depression. Age [adjusted odds ratio (aOR), 1.02; 95% confidence interval (CI), 1.00-1.04; p = 0.036], the National Institutes of Health Stroke Scale (NIHSS) score (aOR, 1.57; 95% CI, 1.47-1.68; p < 0.001), and PSSS score (aOR, 0.86; 95% CI, 0.84-0.89; p < 0.001) were associated with an increased risk of depression. The NIHSS score (b = 2.57, p < 0.001), patients' depression status (b = 2.54, p < 0.001), duration of care (b = 0.359, p = 0.006), and social support of caregivers (b = -0.894, p = 0.038) were significantly associated with the ZBI score. Conclusion The PSSS score was a major risk factor for the development of depression in IS survivors, and patients' depression status and severe functional deficits had a negative impact on the ZBI score of the main caregivers. Social support can reduce the ZBI score.
Collapse
Affiliation(s)
- Lanying He
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Jian Wang
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Feng Wang
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Lu Wang
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Yinglin Liu
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Fanfan Zhou
- Department of Neurology, The Second People’s Hospital of Chengdu, Chengdu, China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Korostovtseva LS, Kolomeichuk SN. Circadian Factors in Stroke: A Clinician's Perspective. Cardiol Ther 2023; 12:275-295. [PMID: 37191897 DOI: 10.1007/s40119-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Stroke remains one of the leading causes of mortality and long-term and permanent disability worldwide despite technological innovations and developments in pharmacotherapy. In the last few decades, the growing data have evidenced the role of the circadian system in brain vulnerability to damage, the development and evolution of stroke, and short-term and long-term recovery. On the other hand, the stroke itself can affect the circadian system via direct injury of specific brain structures involved in circadian regulation (i.e., hypothalamus, retinohypothalamic tracts, etc.) and impairment of endogenous regulatory mechanisms, metabolic derangement, and a neurogenic inflammatory response in acute stroke. Moreover, the disruption of circadian rhythms can occur or exacerbate as a result of exogenous factors related to hospitalization itself, the conditions in the intensive care unit and the ward (light, noise, etc.), medication (sedatives and hypnotics), and loss of external factors entraining the circadian rhythms. In the acute phase of stroke, patients demonstrate abnormal circadian variations in circadian biomarkers (melatonin, cortisol), core body temperature, and rest-activity patterns. The approaches aimed at the restoration of disrupted circadian patterns include pharmacological (melatonin supplementation) and non-medication (bright light therapy, shifting feeding schedules, etc.) interventions; however, their effects on short- and long-term recovery after stroke are not well understood.
Collapse
Affiliation(s)
- Lyudmila S Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia.
| | - Sergey N Kolomeichuk
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia
- Laboratory of Genetics Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
9
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
10
|
Rigamonti AE, Bollati V, Favero C, Albetti B, Caroli D, De Col A, Cella SG, Sartorio A. Changes in DNA Methylation of Clock Genes in Obese Adolescents after a Short-Term Body Weight Reduction Program: A Possible Metabolic and Endocrine Chrono-Resynchronization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315492. [PMID: 36497566 PMCID: PMC9738941 DOI: 10.3390/ijerph192315492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Circadian rhythms are generated by a series of genes, collectively named clock genes, which act as a self-sustained internal 24 h timing system in the body. Many physiological processes, including metabolism and the endocrine system, are regulated by clock genes in coordination with environmental cues. Loss of the circadian rhythms has been reported to contribute to widespread obesity, particularly in the pediatric population, which is increasingly exposed to chronodisruptors in industrialized society. The aim of the present study was to evaluate the DNA methylation status of seven clock genes, namely clock, arntl, per1-3 and cry1-2, in a cohort of chronobiologically characterized obese adolescents (n: 45: F/M: 28/17; age ± SD: 15.8 ± 1.4 yrs; BMI SDS: 2.94 [2.76; 3.12]) hospitalized for a 3-week multidisciplinary body weight reduction program (BWRP), as well as a series of cardiometabolic outcomes and markers of hypothalamo-pituitary-adrenal (HPA) function. At the end of the intervention, an improvement in body composition was observed (decreases in BMI SDS and fat mass), as well as glucometabolic homeostasis (decreases in glucose, insulin, HOMA-IR and Hb1Ac), lipid profiling (decreases in total cholesterol, LDL-C, triglycerides and NEFA) and cardiovascular function (decreases in systolic and diastolic blood pressures and heart rate). Moreover, the BWRP reduced systemic inflammatory status (i.e., decrease in C-reactive protein) and HPA activity (i.e., decreases in plasma ACTH/cortisol and 24 h urinary-free cortisol excretion). Post-BWRP changes in the methylation levels of clock, cry2 and per2 genes occurred in the entire population, together with hypermethylation of clock and per3 genes in males and in subjects with metabolic syndrome. In contrast to the pre-BWRP data, at the end of the intervention, cardiometabolic parameters, such as fat mass, systolic and diastolic blood pressures, triglycerides and HDL-C, were associated with the methylation status of some clock genes. Finally, BWRP induced changes in clock genes that were associated with markers of HPA function. In conclusion, when administered to a chronodisrupted pediatric obese population, a short-term BWRP is capable of producing beneficial cardiometabolic effects, as well as an epigenetic remodeling of specific clock genes, suggesting the occurrence of a post-BWRP metabolic and endocrine chronoresynchronization, which might represent a "biomolecular" predictor of successful antiobesity intervention.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Benedetta Albetti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| |
Collapse
|
11
|
Shi W, Chen C, Cui Q, Deng F, Yang B, Cao Y, Zhao F, Zhang Y, Du P, Wang J, Li T, Tang S, Shi X. Sleep disturbance exacerbates the cardiac conduction abnormalities induced by persistent heavy ambient fine particulate matter pollution: A multi-center cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156472. [PMID: 35660605 DOI: 10.1016/j.scitotenv.2022.156472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure and sleep disturbance have been significantly associated with adverse cardiovascular outcomes, however, the combined effects of these two factors are still unclear. We conducted a multi-center cross-sectional study from November 2018 to May 2019 in the Beijing-Tianjin-Hebei region in China to investigate the potential modifying effects of sleep disturbance on associations between cardiac conduction abnormalities and PM2.5 exposure, as well as the combined effects of sleep disturbance and heavy pollution episodes, which were defined based on the PM2.5 mass concentration (≥75 μg/m3, falling in the 75th/90th percentile) and duration (1 day and ≥2 days). The sleep quality and sleep duration of all participants were evaluated using the Pittsburgh Sleep Quality Index. Standard 12-lead electrocardiogram (ECG) test was performed to measure the heart rate (HR), QRS duration (time taken for ventricular depolarization), HR corrected QT interval (time for ventricular depolarization and repolarization) and PR interval (time for atrioventricular conduction). Multivariable linear regression models were performed to evaluate the associations of PM2.5 and heavy pollution events on ECG parameters and the joint effects with sleep disturbance. We found PM2.5 exposure was independently associated with prolonged QRS and QTc intervals. Association between PM2.5 and the QTc interval was significantly stronger in participants with poor sleep quality. For each 10-μg/m3 increase in PM2.5 concentration, the QTc interval in the participants with poor sleep quality increased by 0.41 % (95 % confidence interval: 0.19, 0.64). In addition, heavy PM2.5 pollution episodes, especially extremely heavy pollution of long duration, were found to have synergistic effects with sleep disturbance on ECG parameters. Our findings provide evidence that PM2.5 exposure, especially heavy pollution episodes, may increase abnormal cardiac conduction and have a synergistic effect with sleep disturbance. Improving sleep hygiene is crucial to protect the heart health of the general population.
Collapse
Affiliation(s)
- Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Cui
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yaqiang Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
13
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Sun Q, Ren X, Sun Z, Duan J. The critical role of epigenetic mechanism in PM 2.5-induced cardiovascular diseases. Genes Environ 2021; 43:47. [PMID: 34654488 PMCID: PMC8518296 DOI: 10.1186/s41021-021-00219-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide, which seriously threatens human life and health. Epidemiological studies have confirmed the occurrence and development of CVD are closely related to air pollution. In particular, fine particulate matter (PM2.5) is recognized as an important environmental factor contributing to increased morbidity, mortality and hospitalization rates among adults and children. However, the underlying mechanism by which PM2.5 promotes CVD development remains unclear. With the development of epigenetics, recent studies have shown that PM2.5 exposure may induce or aggravate CVD through epigenetic changes. In order to better understand the potential mechanisms, this paper reviews the epigenetic changes of CVD caused by PM2.5. We summarized the epigenetic mechanisms of PM2.5 causing cardiovascular pathological damage and functional changes, mainly involving DNA methylation, non-coding RNA, histone modification and chromosome remodeling. It will provide important clues for exploring the biological mechanisms affecting cardiovascular health.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, P.R. China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, P.R. China. .,School of Public Health, Capital Medical University, 100069, Beijing, P.R. China.
| |
Collapse
|
15
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
16
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
17
|
Effect of main family caregiver's anxiety and depression on mortality of patients with moderate-severe stroke. Sci Rep 2021; 11:2747. [PMID: 33531519 PMCID: PMC7854741 DOI: 10.1038/s41598-021-81596-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
Anxiety and depression are common mental illness in stroke caregivers, resulting in significant stress to the emotion health of caregivers. Caregivers’ emotion can seriously affect the recovery rate of stroke patient, therefore, how to control and affect the caregivers’ anxiety and depression is of great importance. Here three multiple centers observation and validation study were performed to screen out the risk factors for development of anxiety and depression in main family caregiver, and the effect of anxiety and depression of family caregivers on 6-month mortality of patients with moderate-severe stroke. The severity of the stroke, the duration of care time and the medical payment associated with increased risk of anxiety and depression. Anxiety and depression of main family caregivers are associated with increased risk 6-month mortality of patients with moderate-severe stroke. Therefore, the support provided to the family caregivers might have positive effect on prognosis of the patients with stroke.
Collapse
|
18
|
Monti P, Iodice S, Tarantini L, Sacchi F, Ferrari L, Ruscica M, Buoli M, Vigna L, Pesatori AC, Bollati V. Effects of PM Exposure on the Methylation of Clock Genes in a Population of Subjects with Overweight or Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1122. [PMID: 33513987 PMCID: PMC7908270 DOI: 10.3390/ijerph18031122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
The expression of clock genes, regulating the synchronization of metabolic and behavioral processes with environmental light/dark cycles, is regulated by methylation and might be influenced by short-term exposure to airborne particulate matter (PM), especially in individuals that are hypersensitive to proinflammatory cues. The present study aimed to evaluate the effects of PM2.5 and PM10 on the methylation profile of the clock genes ARNTL, CLOCK, CRY1, CRY2, PER1, PER2, and PER3 in a population of 200 women with obesity. A significant association between PM10 exposure and the methylation of clock genes was found, namely, this was negative for PER2 gene and positive for the CLOCK, CRY1, CRY2, and PER3 genes. PM2.5 was negatively associated with methylation of PER2 gene and positively with methylation of CRY2 gene. Evidence was observed for effect modification from body mass index (BMI) regarding the PER1 gene: as PM2.5/10 increases, DNA methylation increases significantly for relatively low BMI values (BMI = 25), while it decreases in participants with severe obesity (BMI = 51). PM may therefore alter the epigenetic regulation of clock genes, possibly affecting circadian rhythms. Future studies are needed to clarify how alterations in clock gene methylation are predictive of disease development and how obesity can modulate the adverse health effects of PM.
Collapse
Affiliation(s)
- Paola Monti
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
| | - Simona Iodice
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Letizia Tarantini
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Francesca Sacchi
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Luca Ferrari
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy;
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luisella Vigna
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- Center of Obesity and Work EASO Collaborating Centers for Obesity Management, 20122 Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Valentina Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| |
Collapse
|