1
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
2
|
Anghelescu A, Firan FC, Onose G, Munteanu C, Trandafir AI, Ciobanu I, Gheorghița Ș, Ciobanu V. PRISMA Systematic Literature Review, including with Meta-Analysis vs. Chatbot/GPT (AI) regarding Current Scientific Data on the Main Effects of the Calf Blood Deproteinized Hemoderivative Medicine (Actovegin) in Ischemic Stroke. Biomedicines 2023; 11:1623. [PMID: 37371718 PMCID: PMC10295843 DOI: 10.3390/biomedicines11061623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Stroke is a significant public health problem and a leading cause of death and long-term disability worldwide. Several treatments for ischemic stroke have been developed, but these treatments have limited effectiveness. One potential treatment for this condition is Actovegin®/AODEJIN, a calf blood deproteinized hemodialysate/ultrafiltrate that has been shown to have pleiotropic/multifactorial and possibly multimodal effects. The actual actions of this medicine are thought to be mediated by its ability to reduce oxidative stress, inflammation, and apoptosis and to enhance neuronal survival and plasticity. METHODS To obtain the most up-to-date information on the effects of Actovegin®/AODEJIN in ischemic stroke, we systematically reviewed the literature published in the last two years. This review builds upon our previous systematic literature review published in 2020, which used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method to search for and select related articles over almost two decades, between 1 January 2001 and 31 December 2019. Additionally, we compared the results of our PRISMA search (human intelligence-based) with those obtained from an interrogation of a GPT-based chatbot (ChatGPT) in order to ensure comprehensive coverage of potentially relevant studies. RESULTS Our updated review found limited new evidence on the use of Actovegin®/AODEJIN in ischemic stroke, although the number of articles on this subject consistently increased compared to that from our initial systematic literature review. Specifically, we found five articles up to 2020 and eight more until December 2022. While these studies suggest that Actovegin®/AODEJIN may have neuroprotective effects in ischemic stroke, further clinical trials are needed to confirm these findings. Consequently, we performed a funnel analysis to evaluate the potential for publication bias. DISCUSSION Our funnel analysis showed no evidence of publication bias, suggesting that the limited number of studies identified was not due to publication bias but rather due to a lack of research in this area. However, there are limitations when using ChatGPT, particularly in distinguishing between truth and falsehood and determining the appropriateness of interpolation. Nevertheless, AI can provide valuable support in conducting PRISMA-type systematic literature reviews, including meta-analyses. CONCLUSIONS The limited number of studies identified in our review highlights the need for additional research in this area, especially as no available therapeutic agents are capable of curing central nervous system lesions. Any contribution, including that of Actovegin (with consideration of a positive balance between benefits and risks), is worthy of further study and periodic reappraisal. The evolving advancements in AI may play a role in the near future.
Collapse
Affiliation(s)
- Aurelian Anghelescu
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
| | - Florentina Carmen Firan
- The Physical and Rehabilitation Medicine & Balneology Clinic Division—The NeuroRehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania;
| | - Gelu Onose
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Constantin Munteanu
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Andreea-Iulia Trandafir
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Ilinca Ciobanu
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
| | - Ștefan Gheorghița
- The Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.T.); (I.C.); (Ș.G.)
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
3
|
Vasiliu O. Analysis of neuroprotective medication in patients with neurocognitive disorders: The efficacy and tolerability of highly purified animal tissues extracts. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Neurocognitive disorders are extremely invalidating psychiatric disorders with chronic courses and significant negative impacts over all areas of cognitive functioning and behavioral activity. Although extensive research on these progressive neurodegenerative disorders has been conducted, pathogenetic treatments with long-term significant benefits are yet controversial. From a clinical perspective, there is an acute need to find therapeutic strategies that could delay cognitive impairment in patients diagnosed with Alzheimer’s disease (AD), vascular dementia (VaD), Lewy body dementia (LBD), etc. Also, slowing the transition from mild cognitive impairment (MCI) to clinically significant AD is another important clinical aspect, with a major impact on the patient’s daily functioning, quality of life, and caregivers’ burden. Acetylcholinesterase inhibitors (AChEI) are still the first line of treatment in AD patients, and they are also administered in the case of VaD or Parkinson’s dementia. Various nootropics have been studied in this population, as add-on agents. Highly purified animal tissue extracts (HPATE) are administered in patients with neurocognitive disorders due to their neurotrophic properties, but many questions remain unanswered regarding their pharmacodynamic characteristics. These extracts may be added to AChEI to enhance their pro-cognitive effect, but evidence to support the superior efficacity of this association versus AChEI monotherapy is mainly derived from low-to-medium quality clinical trials. In conclusion, HPATE may be a useful add-on to first-line pro-cognitive agents in AD and VaD, but larger trials with better methodology are needed. In particular cases, however, HPATE may be of significant interest for patients with mild-to-moderate AD, based on results from clinical practice."
Collapse
|
4
|
la Fleur P, Baizhaxynova A, Reynen E, Kaunelis D, Galiyeva D. Actovegin in the management of patients after ischemic stroke: A systematic review. PLoS One 2022; 17:e0270497. [PMID: 35771887 PMCID: PMC9246213 DOI: 10.1371/journal.pone.0270497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Actovegin is a hemodialysate of calf's blood and has been used for several decades in the countries of Central Asia, East Asia, Russia and some European countries. It has been used to treat patients with various neurological conditions, vascular disorders, and ischemic stroke. OBJECTIVES To perform a systematic review to evaluate the effect of Actovegin in patients who have suffered an ischemic stroke. METHODS A search of MEDLINE, PubMed, Cochrane and Embase was carried out from inception to October 10, 2021 for clinical trials and observational studies with a control group, published in English or Russian. RESULTS Of 220 identified unique records, 84 full-text articles were screened, and 5 studies were selected that met the inclusion criteria. This included 4 observational studies with control groups and one randomized, placebo-controlled clinical trial. These studies enrolled a total of 3879 patients of which 720 patients received Actovegin administered intravenously and/or orally for a duration ranging from 10 to 180 days. Because of study heterogeneity, meta-analysis was not performed. No consistent evidence on improved survival, quality of life, neurologic symptoms, activities of daily living or disability was identified. One study showed statistically significant improvements in the Alzheimer's Disease Assessment Scale, cognitive subscale, extended version (ADAS-cog+) for Actovegin compared with placebo at 6 months but the clinical relevance of this change is uncertain. One study reported a higher incidence of recurrent ischemic stroke, transient ischemic attack or intracerebral hemorrhage in patients taking Actovegin compared to placebo. CONCLUSIONS The benefits of Actovegin are uncertain and that there is potential risk of harm in patients with stroke. More evidence is needed from rigorously designed clinical trials to justify the role of Actovegin in patients with ischemic stroke.
Collapse
Affiliation(s)
- Philip la Fleur
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Emily Reynen
- Department of Critical Care Medicine Queen’s University, Kingston, Ontario, Canada
| | - David Kaunelis
- Canadian Agency for Drugs and Technologies in Health, Ottawa, Canada
| | - Dinara Galiyeva
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
5
|
Stoica SI, Bleotu C, Ciobanu V, Ionescu AM, Albadi I, Onose G, Munteanu C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022; 10:481. [PMID: 35203690 PMCID: PMC8962344 DOI: 10.3390/biomedicines10020481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological-adaptive-or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the" Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA") filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/"syntaxes", with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia's mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest (PUB), 060042 Bucharest, Romania;
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
| | - Irina Albadi
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania;
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Department of Research, Romanian Association of Balneology, 022251 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
6
|
Laurent A, Abdel-Sayed P, Scaletta C, Laurent P, Laurent E, Michetti M, de Buys Roessingh A, Raffoul W, Hirt-Burri N, Applegate LA. Back to the Cradle of Cytotherapy: Integrating a Century of Clinical Research and Biotechnology-Based Manufacturing for Modern Tissue-Specific Cellular Treatments in Switzerland. Bioengineering (Basel) 2021; 8:bioengineering8120221. [PMID: 34940374 PMCID: PMC8698568 DOI: 10.3390/bioengineering8120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Empirically studied by Dr. Brown-Séquard in the late 1800s, cytotherapies were later democratized by Dr. Niehans during the twentieth century in Western Switzerland. Many local cultural landmarks around the Léman Riviera are reminiscent of the inception of such cell-based treatments. Despite the discreet extravagance of the remaining heirs of "living cell therapy" and specific enforcements by Swiss health authorities, current interest in modern and scientifically sound cell-based regenerative medicine has never been stronger. Respective progress made in bioengineering and in biotechnology have enabled the clinical implementation of modern cell-based therapeutic treatments within updated medical and regulatory frameworks. Notably, the Swiss progenitor cell transplantation program has enabled the gathering of two decades of clinical experience in Lausanne for the therapeutic management of cutaneous and musculoskeletal affections, using homologous allogeneic cell-based approaches. While striking conceptual similarities exist between the respective works of the fathers of cytotherapy and of modern highly specialized clinicians, major and important iterative updates have been implemented, centered on product quality and risk-analysis-based patient safety insurance. This perspective article highlights some historical similarities and major evolutive differences, particularly regarding product safety and quality issues, characterizing the use of cell-based therapies in Switzerland over the past century. We outline the vast therapeutic potential to be harnessed for the benefit of overall patient health and the importance of specific scientific methodological aspects.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Applied Research Department, LAM Biotechnologies SA, 1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, 1038 Bercher, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Philippe Laurent
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Elénie Laurent
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Wassim Raffoul
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
7
|
Quinn TJ, Richard E, Teuschl Y, Gattringer T, Hafdi M, O'Brien JT, Merriman N, Gillebert C, Huygelier H, Verdelho A, Schmidt R, Ghaziani E, Forchammer H, Pendlebury ST, Bruffaerts R, Mijajlovic M, Drozdowska BA, Ball E, Markus HS. European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment. Eur J Neurol 2021; 28:3883-3920. [PMID: 34476868 DOI: 10.1111/ene.15068] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The optimal management of post-stroke cognitive impairment (PSCI) remains controversial. These joint European Stroke Organisation (ESO) and European Academy of Neurology (EAN) guidelines provide evidence-based recommendations to assist clinicians in decision making regarding prevention, diagnosis, treatment and prognosis. METHODS Guidelines were developed according to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology. The working group identified relevant clinical questions, performed systematic reviews, assessed the quality of the available evidence, and made specific recommendations. Expert consensus statements were provided where insufficient evidence was available to provide recommendations. RESULTS There was limited randomized controlled trial (RCT) evidence regarding single or multicomponent interventions to prevent post-stroke cognitive decline. Lifestyle interventions and treating vascular risk factors have many health benefits, but a cognitive effect is not proven. We found no evidence regarding routine cognitive screening following stroke, but recognize the importance of targeted cognitive assessment. We describe the accuracy of various cognitive screening tests, but found no clearly superior approach to testing. There was insufficient evidence to make a recommendation for use of cholinesterase inhibitors, memantine nootropics or cognitive rehabilitation. There was limited evidence on the use of prediction tools for post-stroke cognition. The association between PSCI and acute structural brain imaging features was unclear, although the presence of substantial white matter hyperintensities of presumed vascular origin on brain magnetic resonance imaging may help predict cognitive outcomes. CONCLUSIONS These guidelines highlight fundamental areas where robust evidence is lacking. Further definitive RCTs are needed, and we suggest priority areas for future research.
Collapse
Affiliation(s)
- Terence J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Behaviour and Cognition, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Yvonne Teuschl
- Department for Clinical Neurosciences and Preventive Medicine, Danube University Krems, Krems, Austria
| | - Thomas Gattringer
- Department of Neurology and Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Melanie Hafdi
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Niamh Merriman
- Department of Health Psychology, Division of Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Celine Gillebert
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,TRACE, Centre for Translational Psychological Research (TRACE), KU Leuven - Hospital East-Limbourgh, Genk, Belgium
| | - Hanne Huygelier
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,TRACE, Centre for Translational Psychological Research (TRACE), KU Leuven - Hospital East-Limbourgh, Genk, Belgium
| | - Ana Verdelho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Lisbon, Portugal
| | - Reinhold Schmidt
- Department of Neurology and Medical University of Graz, Graz, Austria
| | - Emma Ghaziani
- Department of Physical and Occupational Therapy, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Sarah T Pendlebury
- Departments of Medicine and Geratology and NIHR Oxford Biomedical Research Centre Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Rose Bruffaerts
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Milija Mijajlovic
- Neurosonology Unit, Neurology Clinic, University Clinical Center of Serbia and Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Bogna A Drozdowska
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Emily Ball
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugh S Markus
- Stroke Research group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Quinn TJ, Richard E, Teuschl Y, Gattringer T, Hafdi M, O’Brien JT, Merriman N, Gillebert C, Huyglier H, Verdelho A, Schmidt R, Ghaziani E, Forchammer H, Pendlebury ST, Bruffaerts R, Mijajlovic M, Drozdowska BA, Ball E, Markus HS. European Stroke Organisation and European Academy of Neurology joint guidelines on post-stroke cognitive impairment. Eur Stroke J 2021; 6:I-XXXVIII. [PMID: 34746430 PMCID: PMC8564156 DOI: 10.1177/23969873211042192] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/14/2023] Open
Abstract
The optimal management of post-stroke cognitive impairment remains controversial. These joint European Stroke Organisation (ESO) and European Academy of Neurology (EAN) guidelines provide evidence-based recommendations to assist clinicians in decision making around prevention, diagnosis, treatment and prognosis. These guidelines were developed according to ESO standard operating procedure and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology. The working group identified relevant clinical questions, performed systematic reviews and, where possible, meta-analyses of the literature, assessed the quality of the available evidence and made specific recommendations. Expert consensus statements were provided where insufficient evidence was available to provide recommendations based on the GRADE approach. There was limited randomised controlled trial evidence regarding single or multicomponent interventions to prevent post-stroke cognitive decline. Interventions to improve lifestyle and treat vascular risk factors may have many health benefits but a beneficial effect on cognition is not proven. We found no evidence around routine cognitive screening following stroke but recognise the importance of targeted cognitive assessment. We described the accuracy of various cognitive screening tests but found no clearly superior approach to testing. There was insufficient evidence to make a recommendation for use of cholinesterase inhibitors, memantine nootropics or cognitive rehabilitation. There was limited evidence on the use of prediction tools for post-stroke cognitive syndromes (cognitive impairment, dementia and delirium). The association between post-stroke cognitive impairment and most acute structural brain imaging features was unclear, although the presence of substantial white matter hyperintensities of presumed vascular origin on acute MRI brain may help predict cognitive outcomes. These guidelines have highlighted fundamental areas where robust evidence is lacking. Further, definitive randomised controlled trials are needed, and we suggest priority areas for future research.
Collapse
Affiliation(s)
- Terence J Quinn
- Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, UK
| | - Edo Richard
- Department of Neurology, Donders
Institute for Brain, Behaviour and Cognition, Radboud University Medical
Centre, Nijmegen, The Netherlands
| | - Yvonne Teuschl
- Department for Clinical
Neurosciences and Preventive Medicine, Danube University Krems, der Donau, Austria
| | - Thomas Gattringer
- Department of Neurology and
Division of Neuroradiology, Vascular and Interventional Radiology, Department of
Radiology, Medical University of
Graz, Graz, Austria
| | - Melanie Hafdi
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge School of
Clinical Medicine, Cambridge, UK
| | - Niamh Merriman
- Deptartment of Health Psychology,
Division of Population Health Sciences, Royal College of Surgeons in
Ireland, Dublin, Ireland
| | - Celine Gillebert
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational
Psychological Research (TRACE), KU Leuven – Hospital
East-Limbourgh, Genk, Belgium
| | - Hanne Huyglier
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational
Psychological Research (TRACE), KU Leuven – Hospital
East-Limbourgh, Genk, Belgium
| | - Ana Verdelho
- Department of Neurosciences and
Mental Health, Hospital de Santa Maria, Lisbon, Portugal
| | - Reinhold Schmidt
- Department of Neurology, Medical University of
Graz, Graz, Austria
| | - Emma Ghaziani
- Department of Physical and
Occupational Therapy, Bispebjerg and Frederiksberg
Hospital, Copenhagen, Denmark
| | | | - Sarah T Pendlebury
- Departments of Medicine and
Geratology and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS
Foundation Trust, Oxford, UK
| | - Rose Bruffaerts
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Milija Mijajlovic
- Neurosonology Unit, Neurology
Clinic, University Clinical Center of Serbia
and Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Bogna A Drozdowska
- Institute of Cardiovascular and
Medical Sciences, University of Glasgow, Glasgow, UK
| | - Emily Ball
- Centre for Clinical Brain
Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Hugh S Markus
- Stroke Research Group, Department
of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Martynov MY, Bogolepova AN, Yasamanova AN. [Endothelial dysfunction in COVID- 19 and cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:93-99. [PMID: 34283537 DOI: 10.17116/jnevro202112106193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is an important mechanism underlying multiple organ and systems failure in COVID-19. The development of endothelial dysfunction in COVID-19 can disrupt organ perfusion and cause a procoagulant state, leading to both macro- and microvascular thrombotic events. Cognitive impairment is a common complication of COVID-19 that develop in acute and delayed periods and is not directly related to the severity of the underlying disease. Treatment of endothelial dysfunction in patients with COVID-19 should take into account the leading pathogenetic factors of its development and with the development of neurological, including cognitive, disorders should include neuroprotective drugs. One of these drugs is actovegin, which has been shown to be effective in improving endothelial function, microcirculation and cognition.
Collapse
Affiliation(s)
- M Yu Martynov
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
| | - A N Yasamanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Silina EV, Manturova NE, Litvitskiy PF, Stupin VA. Comparative Analysis of the Effectiveness of Some Biological Injected Wound Healing Stimulators and Criteria for Its Evaluation. Drug Des Devel Ther 2020; 14:4869-4883. [PMID: 33209017 PMCID: PMC7669517 DOI: 10.2147/dddt.s277047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate the comparative effectiveness of certain biological injectable stimulants for the healing of skin wounds and criteria for its assessment. MATERIALS AND METHODS A comparative study of the effectiveness of mesenchymal stem cells (SC group), collagen (Collagen group), and deproteinized calf blood hemoderivative (DCBH group) was carried out using an acute wound model. Control wounds were injected with isotonic sodium chloride solution (Control group). A total of four groups (28 wounds per group) were included in the study. Aged male Wistar rats were used as experimental animals. A dynamic assessment of the wound areas and edges, microvasculature assessment via laser Doppler flowmetry, histological and morphometric analyses to determine the quantitative and qualitative fibroblasts composition, as well as the degree of newly synthesized collagen maturity, was conducted on days 0, 3, 7, and 14. RESULTS The administration of SCs provided a rapid but short-lasting effect, whereas the administration of collagen resulted in a delayed but long-lasting wound-healing effect. DCBH resulted in little to no effect. An increase in the perfusion volume of the wound edges accelerated the regeneration process, while the level of microcirculation did not affect the number and activity of fibroblasts. The wound healing acceleration, as well as the new collagen and stratified epithelium formation and maturation, was associated with the presence of a sufficient pool of mature and active fibroblasts in the wound, and not with the number of fibroblasts. CONCLUSION The present results clarify the action mechanisms of the studied drugs. In addition, the application purposes and different effects of each drug on the different wound healing phases were demonstrated. An assumption on the multi-component treatment advisability under the wound condition objective assessment possibility was made. Findings from this study may assist clinicians in making an informed transition to personalized wound management and achieve better clinical outcomes.
Collapse
Affiliation(s)
- Ekaterina Vladimirovna Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow119991, Russia
| | - Natalia Evgenievna Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow117997, Russia
| | - Petr Frantsevich Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow119991, Russia
| | | |
Collapse
|
11
|
Stupin V, Manturova N, Silina E, Litvitskiy P, Vasin V, Artyushkova E, Ivanov A, Gladchenko M, Aliev S. The Effect of Inflammation on the Healing Process of Acute Skin Wounds Under the Treatment of Wounds with Injections in Rats. J Exp Pharmacol 2020; 12:409-422. [PMID: 33154679 PMCID: PMC7608486 DOI: 10.2147/jep.s275791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To study the effects of inflammation on the healing process of rats' acute skin wounds during treatment with different injections. METHODS The study was carried out on Wistar rats, on which square wounds were simulated in the back region. Four groups of wounds were studied. On the day of the simulation (day 0), solutions of the drugs were injected into the wounds: an isotonic sodium chloride solution (Control group), mesenchymal stem cells (SC group), collagen (Collagen group), and a deproteinized hemoderivative of calf blood (DHB group). Within 2 weeks, the wound healing process was assessed by observing and calculating changes in the wound areas, temperatures, and epithelialization levels. On days 3, 7, and 14, wound tissue samples were taken for histological examination, morphological analysis of the healing process, and quantitative assessment of granulation layers' leukocyte infiltration. RESULTS A correlation between the process of inflammation and epithelization during the healing of skin wounds was established. The anti-inflammatory effect of SC injection on the wound edge tissues was determined, as well as the pro-inflammatory effect of DHB, and the absence of effects on the inflammation course under the collagen treatment. Compared to the control group, the transition from the exudative phase of inflammation to the proliferative phase was faster, as well was wound epithelialization in the SC and Collagen groups. A negative correlation between the level of tissue temperature in the center of wounds and their area were recorded, which intensified over time. CONCLUSION The severity and duration of the inflammation process during wound healing were ambiguous with the use of different injection treatments. This should compel clinicians to use different markers of drug therapy effectiveness during wound healing. Excessive leukocyte infiltration with a low temperature of wounds and a large scab were markers of delayed wound healing.
Collapse
Affiliation(s)
- Victor Stupin
- Department of Hospital Surgery No 1, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Petr Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vitaly Vasin
- Department of Hospital Surgery No 1, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Elena Artyushkova
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
| | - Alexander Ivanov
- Department of Histology, Embryology, and Cytology, Kursk State Medical University, Kursk, Russia
| | - Mikhail Gladchenko
- Research Institute of Experimental Medicine, Kursk State Medical University, Kursk, Russia
| | - Salekh Aliev
- Department of Hospital Surgery No 1, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Ling L, Alattar A, Tan Z, Shah FA, Ali T, Alshaman R, Koh PO, Li S. A Potent Antioxidant Endogenous Neurohormone Melatonin, Rescued MCAO by Attenuating Oxidative Stress-Associated Neuroinflammation. Front Pharmacol 2020; 11:1220. [PMID: 32973495 PMCID: PMC7472569 DOI: 10.3389/fphar.2020.01220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke is an acute neurological syndrome either due to permanent or temporary obstruction of blood. Such obstruction immediately triggers abrupt pathological cascading processes, which collectively lead to neuronal cell death. Oxidative stress and neuroinflammation in ischemic stroke are critical regulating events that ultimately lead to neuronal death. Complicated interplay exists between the two processes which occur through several stages. Most often, oxidative stress precedes the inflammatory mechanisms and includes several interconnected cascades that underlie the ischemic stroke pathology. In continuation of the previously published data, here, we further ruled out the protective role of melatonin in focal cerebral ischemic injury model. Administration of 5 mg/kg dose of melatonin 30 min prior to ischemia reduced brain infarction associated with sequentially rescued neuronal apoptosis. Furthermore, melatonin attenuated neuroinflammatory markers and reactive oxygen species (ROS), induced by ischemic stroke, via halting the key players of mitogen stress family (p38/JNK). Besides, melatonin modulated the endogenously produced antioxidant enzyme, thioredoxin (Trx) pathway. These broader therapeutic efficacies of melatonin suggest that melatonin could be further investigated for its diverse therapeutic actions with multiple targets in recovering, preventing and halting the detrimental outcomes of MCAO, such as elevated oxidative stress, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Li Ling
- Department of Endocrinology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|